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Abstract. We propose a novel hybrid metric learning approach to com-
bine multiple heterogenous statistics for robust image set classification.
Specifically, we represent each set with multiple statistics – mean, covari-
ance matrix and Gaussian distribution, which generally complement each
other for set modeling. However, it is not trivial to fuse them since the
mean vector with d-dimension often lies in Euclidean space Rd, whereas
the covariance matrix typically resides on Riemannian manifold Sym+

d .
Besides, according to information geometry, the space of Gaussian dis-
tribution can be embedded into another Riemannian manifold Sym+

d+1.
To fuse these statistics from heterogeneous spaces, we propose a Hy-
brid Euclidean-and-Riemannian Metric Learning (HERML) method to
exploit both Euclidean and Riemannian metrics for embedding their
original spaces into high dimensional Hilbert spaces and then jointly
learn hybrid metrics with discriminant constraint. The proposed method
is evaluated on two tasks: set-based object categorization and video-
based face recognition. Extensive experimental results demonstrate that
our method has a clear superiority over the state-of-the-art methods.

1 Introduction

Learning problems of classifying image sets is commonly encountered in many
branches of computer vision community. In video-based face recognition, for
example, each face video can be considered as an image set, which may cover
large variations in a subject’s appearance due to camera pose changes, non-
rigid deformations, or different illumination conditions. The objective of image
set classification task is to classify an unknown image set to one of the gallery
image sets. Generally speaking, existing image set classification methods mainly
focus on the key issues of how to quantify the degree of match between two sets
and how to learn discriminant function from training image sets [1].

In the aspect of how to quantify the degree of match, image set classification
methods can be broadly partitioned into sample-based methods [2–7], subspace-
based methods [8, 1, 9–13] and distribution-based methods [14, 15]. Sample-based
methods compare sets based on matching their sample-based statistics (SAS)
such as sample mean and affine (convex) combination of samples. This kind of
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Table 1. Three major challenges for set modeling: arbitrary data distribution, large
data variation and small set size. Here, the tick (/cross) indicates the corresponding set
statistics, i.e., sample-based (SAS), subspace-based (SUS) or distribution-based (DIS)
statistics, is (/not) qualified to handle the challenge in that column. The last row
represents the combination of ALL above three statistics in our proposed method.

statistics arbitrary distribution large variation small size

SAS X × X
SUS X X ×
DIS × X X
ALL X X X

methods include Maximum Mean Discrepancy (MMD)[2], Affine (Convex) Hull
based Image Set Distance (AHISD, CHISD)[3] and Sparse Approximated Nearest
Point (SANP) [4] etc. Subspace-based methods typically apply subspace-based
statistics (SUS) to model sets and classify them with given similarity function.
For example, Mutual Subspace Method (MSM) [8] represent sets as linear sub-
spaces and match them using canonical correlations [16]. The distribution-based
methods, e.g., Single Gaussian Model (SGM) [14] and Gaussian Mixture Models
(GMM) [15], model each set with distribution-based statistics (DIS) (i.e., Gaus-
sian distribution), and then measure the similarity between two distributions in
terms of the Kullback-Leibler Divergence (KLD) [17].

In the real-world scenario, image sets are often of arbitrary data distribution
or large data variation or small set size. As shown in Tab.1, however, SAS per-
forms poorly when sets are of large variation while SUS is not good at dealing
with the challenge of small set size, though both have no assumption of data
distribution. Different from them, DIS requires the set data to follow Gaussian
distribution. Fortunately, the three kinds of statistics are complementary for
each other: when sets contain small variation, SAS is qualified to model sets
with any size and in arbitrary distribution. As a complement, SUS is able to
tackle the problem of large variation but requires the set size to be large enough.
In addition to the above situations, the last challenge of large variation mean-
while small set size can be overcame by DIS to some extent. This is because DIS
is usually obtained by jointly estimating the mean and the covariance, which
are capable of adapting to the scenario of small set size and characterizing large
data variation respectively.

The other important problem in set classification is how to learn discriminant
function from training image sets, which generally are sets of single vectors.
The first kind of methods [1, 11, 7, 13] is to learn the discriminant function in
Euclidean space. For instance, Discriminative Canonical Correlations (DCC) [1]
seeks a discriminant projection of single vectors in Euclidean space to maximizes
(minimizes) the canonical correlations of within-class (between-class) sets. Set-
to-Set Distance Metric Learning (SSDML) [7] learns a proper metric between
pairs of single vectors in Euclidean space to get more accurate set-to-set affine
hull based distance for classification. Localized Multi-Kernel Metric Learning
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(LMKML) [13] treats three order statistics of each set as single vectors again
in Euclidean spaces and attempts to learn one metric for them by embedding
Euclidean spaces into Reproducing Kernel Hilbert Spaces (RKHS). However, the
higher order statistics they used such as the tensors typically lie in non-Euclidean
space, which does not adhere to Euclidean geometry. Therefore, in this method,
applying the kernel function induced by Euclidean metric to the higher order
statistics does not always preserve the original set data structure. In contrast, the
second kind of learning methods [10, 18, 12] treat each subspace-based statistics
as a point in a specific non-Euclidean space, and perform metric learning in
the same space. For example, Grassmann Discriminant Analysis (GDA) [10] and
Covariance Discriminative Learning (CDL) [12] represent each linear subspace or
covariance matrix as a point on a Riemannian manifold and learn discriminant
Riemannian metrics on that manifold.

In this paper, we propose a new approach to combine multiple statistics for
more robust image set classification. From a view of probability statistics, we
model each set as sample mean, covariance matrix and Gaussian distribution,
which are the corresponding instances of SAS, SUS and DIS. As discussed above,
the three kinds of statistics complement each other especially in the real-world
settings. Therefore, we attempt to fuse them to simultaneously deal with the
challenges of arbitrary distribution, large variation and small set size, which is
shown in Tab.1. However, combining these multiple statistics is not an easy job
because they lie in multiple heterogeneous spaces: the mean is a d-dimension
vector lying in Euclidean space Rd. As studied in [19–21], the covariance matrix
is regarded as a Symmetric Positive Definite (SPD) matrix residing on a Sym+

d

manifold. In comparison, the space of Gaussian distribution can be embedded
into another Riemannian manifold Sym+

d+1 by employing information geometry
[22]. To fuse these multiple statistics from heterogeneous spaces, inspired by
our previous work [23], we propose a Hybrid Euclidean-and-Riemannian Metric
Learning (HERML) method to exploit the Euclidean and Riemmannian metrics
for embedding these spaces into high dimension Hilbert spaces, and jointly learn
corresponding metrics of multiple statistics for discriminant objective.

2 Background

In this section, we first review the Riemannian metric of SPD matrices. This
metric derives the Riemannian kernel function, which can be used to embed the
Riemannian manifold into RKHS. Then, we introduce the Information-Theoretic
Metric Learning method and its kernelized version.

2.1 Riemannian Metric of Symmetric Positive Definite Matrices

As mostly studied in [19–21], the space of SPD matrices is a specific Riemannian
manifold Sym+ when equipping Riemannian metric. The two most widely used
Riemannain metric are the Affine-Invariant Distance (AID) [19] and the Log-
Euclidean Distance (LED) [21]. In this work, we focus on the LED, which is a
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true geodesic distance on Sym+ and yields a positive definite kernel as studied
in [12, 24].

By exploiting the Lie group structure of Sym+, the LED for Sym+ man-
ifold is derived under the operation Xi � Xj := exp(log(Xi) + log(Xj)) for
Xi,Xj ∈ Sym+, where exp(·) and log(·) denote the common matrix exponen-
tial and logarithm operators. Under the log-Euclidean framework, a geodesic
between Xi,Xj ∈ Sym+ is defined as ς(t) = exp((1 − t)log(Xi) + tlog(Xj)).
The geodesic distance between Xi and Xj is then expressed by classical Eu-
clidean computations in the domain of matrix logarithms:

d(Xi,Xj) = ‖log(Xi)− log(Xj)‖F . (1)

where ‖ · ‖F denotes the matrix Frobenius form. As studied in [12], a Rieman-
nian kernel function on the Sym+ manifold can be derived by computing the
corresponding inner product in the space:

κx(Xi,Xj) = tr(log(Xi) · log(Xj)) (2)

2.2 Information-Theoretic Metric Learning

Information-Theoretic Metric Learning (ITML) [25] method formulates the prob-
lem of metric learning as a particular Bregman optimization, which aims to
minimize the LogDet divergence subject to linear constraints:

min
A�0,ξ

D`d(A,A0) + γD`d(diag(ξ), diag(ξ0))

s.t. tr(A(xi − xj)(xi − xj)
T ) ≤ ξij , (i, j) ∈ S

tr(A(xi − xj)(xi − xj)
T ) ≥ ξij , (i, j) ∈ D

(3)

where A,A0 ∈ Rd×d, D`d(A,A0) = tr(AA−1
0 ) − logdet(AA−1

0 ) − d, d is the
dimensionality of the data. (i, j) ∈ S(D) indicates the pair of samples xi,xj is
in similar (dissimilar) class. ξ is a vector of slack variables and is initialized to ξ0,
whose components equal to a upper bound of distances for similarity constraints
and a lower bound of distances for dissimilarity constraints.

Meanwhile, ITML method can be extended to a kernel learning one. Let K0

denote the initial kernel matrix, that is, K0(i, j) = φ(xi)
TA0φ(xj), where φ

is an implicit mapping from original space to high dimensional kernel space.
Note that the Euclidean distance in kernel space may be written as K(i, i) +
K(j, j)− 2K(i, j) = tr(K(ei − ej)(ei − ej)T ), where K(i, j) = φ(xi)

TAφ(xj)
is the learned kernel matrix, A represents an operator in the RKHS, whose size
can be potentially infinite, and ei is the i-th canonical basis vector. Then the
kernelized version of ITML can be formulated as:

min
K�0,ξ

D`d(K,K0) + γD`d(diag(ξ), diag(ξ0))

s.t. tr(K(ei − ej)(ei − ej)T ) ≤ ξij , (i, j) ∈ S
tr(K(ei − ej)(ei − ej)T ) ≥ ξij , (i, j) ∈ D

(4)
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Fig. 1. Conceptual illustration of the proposed Hybrid Euclidean-and-Riemannian
Metric Learning framework for image set classification. (a) We first model each im-
age set by its sample mean, covariance matrix and Gaussian distribution. (b) Then we
embed the space of them into one Euclidean space Rd and two Riemannian manifolds
Sym+

d , Sym+
d+1 respectively. Finally, by further embedding such heterogeneous spaces

into Hilbert spaces (c), the hybrid points are unified in a common subspace (d) by our
proposed hybrid metric learning framework.

3 Proposed Method

In this section, we first describe an overview of our proposed approach for image
set classification. Then, we introduce multiple statistics for set modeling from
a view of probability statistics, followed by embedding them into multiple het-
erogeneous spaces, i.e., one Euclidean space and two different Riemannian man-
ifolds. Subsequently, we present the Hybrid Euclidean-and-Riemannian Metric
Learning (HERML) for fusing such statistics lying in heterogeneous spaces. Fi-
nally, we give a discussion about other related work.

3.1 Overview

This paper proposes a novel Hybrid Euclidean-and-Riemannian Metric Learning
(HERML) approach for more robust image set classification. As discussed in the
prior sections, simultaneously exploiting the multiple statistics may improve the
performance of image set classification. With this in mind, we represent each
image set with multiple statistics– mean, covariance matrix and Gaussian dis-
tribution. For such different statistics, we study their spanned heterogeneous
spaces: one Euclidean space Rd and two Riemannian manifolds Sym+

d , Sym+
d+1
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respectively. Therefore, we then formulate the problem as fusing points in such
three heterogeneous spaces spanned by our employed multiple statistics. Since
classical multiple kernel learning algorithms cannot take hybrid Euclidean-and-
Riemannian points as their direct inputs, we explore an efficient hybrid metric
learning framework to fuse the multiple Euclidean-and-Riemannian points by
employing the classical Euclidean and Riemannian kernel. A conceptual illustra-
tion of our approach is shown in Fig. 1.

3.2 Multiple Statistics Modeling

Let [x1,x2, . . . ,xn] be the data matrix of an image set with n samples, where
xi ∈ Rd denotes the i-th image sample with d-dimensional feature representa-
tion. From a naive probability statistics perspective, we model each set as the
following three statistics with different properties: sample-based, subspace-based
and distribution-based statistics.

Sample-based statistics (SAS): Given a set of samples characterized by
certain probability distribution, mean value is often used as the sample-based
statistics to measure the central tendency of the set of samples. Specifically, the
mean vector m of one set containing n samples shows the averaged position of
the set in the high dimensional space and is computed as:

m =
1

n

n∑
i=1

xi (5)

Subspace-based statistics (SUS): Since the covariance matrix can be
eigen-decomposed into the subspace spanned by the set of samples, it can be
considered as the subspace-based statistics, which models the variations of the
set data and makes no assumption about the data distribution. Given one set
with n samples, the covariance matrix is calculated as:

C =
1

n− 1

n∑
i=1

(xi −m)(xi −m)T (6)

Distribution-based statistics (DIS): In probability theory, the Gaussian
(or normal) distribution is a very commonly occurring probability distribution,
which is a continuous distribution with the maximum entropy for a given mean
and variance. Therefore, we can model the data distribution of set as a Single
Gaussian Model (SGM) with estimated mean m̃ and covariance matrix C̃:

x ∼ N (m̃, C̃) (7)

3.3 Heterogeneous Space Embedding

As well known, the mean vector lies in Euclidean space Rd, where d is the dimen-
sion of the samples. Nevertheless, as studied in [19, 21], the covariance matrix
resides on Riemannian manifold Sym+

d . Based on the information geometry [22,
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26] theory, we can embed the space of Gaussian distribution into a Riemannian
manifold Sym+

d+1. In this case, our defined multiple statistics are in one Eu-
clidean space and two different dimensional Riemannian manifolds respectively.

In the information geometry, if the random vector s follows N (0, I), then its
affine transformation Qx+ m̃ follows N (m̃, C̃), where C̃ has a decomposition
C̃ = QQT , |Q| > 0, and vice versa. As such the N (m̃, C̃) can be characterized
by the affine transformation (m̃,Q). Let τ1 be the mapping from the affine
group Aff+d = {(m̃,Q)|m̃ ∈ Rd,Q ∈ Rd×d, |Q| > 0} to the simple Lie group
Sld+1 = {V |V ∈ R(d+1)×(d+1), |V | > 0} as:

τ1 : Aff+d 7→ Sld+1, (m̃,Q) 7→ |Q|−
1

d+1

[
Q m̃
m̃T 1

]
(8)

Then we denote τ2 as the mapping from Sld+1 to the space of SPD matrices
Sym+

d+1 = {P |P ∈ R(d+1)×(d+1), |P | > 0}, i.e.,

τ2 : Sld+1 7→ Sym+
d+1, V 7→ V V T (9)

Through the two mappings, a d-dimensional Gaussian N (m̃, C̃) can be embed-
ded into Sym+

d+1 and thus is uniquely represented by a (d + 1) × (d + 1) SPD
matrix P as:

N (m̃, C̃) ∼ P = |Q|−
2

d+1

[
QQT + m̃m̃T m̃

m̃T 1

]
(10)

For detailed theory on the embedding process, please kindly refer to [26].

3.4 Hybrid Euclidean-and-Riemannian Metric Learning

DenoteX = [X1,X2, . . . ,XN ] as the training set formed by N image sets, where
Xi = [x1,x2, . . . ,xni

] ∈ Rni×d indicates the i-th image set, 1 ≤ i ≤ N , and ni
is the number of samples in this image set. It is known that the kernel function
is always defined by first mapping the original features to a high dimension
Hilbert space, that is φ : Rd → F (or Sym+ → F), and then calculating the
dot product of high dimensional features Φi and Φj in the new space. Though
the mapping φ is usually implicit, we first consider it as an explicit mapping
for simplicity. Hence, we first use Φr

i as the high dimensional feature of r-th
statistic feature extracted from the image set Xi. Here, 1 ≤ r ≤ R and R is
the number of statistics being used, which is 3 in the setting of our multiple
statistics modeling. Now, given a pair of training sets Xi and Xj with the r-th
statistic features Φr

i ,Φ
r
j , we define the distance metric as:

dAr
(Φr

i ,Φ
r
j) = tr(Ar(Φr

i −Φr
j)(Φr

i −Φr
j)T ) (11)

where Ar is the learned Mahalanobis matrix for the r-th statistic in the high
dimensional Hilbert space.

By assuming the high dimensional features of multiple statistics can be
mapped to a common space, we can jointly optimize the unknown Ar (r =
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1, . . . , R) for the multiple statistics lying in multiple Hilbert spaces. To learn
these distance metrics, we attempt to maximize inter-class variations and min-
imize the intra-class variations with the regularizer of the LogDet divergence,
which usually prevents overfitting due to the small training set and high mod-
el complexity. In addition, as stated in [25], the LogDet divergence forces the
learned Mahalanobis matrices to be close to an initial Mahalanobis matrix and
keep symmetric positive definite during the optimization. The objective function
for our multiple metric learning problem is formulated as:

min
A1�0,...,AR�0,ξ

1

R

R∑
r=1

D`d(Ar,A0) + γD`d(diag(ξ), diag(ξ0)),

s.t.
δij
R

R∑
r=1

dAr
(Φr

i ,Φ
r
j) ≤ ξij ,∀(i, j).

(12)

where dAr
(Φr

i ,Φ
r
j) is obtained in Eq.11 and ξ is initialized as ξ0, which is a vector

with each elements equal to δijρ−ζτ , ρ is the threshold for distance comparison,
τ is the margin, ζ is the tuning scale of the margin. Another variable δij = 1 if
the pair of samples come from the same class, otherwise δij = −1. Since each
Mahalanobis matrix Ar is symmetric and positive semi-definite, we can seek a
non-square matrix Wr = [wr

1, . . . ,w
r
dr

] by calculating the matrix square root

Ar = WrW
T
r .

In general, because the form of φr is usually implicit, it is hard or even
impossible to compute the distance dAr

(Φr
i ,Φ

r
j) in Eq.11 directly in the Hilbert

space. Hence, we use the kernel trick method [27] by expressing the basis wr
k as

a linear combination of all the training samples in the mapped space as:

wr
k =

N∑
j=1

uk
jΦ

r
j (13)

where uk
j are the expansion coefficients. Hence,

R∑
r=1

(wr
k)TΦr

i =

R∑
r=1

N∑
j=1

uk
j (Φr

j)TΦr
i =

R∑
r=1

(uk)TKr
.i (14)

where uk is an N × 1 column vector and its j-th entry is uk
j , and Kr

.i is the
i-th column of the r-th kernel matrix Kr. Here Kr is an N ×N kernel matrix,
calculated from the r-th statistic feature using the Euclidean kernel functions
κm(mi,mj) = mT

i mj or Riemannian kernel functions in Eq.2 for different
set statistic features. If we denote Mahalanobis matrices as Br = UrU

T
r for

1 ≤ r ≤ R, then Eq.12 can be rewritten as:

min
B1�0,...,BR�0,ξ

1

R

R∑
r=1

D`d(Br,B0) + γD`d(diag(ξ), diag(ξ0)),

s.t.
δij
R

R∑
r=1

dBr
(Kr

.i,K
r
.j) ≤ ξij ,∀(i, j).

(15)
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where dBr
(Kr

.i,K
r
.j) indicates the distance between the i-th and j-th samples

under the learned metric Br for the r-th statistic mapping in the Hilbert space:

dBr
(Kr

.i,K
r
.j) = tr(Br(Kr

.i −Kr
.j)(K

r
.i −Kr

.j)
T ) (16)

3.5 Optimization

To solve the problem in Eq.15, we adopt the cyclic Bregman projection method
[28, 29], which is to choose one constraint per iteration, and perform a projec-
tion so that the current solution satisfies the chosen constraint. In the case of
inequality constraints, appropriate corrections of Br and ξij are also enforced.
This process is then repeated by cycling through the constraints. The method
of cyclic Bregman projections is able to converge to the globally optimal solu-
tion. Please kindly refer to [28, 29] for more details. The updating rules for our
proposed method are shown in the following proposition:

Proposition 1. Given the solution Bt
r for r = 1, . . . , R at the t-th iteration, we

update Br and the corresponding ξij as follows:
Bt+1

r = Bt
r + βrBr(Kr

.i −Kr
.j)(K

r
.i −Kr

.j)
TBr, (17)

ξt+1
ij =

γξtij
γ + δijαξtij

, (18)

where βr = δijα/(1− δijαdBt
r
(Kr

.i,K
r
.j)) and α can be solved by:

δij
R

R∑
r=1

dBt
r
(Kr

.i,K
r
.j)

1− δijαdBt
r
(Kr

.i,K
r
.j)
−

γξtij
γ + δijαξtij

= 0. (19)

Proof. Based on the cyclic projection method [28, 29], we formulate the La-
grangian form of Eq.15 and set the gradients to zero w.r.t Bt+1

r , ξt+1
ij and α

to get the following update equations:

∇D(Bt+1
r ) = ∇D(Bt

r) + δijα(Kr
.i −Kr

.j)(K
r
.i −Kr

.j)
T , (20)

∇D(ξt+1
ij ) = ∇D(ξtij)−

δijα

γ
, (21)

δij
R

R∑
r=1

tr(Bt+1
r (Kr

.i −Kr
.j)(K

r
.i −Kr

.j)
T ) = ξt+1

ij . (22)

Then, we can derive Eq.17 and Eq.18 from Eq.20 and Eq.21, respectively.
Substituting Eq.17 and Eq.18 into Eq.22, we obtain the Eq.19 related to α.

The resulting algorithm is given as Algorithm1. The inputs to the algorithm
are the starting Mahalanobis matricesB1, . . . ,BR, the constraint data, the slack
parameter γ, distance threshold ρ, margin parameter τ and tuning scale ζ. If
necessary, the projections can be computed efficiently over a factorization U
of each Mahalanobis matrix, such that Br = UT

r Ur. The main time cost is to
update Bt+1

r in Step 5, which is O(RN2) (N is the number of samples) for each
constraint projection. Therefore, the total time cost is O(LRN2) where L is the
total number of the updating in Step 5 executed by the algorithm.
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Algorithm 1 Hybrid Euclidean-and-Riemannian Metric Learning

Input: Training pairs {(Kr
.i,K

r
.j), δij}, and slack parameter γ, input Mahalanobis

matrix B0, distance thresholds ρ, margin parameter τ and tuning scale ζ
1. t← 1, B1

r ← B0 for r = 1, . . . , R, λij ← 0, ξij ← δijρ− ζτ,∀(i, j)
2. Repeat
3. Pick a constraint (i, j) and compute the distances dBt

r
(Kr

.i,K
r
.j)) for r = 1, . . . , R.

4. Solve α in Eq.19 and set α← min(α,ηij) and ηij ← ηij − α
5. Update Bt+1

r by using Eq.17 for r = 1, . . . , R.
6. Update ξt+1

ij by using Eq.18.
7. Until convergence
Output: Mahalanobis matrices B1, . . . ,BR.

3.6 Discussion about Related Work

The original kernelized version of ITML [25] method implicitly solves the metric
learning problem in a single high dimensional Hilbert space by learning the opti-
mal kernel matrix K∗. In contrast, our proposed method explicitly learns multi-
ple metrics {B∗

1 , . . . ,B
∗
R} on multiple Hilbert spaces for fusing hybrid Euclidean-

and-Riemannian features. To some extent, our proposed metric learning frame-
work is a generalized version of ITML. When the type of kernel function is linear
and meanwhile the data lie in a single space, the proposed framework can be
reduced to the original ITML.

In addition, there are a couple of previous works [30–34, 13, 35] for multiple
kernel/metric learning in the literature. Nevertheless, most of these works mainly
focus on fusing multiple homogeneous Euclidean (or Riemannian) features, while
our method attempts to study the new problem of learning hybrid metrics for
fusing heterogeneous Euclidean and Riemannian features. Thus, their problem
domains are different from ours.

4 Experiments

In this section, we evaluate our proposed approach on two image set classification
applications: set-based object categorization and video-based face recognition.
The following describes the experiments and results.

4.1 Databases and settings

For the set-based object categorization task, we use the database ETH-80 [36].
It consists of 8 categories of objects with each category including 10 object
instances. Each object instance has 41 images of different views from one set. The
task is to classify an image set of an object into a known category. The images
were resized to 20× 20 as [12, 13] and the intensities were used for features.

For the video-based face recognition task, we consider two public datasets:
YouTube Celebrities [37] and COX [38]. The YouTube is a quite challenging and
widely used video face dataset. It has 1,910 video clips of 47 subjects collected
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from YouTube. Most clips contains hundreds of frames, which are often low
resolution and highly compressed with noise and low quality. The COX is a
large scale video dataset involving 1,000 different subjects, each of which has 3
videos captured by different camcorders. In each video, there is around 25 ∼ 175
frames of low resolution and low quality, with blur, and captured under poor
lighting. Each face in YouTube was resized to a 20 × 20 image as [12, 13] while
the faces in COX were resized to 32 × 40. For all faces in the two datasets,
histogram equalization was implemented to eliminate lighting effects.

On the three datasets, we followed the same protocol as the prior work [3,
12, 13], which conducted ten-fold cross validation experiments, i.e., 10 randomly
selected gallery/probe combinations. Finally, the average recognition rates of
different methods were reported. Specifically, for ETH-80, each category had 5
objects for gallery and the other 5 objects for probes. For YouTube, in each fold,
one person had 3 randomly chosen image sets for the gallery and 6 for probes.
Different from ETH and YouTube, COX dataset does also contain an additional
independent training set [38], where each subject has 3 videos. Since there are
3 independent testing sets of videos in COX, each person had one video as the
gallery and the remaining two videos for two different probes, thus in total 6
groups of testing need to be conducted.

4.2 Comparative methods and settings

We compared our approach with three categories of the state-of-the-art image
set classification methods as following. Note that, we add ITML to sample-
based methods as it performs metric learning on single samples/images, which
can be considered as a kind of sample-based statistics here. Since ITML also
has a kernel version, we feed our proposed kernel function of distribution-based
statistics (DIS) to it for additional comparison.

1. Sample-based method:
Maximum Mean Discrepancy (MMD)[2], Affine (Convex) Hull based Im-
age Set Distance (AHISD, CHISD)[3], Set-to-Set Distance Metric Learning
(SSDML) [7] and Information Theoretic Metric Learning (ITML)[25].

2. Subspace-based method:
Mutual Subspace Method (MSM) [8], Discriminant Canonical Correlations
(DCC)[1], Manifold Discriminant Analysis (MDA)[11], Grassmann Discrim-
inant Analysis (GDA) [10], Covariance Discriminative Learning (CDL)[12]
and Localized Multi-Kernel Metric Learning (LMKML)[13].

3. Distribution-based method:
Single Gaussian Models (SGM) [14], Gaussian Mixture Models (GMM) [15]
and kernel version of ITML [25] with our DIS-based set model (DIS-ITML).

Except SGM and GMM, the source codes of above methods are provided
by the original authors. Since the codes of SGM and GMM are not publicly
available, we carefully implemented them using the code1 to generate Gaus-
sian model(s). For fair comparison, the important parameters of each method

1 https://engineering.purdue.edu/˜bouman/software/cluster/
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were empirically tuned according to the recommendations in the original ref-
erences: For MMD, we used the edition of Bootstrap and set the parameters
α = 0.1, σ = −1, the number of iteration to 5. For ITML, we used the default
parameters as the standard implementation. For AHISD, CHISD and DCC, P-
CA was performed by preserving 95% energy to learn the linear subspace and
corresponding 10 maximum canonical correlations were used. For MDA, the
parameters were configured according to [11]. For GDA, the dimension of Grass-
mannian manifold is set to 10. For CDL, since KPLS works only when the gallery
data is used for training, the setting of COX prevent it from working. So, we use
KDA for discriminative learning and adopt the same setting as [12]. For SSDML,
we set λ1 = 0.001, λ2 = 0.5, numbers of positive and negative pairs per set is
set to 10 and 20. For LMKML, we used median distance heuristic to tune the
widths of Gaussian kernels. For our method HERML2, we set the parameters
γ = 1, ρ as the mean distances, τ as the standard variations and the tuning
range of ζ is [0.1, 1].

4.3 Results and analysis

We present the rank-1 recognition results of comparative methods on the three
datasets in Tab.2. Each reported rate is an average over the ten-fold trials. Note
that, since the LMKML method is too time-consuming to run in the setting
of COX dataset, which has a large scale dataset, we alternately use 100 of 300
subject’s data for training and 100 of 700 remaining subject’s sets for testing.

Firstly, we are interested in the classification results of methods with differ-
ent degree of match. Here, we focus on the comparison between those unsuper-
vised methods MMD, AHISD, CHISD, MSM, SGM, GMM. On the ETH-80, the
subspace-based method MSM and the distribution-based methods SGM, GMM
outperform the sample-based methods MMD, AHISD, CHISD. This is mainly
because the ETH-80 contains many sets of large variations. In this setting, MSM,
SGM and GMM can capture the pattern variations, which are more robust to
outlier and noise than MMD, AHISD and CHISD. In other two datasets, Y-
ouTube and COX, it is also reasonable that the three kinds of methods achieve
comparable results for their used statistics are all effective for set modeling.

Secondly, we also care about which way to learn a discriminant function is
more effective. So, we compare the results of the supervised methods SSDML,
ITML, DCC, MDA, GDA, CDL. On the three datasets, GDA and CDL methods
have clear advantage over SSDML, ITML, DCC and MDA. This is because ITML
performs the metric learning and classification on single samples, which neglects
the specific data structure of sets. SSDML, DCC and MDA methods learn the
discriminant metrics in Euclidean space, whereas most of them classify the sets
in non-Euclidean spaces. In contrast, GDA and CDL extract the subspace-based
statistics in Riemannian space and match them in the same space, which is more
favorable for the set classification task [10].

2 The source code is released on the website: http://vipl.ict.ac.cn/resources/codes
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Table 2. Average recognition rate (%) of different image set classification methods on
ETH-80, YouTube and COX-S2V datasets. Here, COX-ij represent the test using the
i-th set of videos as gallery and the j-th set of videos as probe.

Method ETH-80 YouTube COX-12 COX-13 COX-23 COX-21 COX-31 COX-32

MMD [2] 77.5 52.6 36.4 19.6 8.90 27.6 19.1 9.60
AHISD [3] 77.3 63.7 53.0 36.1 17.5 43.5 35.0 18.8
CHISD [3] 73.5 66.3 56.9 30.1 15.0 44.4 26.4 13.7
SSDML [7] 80.0 68.8 60.1 53.1 28.7 47.9 44.4 27.3
ITML [25] 77.2 65.3 50.9 46.0 35.6 39.6 37.1 34.8

MSM [8] 87.8 61.1 45.5 21.5 11.0 39.8 19.4 9.50
DCC [1] 90.5 64.8 62.5 66.1 50.6 56.1 64.8 45.2

MDA [11] 89.0 65.3 65.8 63.0 36.2 55.5 43.2 30.0
GDA [10] 92.3 65.9 68.6 77.7 71.6 66.0 76.1 74.8
CDL [12] 94.5 69.7 78.4 85.3 79.7 75.6 85.8 81.9

LMKML [13] 90.0 70.3 66.0 71.0 56.0 74.0 68.0 60.0

SGM [14] 81.3 52.0 26.7 14.3 12.4 26.0 19.0 10.3
GMM [15] 89.8 61.0 30.1 24.6 13.0 28.9 31.7 18.9

DIS-ITML [25] 87.8 68.4 47.9 48.9 36.1 43.1 35.6 33.6

HERML 94.5 74.6 94.9 96.9 94.0 92.0 96.4 95.3

Thirdly, we compare the state-of-the-art methods with our approach and find
they are impressively outperformed by ours on the three datasets. Several rea-
sons are figured out as following: In terms of set modeling, as stated in Sec.1, our
combining of multiple complementary statistics can more robustly model those
sets of arbitrary distribution, large variation and small size in the three datasets.
In terms of discriminant function learning, by encoding the heterogeneous struc-
ture of the space of such statistics, our method jointly learns hybrid metrics to
fuse them for more discriminant classification. In comparison, LMKML neglects
the non-Euclidean data structure of two higher order statistics, i.e., the covari-
ance matrix and the tensor. Thus, our proposed method is more desirable to
learn metrics for non-Euclidean data and has a clear advantage over LMKML.
In addition, the results also shows that our novel hybrid metric learning method
has an impressive superiority over the original ITML.

In addition, we also compare the discriminative power of our proposed sample-
based, subspace-based and distribute-based statistics (SAS, SUS, DIS) for image
set classification. For each statistic, we performed our proposed method to train
and classify sets with NN classifier. Tab.3 tabulates the classification rates of
multiple statistics. We can observe that the DIS achieves the best recognition
performance than other two statistics because it jointly model the mean and the
covariance matrix in a Gaussian distribution. Additionally, the results of com-
bining of SAS and SUS sometimes are better than those of DIS on COX-S2V.
This is because the dataset may contain some sets not in Gaussian distribution.
Since the multiple statistics complement each other, the performance can be
improved by our proposed metric learning with all of statistic models.
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Table 3. Average recognition rate (%) of different statistics (SAS, SUS, DIS), com-
bining SAS and SUS (SAS+SUS), fusing all multiple statistics (ALL) with our metric
learning method on ETH-80, YouTube and COX-S2V. Here, COX-ij indicates the test
using the i-th set of videos as gallery and the j-th set of videos as probe.

Statistics ETH-80 YouTube COX-12 COX-13 COX-23 COX-21 COX-31 COX-32

SAS 83.5 64.1 86.2 92.0 82.8 83.2 86.9 84.9
SUS 93.5 70.2 88.8 93.6 90.3 86.4 94.0 93.1
DIS 94.3 73.5 92.8 94.7 92.2 89.0 94.7 94.4

SAS+SUS 92.0 71.6 93.1 95.2 93.1 91.2 95.2 95.0

ALL 94.5 74.6 94.9 96.9 94.0 92.0 96.4 95.3

Table 4. Computation time (seconds) of different methods on the YouTube dataset
for training and testing (classification of one video).

Method MMD SSDML ITML DCC CDL LMKML SGM GMM HERML

Train N/A 433.3 2459.7 11.9 4.3 17511.2 N/A N/A 27.3
Test 0.1 2.6 0.5 0.1 0.1 247.1 0.4 1.9 0.1

Lastly, on the YouTube dataset, we compared the computational complexity
of different methods on an Intel(R) Core(TM) i7-3770 (3.40GHz) PC. Tab.4 lists
the time cost for each method. The presentation of training time is only required
by discriminant methods. For testing, we report the classification time of one
video. Since ITML has to train and test on large number of samples from sets
and classify pairs of samples, it has high time complexities. Except DCC and
CDL, our method is much faster than other methods especially the LMKML
method. This is because it transformed the covariance matrices and third-order
tensors to vectors, which lies in very high dimension Euclidean spaces. As a
result, it is very time-consuming to perform metric learning and classification.

5 Conclusions

In this paper, we proposed a novel hybrid Euclidean-and-Riemannian metrics
method to fuse multiple complementary statistics for robust image set classifi-
cation. The extensive experiments have shown that our proposed method out-
performs the state-of-the-art methods in both terms of accuracy and efficiency.
To our best knowledge, the problem of hybrid metric learning across Euclidean
and Riemannian spaces has not been investigated before and we made the first
attempt to address this issue in this paper. In the future, it would be interesting
to explore other possible metric learning methods to fuse multiple complement
statistics or pursue more robust statistics to model image sets with different
structures in real-world scenario.
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