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Abstract: 

This paper compares two modes for outsourcing the development of information services projects: single-

sourcing (where one vendor handles all outsourced activities) and multisourcing (where multiple vendors 

handle those activities). We assess the relative efficacy of these two outsourcing modes by identifying the 

effects of three factors: task modularity, the extent of alignment between a (verifiable) performance 

metric and project revenue, and the extent to which project revenue is itself verifiable. We find that if 

tasks are modular then multisourcing strictly dominates single-sourcing—provided the verifiable 

performance metric and project revenue are not completely aligned. Yet if tasks are integrated, then the 

choice of sourcing mode is more nuanced: the best choice depends on trade-offs among the alignment 

between performance metric and project revenue, the verifiability of project revenue, and moral hazard. If 

the verifiable performance metric and project revenue are perfectly aligned, or if project revenue is 

completely verifiable, then firms prefer single-sourcing because it entails less moral hazard than does 

multisourcing. Comparative statistics for the effects of task interdependence costs and vendors’ risk 

aversion reveal that multisourcing (single-sourcing) should be preferred when there are interdependence 

costs (/when vendors are strongly risk averse). 
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Introduction 

Practitioners and theorists have recognized the challenges of outsourcing tasks to single versus multiple 

vendors (Aron et al. 2005). The potential problems associated with committing to a single vendor include 

supplier lock-in, bad vendor selection, and limited domains of competence. Hence, firms have 

increasingly relied on multisourcing, where (for example) information technology activities are 

outsourced to multiple vendors. Multisourcing enables the firm to choose “best of breed” vendors, to 

lower costs through vendor competition, and to improve agility and adaptability to dynamic environments 

(Cohen and Young 2006). Using the Interactive Data Corporation (IDC) services contracts database, 

Bapna et al. (2010) report that there was $7.2 billion (U.S.) worth of multisourcing contracts in 

information technology (IT) and IT-enabled services (ITES) worldwide in 2007; these authors argue that 

“multisourcing is a long-term phenomenon rather than a short-term fad” (p. 786). 

Although the use of multisourcing has grown rapidly, that strategy has several pitfalls stemming from 

such issues as effort interdependence between parties, the formal incentive structure, and alignment of 

performance measures (in the contracts that govern these multisourcing relationships) with the client’s 

overall objectives. These issues make the management of such arrangements a challenging endeavor 

(Bapna et al. 2010). In contrast to single-sourcing environments, where the client encounters moral hazard 

issues with only one supplier, a client that multisources must coordinate (and properly incentivize) the 

actions of multiple vendors. And, just as in the single-sourcing case, it may not be possible to write 

formal contracts based on project revenues because those revenues are often either unverifiable or only 

partially verifiable. 

This paper develops a model of outsourcing the development of an IT project to either one vendor (single-

sourcing) or two vendors (multisourcing). In this model, both the client and the vendor(s) exert costly 

effort in the joint development process. The problem is modeled as a simultaneous-move game in the 

principal–agent framework, where the client is the principal and vendors are agents. The revenue of the 

project is a joint function of the efforts of the client and the vendor—or vendors, owing to effort 

interdependence in IT outsourcing (Bapna et al. 2010). Yet the outsourcing endeavor is complicated by 

agency issues due to the decentralized decision making of self-interested firms. As emphasized by Bapna 

et al., codevelopment efforts undertaken by multiple parties make it impossible to verify such efforts and 

the resulting project revenue; hence, no contracts can be based on them (Bhattacharya et al. 2014). When 

efforts in codevelopment are unverifiable, a simultaneous-move game may be rendered inefficient by the 

free-rider problem (Bhattacharyya and Lafontaine 1995; Holmstrom 1982). Therefore, the client must 

resort to contracting based on objectively verifiable project signals or metrics (e.g., a predefined service 

level agreement) that in all likelihood are not perfectly aligned with project revenue. For example, 
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software quality may serve as a verifiable performance metric (Dey et al. 2010). The number of bugs in a 

software application can be objectively verified and is therefore contractible. It also depends on the efforts 

of both client and vendor(s). Additional factors that affect the trade-off between single-sourcing and 

multisourcing include the cost of managing task interdependence, in either setting (Itoh 1994), and vendor 

attitudes toward risk (Holmstrom and Milgrom 1991). Finally, as suggested by Bapna et al., the 

modularity of interdependent tasks may also alter the relative efficacy of single- and multisourcing. We 

model modularity by allowing the verifiable performance metric to be a function of vendor efforts and 

independent of client effort.1 

Our objective is to establish whether the environments better suited to single-sourcing or multisourcing 

modes can be identified from the perspective of the client (the principal). In particular, we seek to answer 

these questions: 

1. How does task modularity influence the effectiveness of single-sourcing versus multisourcing? 

2. What is the corresponding effect on these outsourcing modes when project revenue is only partially 

verifiable (measurable) and when project revenue and the verifiable metric are only partially aligned? 

3. How do risk aversion and the cost of coordinating interdependent tasks affect each outsourcing mode? 

Our main findings are as follows. 

• If project revenue and the verifiable metric are perfectly aligned then single-sourcing Pareto-dominates 

multisourcing. So, from the client’s perspective, single-sourcing performs as well as (better than) 

multisourcing if project tasks are modular (integrated). This result is counterintuitive because one would 

expect that aligning project revenue with the verifiable performance metric also would have advantages 

for multisourcing (due perhaps to reduced distortion of vendor effort resulting from the perfect alignment 

between revenue and metric). Nonetheless, we show that such benefits are more strongly associated with 

the single-sourcing mode. 

• If project revenue and the verifiable metric are just partially aligned, then multisourcing may perform 

better than single-sourcing. Under such partial alignment, it follows (again from the client’s perspective) 

that multisourcing always performs better than single-sourcing if the tasks are modular. However, if the 

tasks are integrated, then these outsourcing modes have nuanced domains of dominance; we characterize 

the conditions under which each mode performs better. These results, too, are surprising given that the 

interaction effects of partial alignment, task modularity, and verifiable project revenue seem not to be 

                                                           
1 If all such tasks were completely modular, then individual contracts could be written to cover individual task 

outcomes. In that event, the multisourcing environment would be equivalent to a single-sourcing setup (Bapna et al. 

2010). 
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predictable ex ante. Yet in all cases we find linear contracts—which are also the most easily 

implemented—to be optimal. 

We now review the extant literature and discuss how our paper contributes to that research. We shall 

streamline the presentation by often using the abbreviations “SS” and “MS” for single-sourcing and 

multisourcing (respectively) as well as “VPM” for the verifiable performance metric. 

 

Literature review 

Our aim is to compare single- and multisourcing, so we start with a brief summary of the relevant 

literature on these sourcing modes. We then highlight this paper’s contributions, which are based in large 

part on that comparison. The literature on IT outsourcing has received considerable attention in the SS 

setting. Examples include studies on the effects of task complexity and the holdup phenomenon (Susarla 

et al. 2010), performance metrics (Dey et al. 2010; Fitoussi and Gurbaxani 2011), adverse selection 

(Chellappa and Shivendu 2010; Gopal and Sivaramakrishnan 2008), incentive contracting on output 

quality (Liu and Aron 2014), risk mitigation (Gefen et al. 2008), and vendor certification under 

uncertainty (Sarkar and Ghosh 1997). See Bapna et al. (2010) for a comprehensive review of the research 

in this field. 

Previous comparisons of single-sourcing and multisourcing in the practitioner IT literature highlight the 

cost efficiency resulting from specialization and the flexibility benefits of multisourcing (Huber 2008), 

which include increased agility (Cohen and Young 2006) and its role in mitigating risk (Currie 1998). A 

number of factors affect the firm’s choice of outsourcing mode: the codifiability of tasks and the ease of 

switching vendors (Aron and Singh 2005), utility considerations and transaction costs (Pries-Heje and 

Olsen 2011), the mission criticality of outsourced tasks (Heitlager et al. 2010), the presence of third 

parties that encourage cooperation among vendors (Wiener and Saunders 2014), governance and 

coordination of the efforts made by multiple suppliers (Jin et al. 2014; Plugge and Janssen 2014), client-

created barriers to suppliers entering the product market (Lin et al. 2008), modularity of the outsourced 

tasks (Aron et al. 2005; Herz et al. 2011), extent of task specialization and coordination costs (Bapna et al. 

2010), and vendor competition (Flinders 2010). 

The outsourcing of tasks to single versus multiple vendors is the subject of studies in the economics 

literature as well. For example, Itoh (1991, 1994) and Schöttner (2007) consider when to outsource 

different tasks to different vendors (multisourcing) and when to outsource the tasks to the same vendor 

(single-sourcing); however, those authors consider a different set of trade-offs from the ones that we 

examine. In particular, Itoh (1991, 1994) does not consider metric-revenue misalignment, which we show 
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to be an important factor in determining the optimal sourcing strategy. In his earlier work, Itoh considers 

the trade-off between outsourcing tasks to dedicated vendors and the inclination of vendors to cooperate 

in their efforts; that paper shows how the preferred sourcing strategy depends on the complementarity of 

efforts among vendors. In contrast, we focus on whether—when tasks are outsourced completely—it is 

preferable for the client firm to contract with a single vendor or with multiple vendors. 

In his later work, Itoh considers the trade-off between SS and MS in his study of the optimal sourcing 

strategy when there is division of labor and a delegation pattern of jobs. Neither of Itoh’s papers considers 

metric–revenue misalignment when determining the optimal sourcing decision, although that is the key 

factor studied here. Schöttner’s model does incorporate metric–revenue misalignment and the outsourcing 

of all tasks, but there is no client effort in that model. In contrast, our model’s inclusion of client effort 

allows us to study the role played by integrated versus modular systems in the optimal sourcing decision. 

Holmstrom and Milgrom (1991) model a system in which vendor efforts generate a vector of verifiable 

signals, each of which is independently contractible; such a setting should always yield the first-best 

outcome for the client (independent of the sourcing strategy) unless additional agency issues prevent it. In 

that paper, the authors impose additional costs to reflect vendor risk aversion and the possibility of signals 

being measured with error. They find that if vendors devote different amounts of attention to the tasks, 

then the most (least) attentive vendor should be assigned tasks that require relatively more (less) 

monitoring. Che and Yoo (2001) study the effect of group incentives on the propensity of multiple 

vendors to cooperate on tasks in a multiperiod setting; they find that, in the long run, group incentives can 

mitigate the effects of moral hazard. Our paper compares the SS and MS outsourcing modes in an IT 

context, but the results are not specific to the IT domain and can be applied to a wider set of industries. 

One stream of the economics literature addresses similar problems in settings that involve task division, a 

field to which our findings should also apply. 

In the IT context, Bapna et al. (2010) note that, although ‘‘incentive and coordination issues have been 

studied in the context of a single service provider, the literature on multisourcing is in its nascent stages” 

(p. 788). However, many factors (e.g., risk diversification, coordination costs, task specialization) that 

affect the firm’s preference for an outsourcing mode can be inferred from the literature just cited. Yet 

Bapna et al. pose several research questions of extreme importance: 

• What is the role of contract design in governing the multisourcing relationship? (RQ1) 

• What roles are played by partial verifiability and interdependence of efforts? (RQ2A and RQ2B) 

• What are the effects of task modularity and metric-revenue misalignment? (RQ6B) 
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These questions must be thoroughly studied if we are to improve our understanding of single- and 

multisourcing strategies. 

This paper addresses a subset of Bapna et al.’s research questions. Specifically, we identify the client’s 

optimal sourcing mode by assessing three factors: (1) task modularity and the cost of coordinating tasks, 

(2) the extent of misalignment between project revenue and the verifiable performance metric, and (3) 

vendor risk aversion. In order to conduct a meaningful comparison between the two types of outsourcing, 

we must first determine the client’s optimal contract (i.e., the contract that maximizes the client’s profit 

conditional on the sourcing mode). We therefore derive optimal contract policies for both the single-

sourcing mode and the multisourcing mode. 

 

Model Description and Assumptions 

In this section, we detail the model’s mathematical formalization and stipulate our assumptions. The 

development of the model will be illustrated by way of two case studies and also by other examples from 

practice. 

Schaffhauser (2006) documents the transition in the outsourcing of IT services at General Motors (GM) 

from a single-sourced to a multisourced mode. The automaker moved from using Electronic Data 

Systems (EDS) as its sole vendor to using six suppliers: the incumbent EDS in addition to Hewlett-

Packard (HP), Capgemini, International Business Machines (IBM), Compuware Covisint, and Wipro. 

Some of these vendors were involved in GM’s strategic planning and in designing the service-oriented 

architecture of the multisourced mode. General Motors had to make decisions about performance metrics 

and payment schemes that together would incentivize its vendors to participate, and GM intended to 

retain its “systems integrator” role in the new multisourcing mode of operation. This case study highlights 

the issues to be addressed before embarking on any transition from single-sourcing to multisourcing: 

effort interdependence, the role of each party, contract design, and the assessment of vendor performance. 

Wang (2015) provides examples of single-sourcing’s practical benefits. He reports that, in China, firms 

working with multiple small- and medium-sized enterprise (SME) vendors encounter a lack of 

accountability on the part of individual vendors, which leads to increased moral hazard. Also, the risk 

aversion typical of smaller vendors leads to an increased risk premium for variations in outcome-based 

project payments. We use the observations made in these two case studies—along with other practice-

based observations—to develop our model. 

The problem in this paper is modeled as a simultaneous game between the client and one or more 

vendor(s). There are three tasks, i  ∈ {1, 2, 3}, that must be performed if the IT outsourcing project is to 
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succeed. We assume without loss of generality that the client always performs task 3 by exerting an effort 

of e3 and that tasks 1 and 2 are performed either by one vendor (single-sourcing) or two vendors 

(multisourcing). The vector e captures the effort exerted by client and vendor(s) when performing tasks i; 

thus e = [e1, e2, e3]. Define the vector e-i = {ej: j ≠ i}. Efforts are costly, and ci (ei) denotes the cost for 

performing each task i (the cost model is based on the notion that tasks are “chunkified” vertically; see 

Aron et al. 2005). We assume task-specific (rather than vendor-specific) cost functions in order to isolate 

the effects of (1) task modularity and (2) the partial alignment of project revenue with a verifiable 

performance metric.2 

In our model, the revenue from the development project undertaken jointly by client and vendor(s) is 

partially verifiable. Dey et al. (2010) note that project revenue tends to have both verifiable and 

unverifiable components; in their paper, the verifiable component is a scaled measure of the project’s 

quality. Dey et al. (p. 95) note that the quality of software used by a client whose outsourcing involves a 

performance-based contract may not be aligned with project revenue: software quality is modeled as q = 

eαtβ + ε whereas project revenue is modeled as U = u1 e
αtβ – u2t; therefore, since, u2 ≠ 0, it follows that 

project revenue and software quality are not perfectly aligned if the client contracts on the latter. To 

model the former’s partially verifiable nature, we assume that project revenue has the following form: 

 

Here, S(e) is verifiable (and so can be contracted on) but U(e) is unverifiable. To exemplify our setting, 

suppose that the project involves development of some enterprise software. Task 1 involves coding the 

back end of the software, and task 2 involves coding for the user interface. Task 3 is meant to integrate 

those two sets of code. In this case, we may view S as the measurable component of the software’s 

quality. That being said, monetization of the software may depend also on other, nonmeasurable aspects 

of quality (e.g., design of the program architecture) that we denote by U. Our model is similar to the one 

described by Dey et al., treat the project’s quality (eαtβ) as being verifiable and effort t as unverifiable; u1 

and u2 serve as scaling factors. Just like those scaling factors, the term θ in our model is a relative 

weighting of the scaling factors. If one assumes that the marginal effect of effort on U(e) and S(e) are not 

identical, then the metric–revenue misalignment can be interpreted as follows: if θ = 0, then the project 

revenue v(e) and the verifiable performance metric S(e) are completely aligned; if θ = 1, then the 

misalignment between revenue and metric is maximized; and if 0 < θ < 1, then the project revenue and 

the VPM are partially aligned. Thus a high (low) value of θ in our model is analogous to a high (low) 

                                                           
2 Assuming vendor-specific cost functions would entail (trivially) that task specialization by vendor(s) favors the 

multisourcing strategy, and including the costs and benefits of coordination between tasks would likewise trivially 

favor single-sourcing. Similar assumptions about the cost function have been made in the literature (Itoh 1994). 



 

8 

 

u2/u1 ratio in Dey et al. Of course, if the marginal effect of efforts are identical on U(e) and S(e), then 

performance metric and project revenue align perfectly regardless of θ’s value. 

As an example of varying levels of θ, the measurability of project revenue, Dey et al. compare a contract 

between mPhase Technologies and Magpie Telecom Insiders (where the revenue measurability is “high”) 

and a contract between New Motion and Visionaire (where revenue verifiability is of “medium” level). 

Another instance of metric–revenue misalignment is reported in Bhattacharya et al. (2014), who describe 

the misalignment between the project revenue and a verifiable metric in an ITES context. In their 

example, Travelcountry had already outsourced their call-center services to WNX and now wanted to 

codevelop their website—Travelcountry’s primary customer interface—with WNX. The main problem 

for customers was having to traverse two links in order to print their itinerary after purchasing a ticket, 

links that WNX was advising callers to use for that purpose. Travelcountry’s aim was to improve its 

website design, which directly affected the firm’s revenues; however, Travelcountry had contracted with 

WNX on the number of calls answered. It is easy to see that here the VPM (that is, the number of calls 

handled by the call center) was misaligned with the project revenue: poor website design reduced 

Travelcountry’s revenues while leading to a higher number of calls and hence to greater revenue for 

WNX. 

The unverifiable component of project revenue is denoted by U(e) ≥ 0, which we assume is stochastic and 

given by U(e) = ɸ (e1 + e2 + e3) + ε1. Here ε1 has a pdf of g1(x), and ʃ xg1(x) dx = 0; it follows that ε1 has a 

mean of 0 and that ɸ is a scalar. We let the verifiable component of revenue be denoted by S(e) ≥ 0; we 

assume that it is also stochastic and is given by S(e) = ɸ (e1 + γe2 + λe3) + ε2. Here ε2 has a pdf of 

g2(x), and ʃ xg2(x) dx = 0; hence ε2 has a mean of 0. In these expressions, γ (λ) represents the relative 

marginal effect of task-2 (task-3) effort on the verifiable component of software quality. Without loss of 

generality, the marginal effect of task 1 has been normalized to 1. As a result, 

   

 

When modeling task modularity, we bear in mind Baldwin and Clark’s (2000) argument that “increasing 

modularity through architectural choices represents decreasing interdependence between tasks”—and thus 

requires less effort devoted to coordination. We model task modularity using a simple condition: if the 

verifiable performance metric depends on the client’s effort, then we consider the project tasks to be 

integrated. However, if the VPM depends entirely on vendor efforts, then the tasks will be viewed as 

modular. So if tasks are integrated, then the verifiable metric depends on client effort,  

S(e) = ɸ (e1 + γe2 + λe3) + ε2; in contrast, if tasks are modular then S(e) = ɸ (e1 + γe2) + ε2 (i.e., λ = 0).  
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We do not study the case where the VPM is separable in vendor efforts (i.e., the case of complete 

modularity) because doing so would lead to decoupled principal–agent problems with moral hazard, 

which would yield a trivial equivalence between multisourcing and single-sourcing (Bapna et al. 2010). In 

the case-study examples described earlier, GM intended to act as systems integrator (Schaffhauser 2006) 

in coordinating the efforts of its six vendors. General Motors was therefore required to invest its own 

effort in coordinating the work of these vendors. In this case, then, the verifiable performance metric 

reflected the effort not only of the vendors but also of the client. 

Without loss of generality, we normalize to 0 the vendor reservation value from the outsourced project. If 

that reservation value is positive, then the client will pay the vendor(s) the positive reservation value and 

retain the rest of the surplus generated. 

Our model captures the sequence of events illustrated in Figure 1. In the initial stage (at t = 0), the client 

proposes a contract f(S) to the vendor(s), where f is based on the VPM S. Next, the client and vendor(s) 

simultaneously exert effort while developing the IT project (at t = 1) and incur the costs related to that 

development effort. Finally, the revenue of the project is realized (at t = 2) and, simultaneously, the 

verifiable metric is observed by all parties. 

We also assume that the cost of effort ci (ei) = e²i /2. This assumption captures decreasing returns to scale, 

which reflect the increased difficulty of continuously improving software quality (Dey et al. 2010). 

 

Model Formulation and Analysis 

In this section, we describe the contractual structures capable of yielding optimal results (for the client) 

under two scenarios: when a single vendor performs tasks 1 and 2 (single-sourcing, SS) and when two 

vendors are used—that is, when each task is assigned to a dedicated vendor (multisourcing, MS). We then 

assess the relative efficacy of single-sourcing and multisourcing by comparing the client’s optimal profits 

under these two outsourcing modes. 

We begin with the centralized setting in which the client and vendor(s) coordinate their efforts to 

maximize joint profits. Because each party’s efforts are exerted simultaneously in a coordinated fashion, 

optimal efforts may be determined via the following mathematical statement of the problem: 



 

10 

 

 

Equation (1) determines the first-best efforts (e*i ) in the coordinated problem of maximizing the joint 

profits. Given v(e) = ɸ [e1 + {θ + (1 – θ)γ}e2 + {θ + (1 – θ)λ}e3] + ε and ci (ei) = e²i /2, it is easy to see that 

e*1 = ɸ, e*2 = ɸ [θ + (1 – θ)γ], and e*3 = ɸ [θ + (1 – θ)λ]. 

We next present results, in the decentralized setting, derived in two cases: whether tasks are modular or 

integrated—that is, whether or not (respectively) the verifiable performance metric S is independent of 

client effort. 

 

Modular Tasks 

We first examine the case where the VPM is independent of client effort and so depends only on vendor 

effort. Such modularity presupposes the existence of verifiable performance measures that reflect only 

vendor efforts on the outsourced tasks (i.e., and not client efforts). Thus, we model a setting in which a 

service level agreement (SLA) can be designed that is strictly a function of the outsourced activities. 

Because we seek to compare single-sourcing with multisourcing, it is necessary to compute the client’s 

optimal expected profit under each sourcing mode. Therefore, we must determine the optimal incentive 

contract—from the client’s perspective—for each case prior to making comparisons. We first consider the 

single-sourcing case, in which one vendor performs both tasks 1 and 2. 

 

Single-Sourcing 

If the client seeks to offer the vendor a contract f based on the performance metric S, then that contract 

will call for the client to transfer an amount equal to f(S¯) (for S¯ the realized value of S). Using Π to 

signify profits and “SS” to indicate single-sourcing, we can state the client’s contract design problem as 

follows: 
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Inequality (5) is the participation constraint for the vendor; equation (4) captures the vendor’s 

determination of its effort in performing tasks 1 and 2, and equation (3) represents the analogous problem 

for the client’s effort. Equation (2) formalizes the client’s contract design problem. 

The decisions made by client and vendor are simultaneous; thus the respective parties can solve (3) and 

(4) at the same time because each party bases its best response on the other party’s reaction function. 

 

Lemma 1. If both of the development tasks are outsourced to a single vendor, then the client’s optimal 

contract is a linear one (of the form T + αS) that provides for a fixed fee (T) and a payment (αS) 

contingent on the verifiable performance metric (S). 

 

Lemma 1 is useful because it allows us to limit our attention to linear contracts under SS. So, even though 

we have not shown that the linear contract form is uniquely optimal, Lemma 1 establishes that no other 

contract form can yield a higher expected profit for the client than the optimal linear contract. Note that 

this result differs from the finding of Bhattacharyya and Lafontaine (1995), who show that linear 

contracts (on project revenues) are optimal in coordinating investment problems with double-sided moral 

hazard; we show that linear contracts are optimal for clients faced with the partial alignment of project 

revenue and a verifiable project metric under moral hazard when that VPM is a function of vendor effort 

only. It is therefore sufficient for us to use the client’s expected profit from an optimal linear contract 

under single-sourcing as the benchmark for comparison with the outcomes under multisourcing. 
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Before analyzing the efficacy of multisourcing, we should like to know whether the optimal linear 

contract in this outsourcing mode also yields the client’s first-best expected result. That result is defined 

(in a principal–agent framework) as follows: (1) the principal and the agent (here, client and vendor) 

make system-optimal efforts, as defined in equation (1); and (2) the principal attains the maximum profits 

possible—in other words, the vendor’s expected profit is equal to its reservation value. 

 

Proposition 1. If both of the development tasks are outsourced to a single vendor, then the first-best 

result (from the client’s perspective) can be attained if and only if there is perfect alignment between the 

expected project revenue and the expected verifiable signal. In other words, the first-best result requires 

that the marginal effects of e1 and e2 on V(e) and S(e) be identical (i.e., θ = 0 or γ = 1). 

 

The client earns a profit of  if it uses single-sourcing. The linear 

contract is optimal for the client; however, if project revenue and the verifiable metric are not perfectly 

aligned, then the SS mode does not attain the first-best solution because it fails to resolve completely the 

loss (vis-à-vis the vendor) stemming from that merely partial metric–revenue alignment. Proposition 1 

states the condition under which such a perfect alignment is achieved; it also shows that eliminating the 

metric–revenue mismatch allows the client to achieve its first-best profit. We remark that this finding 

differs from the standard result in Bhattacharyya and Lafontaine, that linear contracts between client and 

vendor can achieve no more than the second-best profit. Because the verifiable metric is independent of 

client effort, the only moral hazard encountered by the client concerns the extent of vendor effort. A 

single vendor performs tasks 1 and 2, and the client approaches a first-best solution to the extent that it 

mitigates the partial alignment between project revenue and the verifiable metric. If the condition in 

Proposition 1 is satisfied, then both client and vendor will exert optimal levels of effort and the former 

will achieve its first-best profit. 

If there is partial alignment between the project revenue and the verifiable performance metric, then the 

optimal solution obtained by linear contracts is only second-best. So when there is single-sided moral 

hazard and partial alignment, no contract can attain the first-best solution. In other words, the inefficiency 

due to partial alignment between the VPM and project revenue cannot be resolved. 
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Next we analyze the multisourcing case, in which each task (1 and 2) is assigned to a different vendor. 

We then compare the two outsourcing strategies. 

 

Multisourcing 

If each task is assigned to a different vendor, then the client could, in principle, offer a different contract 

to each vendor. Let f1 and f2 denote the contracts given to the vendors performing task 1 and task 2, 

respectively. If each contract is based on the verifiable metric S, then the client’s contract design problem 

in the multisourcing (MS) case is 

 

Subject to the following conditions: 

 

 

In this problem, (10) and (11) are the participation constraints for the two vendors; equations (8) and (9) 

capture the respective vendors’ effort decision in performing tasks 1 and 2, and equation (7) represents 

the analogous problem for client effort. Equation (6) formalizes the client’s contract design problem. As 

before, each party bases its best responses on the reaction functions of (i.e., on its anticipation of the 

efforts exerted by) the other parties. 

Proposition 2. If development tasks are outsourced to different vendors, then the client obtains the first-

best result—irrespective of partial alignment between the verifiable metric and project revenue—by 

offering the vendors separate linear contracts of the form T1 + α1S and T2 + α2S. These contracts consist 
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of a fixed fee and an additional payment based on the VPM. 

 

A client that uses multisourcing attains the profit  

The first insight from Proposition 2 is that the effect of partially aligned revenue and metric can be 

eliminated by using a separate linear contract (with different fixed fees and variable payments) for each 

vendor. This finding is important because, in the presence of partial alignment, using the same proportion 

of the VPM as the variable payment for both vendors prevents the client from obtaining their respective 

best efforts. That is, each vendor has an incentive to free-ride when the client’s use of the same contract 

fails to differentiate between them. Thus a vendor can exert less effort and still receive the same 

compensation. However, a client that uses separate linear contracts can always sufficiently incentivize 

each vendor to exert its first-best effort by using different combinations of variable payments and fixed 

fees. Because such contracts allow the client to distinguish between the two vendors’ efforts, neither 

vendor can free-ride on the other. 

Observe that there is no moral hazard on the client’s part in this case, since the verifiable metric is 

independent of client effort. It follows that the client can use separate linear contracts to resolve not only 

alignment issues but also the moral hazard entailed by contracting with two vendors. As in the SS case, 

the client uses a fixed fee to ensure that vendors attain their respective reservation values. This strategy 

ensures the first-best efforts from client and vendors as well as attainment of the first-best solution by the 

client (the principal). 

When taken together, Propositions 1 and 2 allow us to compare the two sourcing strategies. We conclude 

that when the tasks are modular, multisourcing (weakly) dominates single-sourcing. If there is partial 

alignment between the project revenue and the VPM, then MS strictly dominates SS. So with reference to 

our earlier examples, if mPhase Technologies is outsourcing modular tasks, then it could just as well use 

single-sourcing because the output measurability is high (θ is low) and so the performance of SS will be 

comparable to that of MS. In the cases of Travelcountry and New Motion, however, if the required tasks 

are modular, then these firms should use multisourcing. The explanation is that the extent of project 

revenue–VPM misalignment is high (for Travelcountry) and the output measurability θ itself is medium 

(for New Motion). 
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In the next section we analyze the scenario in which the outsourced project tasks are integrated. Here, 

then, the verifiable performance metric depends on both client and vendor efforts. 

 

Integrated Tasks 

When project tasks are integrated, rather than modular, the VPM depends not only on vendor effort but 

also on client effort. We therefore model a setting in which there is a tight interdependence between the 

task carried out by the client and the outsourced activities. In our example set, such interdependence is 

exemplified by General Motors: that client firm adopted the systems integrator role and, as a result, had to 

invest in such integration; those efforts affected both project revenue and the verifiable performance 

metric. As before, the client offers a contract that is contingent on the VPM. We first consider the single-

sourcing case, in which one vendor performs both tasks 1 and 2. 

 

Single-Sourcing 

We continue to assume that the client offers the vendor a contract f based on the VPM S. Then the client’s 

contract design problem can be stated as 

 

Subject to 

 

And 
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In this problem, (15) is the vendor’s participation constraint while (14) and (13) capture (respectively) the 

vendor and client problem of determining their effort. Equation (12) represents the client’s contract 

design problem. 

 

Lemma 2. For the single-sourcing of integrated tasks, it is optimal for the client to offer the vendor a 

linear contract consisting of a fixed fee (T) plus a variable payment (αS) based on the verifiable 

performance metric. Such an optimal contract attains the second-best profit for the client under single-

sourcing. 

 

The client’s profit when single-sourcing is used for integrated tasks is given by 

 

The result that linear contracts are optimal also when client and vendor efforts are interdependent is due 

to the presence of moral hazard with regard to client and vendor efforts, given that Bhattacharyya and 

Lafontaine show linear contracts to be optimal in cases of double-sided moral hazard. Since the VPM 

now depends on the efforts of both client and vendor, it follows that the client cannot eliminate moral 

hazard and so cannot attain the first-best solution. In the coordinated problem, the first-best effort by the 

client and the vendor is obtained by satisfying equation (1), which optimizes the expected reward from 

the joint development effort less the cost of client and vendor effort in performing the required tasks. 

Recall from equation (1) that the vendor will exert its first-best effort only if it receives all of the upside 

from the joint development effort. But then the client would have no incentive to invest its own effort in 

performing task 3. Because no contract can adequately incentivize both firms to invest their first-best 

efforts, the first-best solution cannot be attained. 

Similarly to Lemma 1, Lemma 2 allows us to limit our attention to linear contracts when computing the 

client’s optimal expected profit under single-sourcing, which is necessary if we are to compare the two 

sourcing modes. Hence we identify the client’s optimal contract under multisourcing and then compare 

the two modes of outsourcing. 
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Multisourcing 

Suppose now that tasks 1 and 2 are performed by different vendors. Then the client offers the vendors 

performing task 1 and task 2 the respective contracts f1 and f2, both of which are based (as before) on the 

verifiable metric S. In this case, the client’s contract design problem is 

 

subject to the following conditions: 

 

The problem statement is analogous to the previous cases. We now characterize the optimal contracts to 

be offered by the client. 

 

Lemma 3. For the multisourcing of integrated tasks, it is optimal for the client to offer each vendor a 

separate linear contract consisting of different variable payments (based on the VPM) and fixed fees. 

Such optimal contracts obtain the second-best profit for the client under multisourcing. 

 

Lemma 3 states that, in the presence of partial alignment and moral hazard involving the principal (client) 

and two agents (vendors), separate linear contracts mitigate the effect of partial alignment. This insight is 

related to Proposition 2, although here the partial metric–revenue alignment is eliminated by offering 

separate linear contracts to each vendor. However, there is still the moral hazard problem between client 

and vendors. 
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Next we compare the client rewards from the single-sourcing and multisourcing strategies (ΠSS and 

ΠMS) when tasks are integrated. The possibility of free-riding prevents the client from attaining its first-

best result under either outsourcing mode (Holmstrom 1982). In SS, sources of inefficiency include 

partial metric–revenue alignment and the moral hazard between client and vendor; in MS, however, the 

moral hazard between the client and two vendors is the sole source of inefficiency. Proposition 3 shows 

that, when the tasks to be outsourced are integrated, no sourcing mode (even weakly) dominates the other. 

This result contrasts with the modular tasks case, where MS does weakly dominate SS.  

 

Proposition 3. If the verifiable performance metric is a function of the efforts devoted to all three tasks, 

then either ΠSS ≥ ΠMS or ΠSS ≤ ΠMS is possible. In other words, there is no universally (weakly) dominant 

sourcing mode. 

 

If the effect of partial alignment between (vendor efforts to increase) project revenue and the verifiable 

metric is eliminated under single-sourcing—that is, if project revenue and the VPM are aligned with 

respect to vendor effort (either γ = 1 or θ = 0 are sufficient conditions to ensure this alignment)—then the 

only distinction (from the client’s perspective) between single- and multisourcing is the extent of moral 

hazard. Because MS requires the client to face moral hazard with two vendors, we can expect SS (which 

involves moral hazard with only one vendor) to dominate. 

For the case of integrated tasks, the difference in client profits under single-sourcing and multisourcing 

(ΠSS – ΠMS) is illustrated in Figure 2. This figure confirms that—when project revenue and the 

verifiable metric are both aligned with vendor effort—the moral hazard associated with two vendors 

makes the client’s expected profit lower than does moral hazard with one vendor. 

When tasks are integrated and there is partial revenue–metric alignment, the client should choose its 

outsourcing mode based on trade-offs between the effects of moral hazard and partial alignment with the 

vendor’s effort. In this integrated tasks case, the presence of moral hazard (with either one or two 

vendors) favors single-sourcing. Yet MS can mitigate the effect on vendor effort of partial alignment 

between project revenue and the VPM; this follows because vendors can be incentivized by linear 

contracts that are differentiated. In contrast, the client that uses SS cannot eliminate this effect of partial 

alignment because both outsourced tasks are performed by the same vendor (and so are governed by a 

single linear contract). 

We now analyze how θ, the extent of verifiability, affects the optimal sourcing mode. When θ is high, the 

verifiable performance metric contributes a small share of the project revenue while the unverifiable part 
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of project revenue contributes a large share. A high value of θ plays a similar role to that of a high degree 

of misalignment (γ) between project revenue and the VPM, since MS is more efficient than SS at 

mitigating the misalignment effect because each vendor can be offered a different linear contract. Thus a 

higher value of θ implies a greater misalignment between the verifiable metric and project revenue, a 

situation that favors multisourcing. 

 

 

Finally, the greater the effect of VPM–project revenue misalignment on client effort (λ), the higher the 

value of S for a given effort vector. Hence a vendor receives more of a payout provided its contract’s 

variable component is positive (which is always the case), and so a high value of λ encourages free-

riding. Multisourcing is more affected more by this problem than is single sourcing because MS entails 

moral hazard involving two agents and SS only one. Hence the effect of misalignment—between project 

revenue and the verifiable metric—on the client’s effort is to make single-sourcing more attractive than 

multisourcing. Conversely, the client finds MS more attractive than SS for low values of λ. 

In our example set, General Motors clearly faced tasks that had to be integrated. If the revenue–metric 

misalignment is low in client effort and high in vendor effort and if the measurability of project revenue is 

low, then GM should favor the MS mode; it should favor the SS mode if the revenue–metric 
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misalignment is low in vendor effort and high in client effort and if the measurability of project revenue is 

low. We conjecture that a firm (such as GM) with a large base of operations will find it difficult to verify 

performance and will therefore have a hard time designing SLAs for its vendors that are aligned with 

project revenue. For that reason, multisourcing is likely to be preferred. 

Studies in the information systems literature have sought to identify the most appropriate domains for 

single-sourcing versus multisourcing (Bapna et al. 2010; Herz et al. 2011). Our paper is among the first to 

provide a basis for modeling the benefits of the two modes for the purpose of comparing their efficiency. 

This model is both parsimonious and able to capture the trade-offs—when choosing between these two 

outsourcing modes—among task modularity, project revenue verifiability, and metric–revenue 

misalignment. We show that the effect of moral hazard with multiple vendors favors SS; however, the 

effects of partial alignment and relatively unverifiable project revenue favor MS. Hence, a more 

nuanced approach to the choice of outsourcing mode must be adopted. 

 

Comparative Statics: Risk Aversion and Cost Interdependence 

In this section, we analyze how the choice between single-versus multisourcing is affected by two factors: 

the risk aversion of vendors and the cost of task interdependence. The case with integrated tasks does not 

yield a tractable analysis, so our discussion here is limited to the case with modular tasks. (For the 

integrated tasks case, we shall later summarize the insights gleaned from numerical experiments.) 

 

Risk Aversion 

We model only vendor risk aversion in this section, as clients are typically larger and have diversified 

portfolios of IT projects and, hence, they are likely to be risk-neutral. Adding client aversion to the model 

would make the model hard to analyze without numerical simulations, which can take away from the 

main focus of this paper.3 Ceteris paribus, we assume vendors to be risk averse and then assess how 

vendor risk aversion alters the efficacy (from the client’s perspective) of single-sourcing and 

multisourcing. For simplicity, we assume also that vendor risk aversion is captured by a constant absolute 

risk aversion (CARA) model whose coefficient of risk aversion we denote by r. The distribution of 

uncertainty about the VPM S, which we denote by ε2, is assumed to be normally distributed with a mean 

                                                           
3 The main reason for not including client risk aversion is that in our model, we do not capture vendor specific risks, 

which may be the key drivers of risk mitigation strategies such as multisourcing. Instead, we focus on task 

modularity and the misalignment between the project metric and the revenues. 
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of 0 and a standard deviation of σ. We compute the certainty equivalent of the profits for risk-averse 

vendor(s), after which we estimate the effect of that risk aversion on client profits. 

Proposition 4. If vendors are risk averse, then there exists an  such that ΠMS – ΠSS  ≥ 0 for 

all   and ΠMS – ΠSS < 0 for all  . So if the effect of risk aversion is high (i.e., if 

either uncertainty or the coefficient of risk aversion is high), then single-sourcing is preferred by the 

client; otherwise, multisourcing is preferred. 

 

This proposition reveals the effect of vendor risk aversion on the efficacy of each outsourcing mode. 

Vendor risk aversion affects client profits because each vendor must be more highly compensated in order 

to mitigate the effect of risk aversion (thus vendors are paid a risk premium to participate, with the client, 

in a joint development effort). Under multisourcing, the effect of risk aversion is evident in two different 

ways: the client must compensate two vendors for risk and so must pay two risk premiums, or 

multisourcing can attain the first-best solution for modular efforts, and Proposition 3 indicates that MS 

performs better than SS when the vendor effort is highly distorted by misalignment. However, one 

inescapable effect of risk aversion is that the client cannot attain the first-best solution, even for modular 

tasks under multisourcing, because vendors must be paid a risk premium. Along these same lines, our 

numerical experiments for the integrated case suggest that the area of the region in which the client 

prefers MS is diminished (because, once again, two vendors must each be paid a risk premium). 

Smaller firms are more likely to be risk averse; in our example set, vendors such as WNX (client: 

Travelcountry) and Visionaire (client: New Motion) should be more averse to risk, which would indicate 

working for clients employing a SS strategy. The smaller SMEs in China are similarly more risk averse, 

so SS is likely preferable to MS in that context. However, larger firms—such as EDS, HP, and Wipro 

(client: General Motors)—should be less risk averse because they have undertaken a diversified portfolio 

of projects; hence, their typical client is likely to favor MS. 

 

Effect of Task Interdependence Costs on Single- and Multisourcing 

Ceteris paribus, we assume in this section that there is a cost of task coordination; we must, therefore, 

assess that cost’s effect on the optimal sourcing mode. In Itoh (1994), the cost of task interdependence 

between vendor efforts is modeled for the single-sourcing case as ae1e2, where e1 and e2 are the efforts 

exerted by the single vendor on tasks 1 and 2. In the IT context, this formulation is akin to an increasing 

cost of coordinating the coding on two activities; thus an increased number of features included in one 
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task (which entails greater effort) leads to a higher cost of task coordination. When the cost of 

coordinating two activities is high, those tasks can be regarded as substitutes. If the cost term a is close to 

0, then the tasks can be executed independently of each other and so can be regarded as complements. 

Itoh (1994) assigned a cost of task coordination in the single-sourcing case only. For the purpose of 

making comparisons, we suppose that the cost of task coordination is the same for both SS and MS; 

hence, the coordinated efforts in both types of outsourcing are comparable. We also include the cost for 

task coordination of vendor effort (in the modular tasks case) and for coordination of both vendor effort 

and vendor and client efforts (in the integrated tasks case). Observations of real-world software 

development reveal that clients tend to identify a primary vendor as the coordinating agent; in our model, 

we assign the cost of task coordination to the vendor (in the SS case) or, without loss of generality, to 

vendor 2 (in the MS case). Following Itoh (1994), we take the cost of coordination between vendor efforts 

to be ae1e2. Proposition 5 summarizes our findings related to the effect of task interdependence costs on 

the optimal sourcing strategy. 

Proposition 5. If there is a cost to coordinating task 1 and task 2, then multisourcing is preferable to 

single-sourcing.  

The intuition underlying this claim is as follows: If it is costly to coordinate two modular tasks, then client 

profits under single-sourcing are reduced still further because the single vendor may attempt to reduce its 

coordination costs by investing less effort in one of the two tasks. Under multisourcing, however, each 

vendor reduces its effort yet they still achieve the first-best effort (corresponding to the coordinated case 

with costly task coordination). Note that our result is stronger than that of Itoh (1994), as we show that 

MS dominates even when an equivalent coordination cost is introduced for the coordinating vendor in MS 

(Itoh does not impute a coordination cost in the MS context).  

For the integrated tasks case, we express the cost of task interdependence as ae1e2 + be2e3. Here the 

additional cost of coordinating two tasks reduces the MS mode’s efficacy, as all three firms reduce their 

respective efforts to compensate for the additional cost of coordination. Single-sourcing suffers more 

from costly coordination because the single vendor reduces its efforts on both tasks to compensate for the 

additional cost of coordination (see Figure 3 and compare to Figure 2). Multisourcing is then more 

attractive than single-sourcing compared to the situation where no cost of coordination is incurred. 
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Conclusions and Future Research 

The main findings of this paper are as follow: If tasks are modular, then multisourcing performs better 

than single-sourcing if project revenue and the verifiable metric are partially aligned (if they are exactly 

aligned, then the two outsourcing modes perform equally well). If the tasks are integrated, then SS 

outperforms MS provided that (1) alignment of project revenue and the verifiable performance metric is 

high in vendor effort; (2) revenue–metric alignment is low in client effort; and (3) project revenue has a 

high degree of verifiability; otherwise MS outperforms SS. Single-sourcing is favored when vendors are 

strongly averse to risk, whereas multisourcing is favored when task interdependence results in 

coordination costs. These findings are summarized in Figure 4. 

In all cases, we find that linear contracts (which are easy to implement) based on the VPM are optimal 

from the client’s perspective. These results can be extended to a more general setting that can 

accommodate various kinds of IT and IT-enabled outsourcing projects. Thus we can demonstrate that this 

model’s applicability is not limited by the functional forms assumed in this paper. 

Our results have two overarching implications. First, if tasks are modular, then multisourcing performs no 

worse (and sometimes better) than single-sourcing. This observation contrasts with Itoh (1994), where the 

author reports that SS dominates MS in the absence of misalignment between project revenue and the 
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verifiable metric. If tasks are modular and if revenue is aligned with the VPM (upper left quadrant in 

Figure 4), then single-sourcing performs as well as multisourcing. However, the optimal sourcing mode 

for the other three cases we study has not been addressed in the literature. A key contribution of our paper 

is thus to build a parsimonious model that captures important factors— acknowledged but not previously 

studied in the literature—in the client firm’s strategic sourcing decision. In particular, we contribute to the 

extant literature (Itoh 1991, 1994) by presenting a model that captures metric–revenue misalignment. Our 

model also incorporates such factors as integrated versus modular tasks and the extent to which revenue is 

verifiable, which previous research has not tested for their effect on the firm’s outsourcing mode. 

Whereas the extant literature has studied the trade-off between MS and SS in terms of agency issues such 

as risk aversion, limited liability, and relational contracts (Che and Yoo 2001; Holmstrom and Milgrom 

1991), in this paper we identify domains in which multisourcing dominates because misalignment of 

project revenue and the verifiable performance metric is low (high) in client (vendor) effort and/or project 

revenue is not easily verified. 

 

These results concur with other observations in practice and with the case-study examples presented 

earlier. The greatest use of multisourcing has been observed in the banking and manufacturing sectors 

(Cohen and Young 2006; Levina and Su 2008), although IT-specific tasks are not core client activities in 

these sectors. Whereas the project’s revenue may depend on the joint efforts of client and vendor(s), an IT 

project’s verifiable metric may reflect vendor more than client effort—recall, for example, our earlier 

discussion on mPhase Technologies. 

The second major implication of our research is that single-sourcing performs well on integrated tasks 

when the VPM–revenue alignment is high (low) in vendor (client) effort and when project revenue is 

easily verified. If client–vendor relations involve any moral hazard, then free-rider problems arise—and 

even more so when there are multiple vendors. It follows that SS should be used when a larger number of 
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vendors exacerbates outsourcing’s inherent moral hazard problem. However, if a single vendor requires 

more incentives than multiple vendors (as when project revenue is not easily verified and metric–revenue 

misalignment is high in vendor effort but low in client effort), then MS should be used by the client. 

As mentioned in the “Literature Review,” this paper adds to the growing body of work on multisourcing 

by developing a theoretical model that provides answers to important yet previously unanswered 

questions about comparisons between single- and multisourcing in the presence of revenue–metric 

misalignment, task modularity, risk aversion, and task interdependence costs. Here we have studied only 

the pure modes of single-sourcing and multisourcing; future research should consider hybrid systems that 

incorporate both SS and MS. The exploration of many other unanswered questions including a detailed 

model of client risk aversion will also increase our understanding of the various outsourcing modes. 
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Appendix 
 
In this appendix we provide mathematical proofs of all lemmas and propositions presented in the paper. It will be useful in what follows to 
have set, as we do now, ࡿഥ = ഥࢁ and [ࡿ]ࡱ =   .[ࢁ]ࡱ
Proof of Lemma 1. Let us assume that a contract ଴݂(∙) is optimal (i.e., it maximizes the client’s expected profit) and that it induces the 
optimal efforts ݁̃ଵ and ݁̃ଶ by the vendor. Then the vendor’s problem can be represented as 

 max௘భ,௘మஹ଴	ܧ[ ଴݂(ܵ)	|	(݁ଵ, ݁ଶ)] − ܿଵ(݁ଵ) − ܿଶ(݁ଶ) 
 
The first-order conditions (FOCs) for this problem are 
 

 ܿଵᇱ(݁̃ଵ) = ݁̃ଵ = డாቂ ଴݂(ܵ)	ቚ	(݁ଵ, 	݁ଶ)ቃడௌ̅ డௌ̅డ௘భቤ{௘̃భ,௘̃మ} (L1.1) 

 

 ܿଶᇱ (݁̃ଶ) = ݁̃ଶ = డாቂ ଴݂(ܵ)	ቚ	(݁ଵ, 	݁ଶ)ቃడௌ̅ డௌ̅డ௘మቤ{௘̃భ,௘̃మ} (L1.2) 

 
The FOCs for the vendor’s problem under a linear contract {ߙ, ܶ} are 
 

ߙ  డா[ௌ]డ௘భ = ݁ଵ 

 

ߙ  డா[ௌ]డ௘మ = ݁ଶ 

 
Therefore, equations (L1.1) and (L1.2) can be implemented via a linear contract {ߙ, ܶ} by setting 
ߙ  ]ܧ߲	= ଴݂(ܵ)	|	(݁ଵ, ݁ଶ)]߲ܵ̅ |(௘̃భ,௘̃మ) 

 

 
Note that the fixed payment T does not affect vendor effort and so can be chosen to make the vendor’s participation constraint tight. Checking 

for second-order conditions (SOCs) under a linear contract yields ߙ డమௌ̅డ௘೔మ − 1 = −1 < 0. We have thus established the optimality of the linear 

contractual form {ߙ, ܶ}.  
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Proof of Proposition 1. In the modular tasks case, ܵ = ߶(݁ଵ + (ଶ݁ߛ + ߣ) ଶ because project outcomes do not depend on the client’s effortߝ =0). Having established in Lemma 1 that the linear contract is optimal, in this proof we need attend only to linear contracts (of the form ܶ  .(ܵߙ+

Effort choice. The FOCs for the first-best effort level, as defined in equation (4), are ݁̃ଵ = arg	max௘భܧ[݂(ܵ)	|	݁ଵ, ݁ଶ] − ܿଵ(݁ଵ) − ܿଶ(݁ଶ) 
 = arg max௘భܶ + ଵ݁]߶ߙ + [ଶ݁ߛ − ௘భమଶ − ௘మమଶ =  (P1.1)  ߶ߙ

 
and, similarly,  
 

 ݁̃ଶ =  (P1.2)   ߶ߛߙ
 

As shown in the proof of Lemma 1, the SOCs for linear contracts are satisfied. Then, by equation (5), ܧ[݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿଵ(݁̃ଵ) − ܿଶ(݁̃ଶ) ≥0. Hence the client will set ܶ	such that ܧ[݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿଵ(݁̃ଵ) − ܿଶ(݁̃ଶ) = 0, thereby making the vendor’s participation constraint tight 
and extracting all the surplus. Therefore, 
 

 ܶ + ,ଵ̃݁	|	ܵ]ܧߙ ݁̃ଶ] − ܿଵ(݁̃ଵ) − ܿଶ(݁̃ଶ) = 0 (P1.3) 
 

From equation (3) it follows that  
 ݁̃ଷ = arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) − ,ଵ̃݁	|	(ܵ)݂]ܧ ݁̃ଶ] 
 
As a result,  

 ݁̃ଷ = arg	max௘యஹ଴	߶[݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + [ଷ݁ߠ − ௘యమଶ − ௘̃భమଶ − ௘̃మమଶ =  (P1.4) ߶ߠ

 

Contract design. According to equation (2), the client’s contract design problem can be stated as 

 
max௙(∙)	Πୗୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ,ଵ̃݁)	|	(ܵ)݂]ܧ ݁̃ଶ)] 

 
And 
 

maxఈ	Πୗୗ = ߶[݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + [ଷ̃݁ߠ − ݁̃ଷଶ2 − ݁̃ଵଶ2 − ݁̃ଶଶ2  

 

since ܧ[݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] = 	 ௘̃భమଶ + ௘̃మమଶ . Substituting the values of ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ from equations (P1.1), (P1.2), and (P1.4) into the contract design 

problem yields 
 

 maxఈ	Πୗୗ = ߶ଶ ቂߙ + ߠ}ߙߛ + (1 − {ߛ(ߠ + ଶߠ − ఏమଶ − ఈమଶ − ఈమఊమଶ ቃ 
 

which is a concave function in ߙ. The FOC for the contract design problem gives us ߙ = ଵାఊ{ఏା(ଵିఏ)ఊ}ଵାఊమ , and the SOC yields 
డమஈ౏౏డఈమ =−߶ଶ[1 + [ଶߛ < 0. Substituting into the values of ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ, we obtain ݁̃ଵ= ߶[ଵାఊ{ఏା(ଵିఏ)ఊ}ଵାఊమ ], ݁̃ଶ= ߶[ఊ[ଵାఊ{ఏା(ଵିఏ)ఊ}]ଵାఊమ ], and ݁̃ଷ=  .ߠ߶

Finally, substituting these efforts into the profit function yields the profits given in Proposition 1. 

 

First-best outcome. From equation (1) in the “Model Description and Assumptions” section, we know that the coordinated solution is ݁ଵ∗ =߶, ݁ଶ∗ = ߠ]߶ + (1 − ∗and ݁ଷ ,[ߛ(ߠ = =We can see that client effort in the SS modular case is ݁̃ଷ .ߠ߶  .which is the coordinated solution ,ߠ߶

For the vendor effort to be first-best, we need 
ଵାఊ{ఏା(ଵିఏ)ఊ}ଵାఊమ = 1 and 

ఊ[ଵାఊ{ఏା(ଵିఏ)ఊ}]ଵାఊమ = ߠ + (1 −  Solving these two equations .ߛ(ߠ

simultaneously gives us that either ߠ = 0 or ߛ = 1 is both a necessary and sufficient condition for the client to attain the first-best solution 
in the single-sourcing case. 
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Proof of Proposition 2. The client offers the contract {ߙ௜, ௜ܶ} to vendor ݅, where ߙ௜ is the variable term of the linear contract and ௜ܶ is fixed. 
The vendors’ optimal efforts are given by 

 ݁̃ଵ= arg	max௘భஹ଴	ߙଵܧ[ܵ(݁ଵ, ݁̃ଶ)] − ܿଵ(݁ଵ) + ଵܶ =  ߶ଵߙ

 ݁̃ଶ= arg	max௘మஹ଴	ߙଶܧ[ܵ(݁̃ଵ, ݁ଶ)]− ܿଶ(݁ଶ) + ଶܶ =  ߶ଶߙߛ

 
From Equations (10) and (11), which are the individual rationality constraints, we can see that ଵܶ and ଶܶ do not affect vendors’ effort 
decisions. Therefore, we can freely adjust these terms to ensure that the vendor participation constraint is tight. Hence we can write 
 

ଵܶ = ,ଵ̃݁)ܵ]ܧଵߙ− ݁̃ଶ)] + ݁̃ଵଶ2  

 
and 
 

ଶܶ = ,ଵ̃݁)ܵ]ܧଶߙ− ݁̃ଶ)] + ݁̃ଶଶ2  

 
We can now complete the proof by showing that there exist {ߙଵ, ଶ} such that ݁̃௜ߙ = ݁௜∗ is the unique Nash equilibrium for the vendor’s effort 

decision. Set ߙଵ = 1 and ߙଶ = {ఏାఊ(ଵିఏ)}ఊ  It is easy to check that {݁ଵ∗, ݁ଶ∗} is a Nash equilibrium outcome and also the first-best solution. The 

reason is that vendor ݅’s FOC is satisfied at ݁௜∗ when vendor ݆ chooses ௝݁∗. Since in this case the vendors’ effort game is decoupled from client 
effort, we must show that {݁ଵ∗, ݁ଶ∗} is a unique Nash equilibrium. For that purpose, the Hessian is computed. We can check that 
 

 |۶| = ቮఈభడమாௌ(௘భ,௘మ)డ௘భమ − డమ௖భ(௘భ)డ௘భమ ఈభడమாௌ(௘భ,௘మ)డ௘భడ௘మఈమడమாௌ(௘భ,௘మ)డ௘భడ௘మ ఈమడమாௌ(௘భ,௘మ)డ௘మమ − డమ௖మ(௘మ)డ௘మమ ቮ 
 =	ቚ−1 00 −1ቚ = 1 > 0 

 

because  
డమாௌ(௘భ,௘మ)డ௘భమ = ఈమడమாௌ(௘భ,௘మ)డ௘మమ = ఈభడమாௌ(௘భ,௘మ)డ௘భడ௘మ = 0 and 

డమ௖భ(௘భ)డ௘భమ = డమ௖మ(௘మ)డ௘మమ = −1.Therefore, {݁ଵ∗, ݁ଶ∗} is a unique Nash equilibrium. Given 

that ଵܶ and ଶܶ are set such that no vendor earns a surplus over its reservation value, we conclude that the client can attain the first-best 
outcome for itself. 
 

Proof of Lemma 2. Suppose that a contract ଴݂(∙) is optimal and that it induces the optimal efforts ݁̃ଵ and ݁̃ଶ by the vendor and ݁̃ଷ by the 
client. Then the FOCs for this vendor’s problem are 

 

 ܿଵᇱ(݁̃ଵ) = ݁̃ଵ = డாቂ ଴݂(ܵ)	ቚ	(݁ଵ, 	݁ଶ, ݁ଷ)ቃడௌ̅ డௌ̅డ௘భቤ{௘̃భ,௘̃మ,௘̃య} (L2.1) 

 

 ܿଶᇱ (݁̃ଶ) = ݁̃ଶ = డா[௙బ(ௌ)	|	(௘భ,	௘మ,ୣయ)]డௌ̅ డௌ̅డ௘మቚ{௘̃భ,௘̃మ,௘̃య} (L2.2) 

 
It follows that either ݁̃ଵ, ݁̃ଶ ∈ (0,∞) or ݁̃ଵ = ݁̃ଶ = 0. The latter case can easily be implemented by setting ߙ = 0; we therefore focus on the 
case ݁̃ଵ, ݁̃ଶ ∈ (0,∞), which renders equations (L2.1) and (L2.2) necessary. The FOCs for the vendor’s problem under a linear contract {ߙ, ܶ} 
are 
 

ߙ  డா[ௌ]డ௘భ =ܿଵᇱ(݁ଵ) 
 

ߙ  డா[ௌ]డ௘మ =ܿଶᇱ (݁ଶ) 
 
Therefore, equations (L2.1) and (L2.2) can be implemented via a linear contract {ߙ, ܶ} by setting 
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ߙ  =డா[௙బ(ௌ)	|	(௘భ,௘మ,௘య)]డௌ̅ ቚ{௘̃భ,௘̃మ,௘̃య} (L2.3) 

 
 

We now examine the client’s effort decision. If ݁̃ଷ > 0 then, under ଴݂(∙), the FOC for the client’s effort choice problem is 
 

 
డ௩(௘̃భ,௘̃మ,௘య)డ௘య ቚ௘యୀ௘̃య − డாቂ ଴݂(ܵ)	ቚ	(݁ଵ, ݁ଶ, ݁ଷ)ቃడௌ̅ ቤ{௘̃భ,௘̃మ,௘̃య} = ܿଷᇱ (݁̃ଷ) = ݁̃ଷ 

 
Under the linear contract {ߙ, ܶ}, the FOC for the client’s effort choice problem becomes 
 డ௩(௘భ,௘మ,௘య)డ௘య − ߙ డா[ௌ]డ௘య = ܿଷᇱ (݁ଷ) 

 
A comparison of the two preceding FOCs shows that the value of ߙ, as given in equation (L2.3), ensures that the client’s FOC under linear 
contracts is satisfied at ݁̃ଷ. As in the proof of Lemma 1, ߙ > 0; also, ߙ < 1 because ݁̃ଷ ∈ (0,∞). All SOCs are (trivially) met. If ݁̃ଷ = 0 then, 
under ଴݂(∙), 
 

 
డ௩(௘̃భ,௘̃మ,௘య)డ௘య ቚ௘యୀ௘̃య −	డாቂ ଴݂(ܵ)	ቚ	(݁ଵ, ݁ଶ, ݁ଷ)ቃడௌ̅ డௌ̅డ௘యቚ{௘̃భ,௘̃మ,௘̃య} ≤ 0 

 
Under the linear contract {ߙ, ܶ}, the derivative of the client’s expected profit is 
 డ௩(௘భ,௘మ,௘య)డ௘య − ߙ డா[ௌ]డ௘య − ܿଷᇱ (e3) 

 
Substituting the value of ߙ as determined by equation (L2.3) ensures that the client’s effort choice is ݁̃ଷ = 0. Furthermore, since ݁̃ଷ = 0 it 
follows that ߙ = 1—thus ensuring satisfaction of the sufficient conditions for the linear contract to implement ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ. Because the 
fixed payment ܶ does not affect vendor effort, it can (again) be chosen such that the vendor’s participation constraint is tight. Hence a linear 
contract can replicate the performance of any optimal contract and so is itself optimal. We must now establish that the optimal linear contract’s 
performance cannot yield the client’s first-best result. 
 
Recall that, when tasks are integrated, the VPM ܵ = ߶(݁ଵ + ଶ݁ߛ + (ଷ݁ߣ +  .ଶߝ
 

Effort choice. The FOCs for the effort devoted to outsourced tasks, as defined in equation (14), are 

 ݁̃ଵ = arg	max௘భ	ܧ[݂(ܵ)	|	݁ଵ, ݁ଶ, ݁̃ଷ] − ܿଵ(݁ଵ) − ܿଶ(݁ଶ) = arg	max௘భ	ܶ + ଵ݁]߶ߙ + ଶ݁ߛ + [ଷ݁ߣ − ௘భమଶ − ௘మమଶ =  (L2.4) ߶ߙ

 
and, similarly,  
 

 ݁̃ଶ =  (L2.5) ߶ߛߙ
 

Equation (5) implies that ܧ[݂(ܵ)	|	݁̃ଵ, ݁̃ଶ, ݁̃ଷ] − ܿଵ(݁̃ଵ) − ܿଶ(݁̃ଶ) ≥ 0. Here the client will set ܶ such that ܧ[݂(ܵ)	|	݁̃ଵ, ݁̃ଶ, ݁̃ଷ] − ܿଵ(݁̃ଵ) −ܿଶ(݁̃ଶ) = 0, thereby making the vendor’s participation constraint tight and extracting all the surplus. Hence 
 

 ܶ + [ܵ]ܧߙ − ܿଵ(݁̃ଵ) − ܿଶ(݁̃ଶ) = 0 (L2.6) 
 
The equality ݁̃ଷ= arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) ,ଵ̃݁)	|	(ܵ)݂]ܧ− ݁̃ଶ, ݁ଷ)] now follows from equation (13). Therefore,  
 
 ݁̃ଷ= arg	max௘యஹ଴	߶[݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + ߠ} + (1 − ߣ(ߠ − ଷ] −௘యమଶ݁{ߣߙ − ௘̃భమଶ − ௘̃మమଶ + =	ଷ̃݁ߣ߶ߙ ߠ]߶ + (1 − ߣ(ߠ −  (L2.7)    [ߙߣ

 

Contract design. Equation (12) gives the contract design problem as 

 
 max௙(∙)	Πୗୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ,ଵ̃݁)	|	(ܵ)݂]ܧ ݁̃ଶ, ݁̃ଷ)] 
  
and we have 
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 maxఈ	Πୗୗ = ߶[݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + ߠ} + (1 − [ଷ̃݁{ߛߣ(ߠ − ௘̃యమଶ − ௘̃భమଶ − ௘̃మమଶ  

 

because ܧ[݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ, ݁̃ଷ)] = 	 ௘̃భమଶ + ௘̃మమଶ . Substituting the values of ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ from equations (L2.4), (L2.5), and (L2.7) into the contract 

design problem yields 
 

maxఈ	Πୗୗ = ߶ଶ[ߙ + ߠ}ߙߛ + (1 − {ߛ(ߠ + ߠ} + (1 − ߠ}{ߣ(ߠ + (1 − ߣ(ߠ − − {ߙߣ {ఏା(ଵିఏ)ఒିఒఈ}మଶ − ఈమଶ − ఈమఊమଶ ] = ߶ଶ ቈߙ + ߠ}ߙߛ + (1 − {ߛ(ߠ + ߠ} + (1 − ଶ2{ߣ(ߠ − ଶ2ߣଶߙ − ଶ2ߙ − ଶ2ߛଶߙ ቉ 
 

which is a concave function in ߙ. The FOC for the client’s contract design problem now gives us 
 

ߙ  = ଵାఊ{ఏା(ଵିఏ)ఊ}ଵାఊమାఒమ  

 
Substituting into the values of ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ, we obtain 
 ݁̃ଵ = ߶[ଵାఊ{ఏା(ଵିఏ)ఊ}ଵାఊమାఒమ ], ݁̃ଶ = ߶[ఊ[ଵାఊ{ఏା(ଵିఏ)ఊ}]ଵାఊమାఒమ ], and ݁̃ଷ = ߠ]߶ + (1 − ߣ(ߠ − ఒ[ଵାఊ{ఏା(ଵିఏ)ఊ}]ଵାఊమାఒమ ] 

 
First-best outcome. We know that the coordinated solution is ݁ଵ∗ = ߶, ݁ଶ∗ = ߠ]߶ + (1 − ∗and ݁ଷ ,[ߛ(ߠ = ߠ]߶ + (1 −  It is clear that .[ߣ(ߠ
the first-best efforts can never be achieved, since client effort in the single-sourcing case with integrated tasks is strictly less than the 
coordinated solution. Substituting the value of ߙ in the SS integrated tasks case gives us 
 Πୗୗ∗ = ߶ଶ[{ߠ + (1 − ଶ2{ߣ(ߠ + [1 + ߠ}ߛ + (1 − ଶ2(1[{ߛ(ߠ + ଶߛ + (ଶߣ ] 
 

Proof of Lemma 3. We shall start by proving the optimality of linear contracts. Assume that contracts ௜݂(∙) for vendor ݅ are optimal and that 
they induce optimal efforts ݁̃ଵ and ݁̃ଶ by the vendor and ݁̃ଷ by the client. Note that if ݁̃௜ = 0 for ݅ ∈ 1,2 then ߙ௜ = 0 trivially implements that 
effort level; as a consequence, we can restrict our focus to ݁̃ଵ, ݁̃ଶ ∈ (0,∞). The vendors’ FOCs are 

 

 ܿଵᇱ(݁̃ଵ) = ݁̃ଵ = డா[௙భ(ௌ)	|	(௘భ,௘మ,௘య)]డௌ̅ డா[ௌ]డ௘భ ቚ{௘̃భ,௘̃మ,௘̃య} (L3.1) 

 

 ܿଶᇱ (݁̃ଶ) = ݁̃ଶ = డா[௙మ(ௌ)	|	(௘భ,௘మ,௘య)]డௌ̅ డா[ௌ]డ௘మ ቚ{௘̃భ,௘̃మ,௘̃య} (L3.2) 

 
and the FOCs for vendors under linear contracts {ߙ௜, ௜ܶ} are 
ଵߙ  ଵ߲݁[ܵ]ܧ߲ = ܿଵᇱ(݁ଵ) 
ଶߙ  ଶ߲݁[ܵ]ܧ߲ = ܿଶᇱ (݁ଶ) 
 
Therefore, equations (L3.1) and (L3.2) can be implemented via linear contracts {ߙ௜, ௜ܶ} by setting 
 

=௜ߙ  డா[௙೔(ௌ)	|	(௘భ,௘మ,௘య)]డௌ̅ ቚ{௘̃భ,௘̃మ,௘̃య} (L3.3) 

 
We now check the client’s effort decision. If ݁̃ଷ > 0 then, under ௜݂(∙), the FOC for the client’s effort choice problem is 
 

 
డா[௩(௘̃భ,௘̃మ,௘య)]డ௘య |௘యୀ௘̃య − ∑ డாቂ ௜݂(ܵ)	ቚ	(݁ଵ, ݁ଶ, ݁ଷ)ቃడௌ̅ డௌ̅డ௘೔ଶ௜ୀଵ |{௘̃భ,௘̃మ,௘̃య} = ܿଷᇱ (݁̃ଷ) = ݁̃ଷ 
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Under the linear contracts {ߙ௜, ௜ܶ}, the FOC for the client’s effort choice problem becomes 
 డா[௩(௘భ,௘మ,௘య)]డ௘య − ଵߙ) + (ଶߙ డௌ̅డ௘య = ܿଷᇱ (݁ଷ) 

 
Comparing these two FOCs reveals that the value of ߙ௜, as determined in equation (L3.3), ensures that the client’s FOC under linear contracts 
is satisfied at ݁̃ଷ. Just as in the proof of Lemma 1, we have ߙ௜ > 0. Also, since ݁̃ଷ ∈ (0,∞) it follows that ߙଵ + ଶߙ < 1. As before, all SOCs 
are trivially met. If ݁̃ଷ = 0, then under ௜݂(∙) we have 
,ଵ̃݁)ݒ]ܧ߲  ݁̃ଶ, ݁ଷ)]߲݁ଷ 	|௘యୀ௘̃య −෍߲ܧ[ ௜݂(ܵ)	|	(݁ଵ, ݁ଶ, ݁ଷ)]߲ܵ̅ ߲߲ܵ̅݁௜ଶ

௜ୀଵ |{௘̃భ,௘̃మ,௘̃య} ≤ 0 

 
Under the linear contracts {ߙ௜, ௜ܶ}, the derivative of the client’s expected profit is 
 డா[௩(௘భ,௘మ,௘య)]డ௘య − ଵߙ) + (ଶߙ డௌ̅డ௘య − ܿଷᇱ (݁ଷ) 

 
Substituting the value of ߙ௜ as determined in equation (L3.3) ensures that the client’s effort choice is ݁̃ଷ = 0. Similarly to the proof of 
Lemma 1, we have ߙ௜ > 0. Also, since ݁̃ଷ = 0 it follows that ߙଵ + ଶߙ ≥ 1, thus ensuring that the sufficient conditions for the linear contract 
to implement ݁̃ଷ, ݁̃ଷ, and ݁̃ଷ are satisfied. Finally, the fixed payments ௜ܶ do not affect vendor effort and can therefore be chosen such that the 
vendor participation constraints are tight. So again linear contracts can replicate the result of any optimal contract, which means that linear 
contracts are optimal. 
 
Our next task is to show that the optimal linear contract’s performance cannot be the client’s first-best result. 
 

Effort choice. The FOCs for effort spent on the outsourced tasks, as defined in equations (18) and (19), are 

 
 ݁̃ଵ = arg	max௘భ	ܧ[ ଵ݂(ܵ)	|	݁ଵ, ݁̃ଶ, ݁̃ଷ] − ܿଵ(݁ଵ) 
 
 ݁̃ଶ = arg	max௘మ	ܧ[ ଶ݂(ܵ)	|	݁̃ଵ, ݁ଶ, ݁̃ଷ] − ܿଶ(݁ଶ) 
 

 ݁̃ଵ = arg	max௘భܶ + ଵ[߶(݁ଵߙ + ଶ݁ߛ + [(ଷ݁ߣ − ௘భమଶ =  ଵ߶  (L3.4)ߙ

 

 ݁̃ଶ = arg	max௘మ	ܶ + ଶ[߶(݁ଵߙ + ଶ݁ߛ + [(ଷ݁ߣ − ௘మమଶ =  ଶ߶ (L3.5)ߙߛ

 
From equations (20) and (21) it follows that ܧ[ ଵ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ, ݁̃ଷ] − ܿଵ(݁̃ଵ) ≥ 0 and ܧ[ ଶ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ, ݁̃ଷ] − ܿଶ(݁̃ଶ) ≥ 0. Hence the client will 
set ଵܶ and ଶܶ such that ܧ[ ଵ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ, ݁̃ଷ] − ܿଵ(݁̃ଵ) = 0 and ܧ[ ଶ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ, ݁̃ଷ] − ܿଶ(݁̃ଶ) = 0, thereby making the vendor’s participation 
constraint tight and extracting all the surplus. Then 

 ଵܶ + [ܵ]ܧଵߙ − ܿଵ(݁̃ଵ) = 0 and ଶܶ + [ܵ]ܧଶߙ − ܿଶ(݁̃ଶ) = 0 
 
We can now conclude from equation (17) that  
 ݁̃ଷ= arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) ]ܧ	− ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ, ݁̃ଷ)] ]ܧ	− ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ, ݁̃ଷ)] 
 
Therefore, 
 
 ݁̃ଷ	= arg	max௘యஹ଴	߶[݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + ߠ} + (1 − ߣ(ߠ − ଵߙ)ߣ + ଶ)}݁ଷ] −௘యమଶߙ − ௘̃భమଶ − ௘̃మమଶ + ଵߙ)߶ߣ + =ଶ)݁̃ଷߙ ߠ]߶ + (1 − ߣ(ߠ − ଵߙ)ߣ +  ଶ)]                                                     (L3.6)ߙ

 

Contract design. According to equation (16), the client’s contract design problem can be stated as 

 
max௙(∙)	Π୑ୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ]ܧ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ, ݁̃ଷ)] ]ܧ	− ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ, ݁̃ଷ)] 

maxఈభ,ఈమ	Π୑ୗ = ߶[݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + ߠ} + (1 − [ଷ̃݁{ߣ(ߠ − ݁̃ଷଶ2 − ݁̃ଵଶ2 − ݁̃ଶଶ2  
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since ܧ[ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ, ݁̃ଷ)] =	௘̃భమଶ  and ܧ[ ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ, ݁̃ଷ)] =	௘̃మమଶ . Substituting the values of ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ from equations (L3.4)–(L3.6) into 

the contract design problem now gives 
 

maxఈభ,ఈమஹ଴	Π୑ୗ = ߶ଶ[ߙଵ + ߠ}ଶߙߛ + (1 − ߠ}	+ {ߛ(ߠ + (1 − ߠ}{ߣ(ߠ + (1 − ߣ(ߠ − ଵߙ)ߣ + ߠ}	− {(ଶߙ + (1 − ߣ(ߠ − ଵߙ)ߣ + ଶ)}ଶ2ߙ − ଵଶ2ߙ − ଶ2ߛଶଶߙ ] 
 
which is a concave function in ߙଵ and ߙଶ. The FOC for the client’s contract design problem yields the following three cases. 
 

Case (i) If 0 ≤ ߠ}ߛ + (1 − {ߛ(ߠ < ఒమଵାఒమ, then ߙଶ = ଵߙ ,0 = ଵଵାఒమ, and Π୑ୗ = ߶ଶ ቂ{ఏା(ଵିఏ)ఒ}మଶ + ଵଶ(ଵାఒమ)ቃ. 
 

In this case it is easy to see that ݁̃ଶ = 0, from which it follows that the client does not attain its first-best outcome. 
 

Case (ii) If 
ఒమଵାఒమ≤ ߠ}ߛ + (1 − {ߛ(ߠ < 1 + ఊమఒమ, then ߙଵ = ఊమାఒమିఒమఊ{ఏା(ଵିఏ)ఊ}ఊమାఒమାఊమఒమ ଶߙ , = (ଵାఒమ)ఊ{ఏା(ଵିఏ)ఊ}ିఒమఊమାఒమାఊమఒమ , and Π୑ୗ = ߶ଶ[ߙଵ + ߠ}ଶߙߛ + (1 − {ߛ(ߠ + ߠ} + (1 − ߠ}{ߣ(ߠ + (1 − ߣ(ߠ − ଵߙ)ߣ +  {(ଶߙ

ߠ}−  + (1 − ߣ(ߠ − ଵߙ)ߣ + ଶ)}ଶ2ߙ − ଵଶ2ߙ − ଶ2ߛଶଶߙ ] = ߶ଶ ቂ{ఏା(ଵିఏ)ఒ}మଶ + ఊమାఒమିଶఒమఊ{ఏା(ଵିఏ)ఊ}ା(ଵାఒమ)[ఊ{ఏା(ଵିఏ)ఊ}]మଶ(ఊమାఒమାఊమఒమ) ቃ. 
 

Substituting the expressions of ߙଵ and ߙଶ into the values of ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ, we obtain 
 ݁̃ଵ = ߶ ቂఊమାఒమିఒమఊ{ఏା(ଵିఏ)ఊ}ఊమାఒమାఊమఒమ ቃ, ݁̃ଶ = ߶ ቂఊ[(ଵାఒమ)ఊ{ఏା(ଵିఏ)ఊ}ିఒమ]ఊమାఒమାఊమఒమ ቃ 
 

and ݁̃ଷ = ߶ ቂߠ + (1 − ߣ(ߠ − ߣ ቄఊమାఒమିఒమఊ{ఏା(ଵିఏ)ఊ}ఊమାఒమାఊమఒమ + (ଵାఒమ)ఊ{ఏା(ଵିఏ)ఊ}ିఒమఊమାఒమାఊమఒమ ቅቃ 
 

We know that the coordinated solution is ݁ଵ∗ = ߶, ݁ଶ∗ = ߠ]߶ + (1 − ∗and ݁ଷ ,[ߛ(ߠ = ߠ]߶ + (1 −  It is now trivial to deduce that the .[ߣ(ߠ
client’s first-best effort in the multisourcing case with integrated tasks is less than in the coordinated solution. 
 

Case (iii) If ߠ}ߛ + (1 − {ߛ(ߠ > 1 + ఊమఒమ, then ߙଵ = ଶߙ ,0 = ఊ{ఏା(ଵିఏ)ఊ}ఊమାఒమ , and Π୑ୗ = ߶ଶ ቂ{ఏା(ଵିఏ)ఒ}మଶ + [ఊ{ఏା(ଵିఏ)ఊ}]మଶ(ఊమାఒమ) ቃ. 
 

In this case it trivially follows that ݁̃ଵ = 0, so again the client does not attain its first-best outcome. 
 

Proof of Proposition 3. We shall compare the profits resulting the single-sourcing and multisourcing strategies when tasks are 
interdependent. 

Single-sourcing. From the proof of Lemma 2 we know that the client’s profit under the SS strategy is 

 Πୗୗ∗ = ߶ଶ[{ߠ + (1 − ଶ2{ߣ(ߠ + [1 + ߠ}ߛ + (1 − ଶ2(1[{ߛ(ߠ + ଶߛ + (ଶߣ ] 
 
By the proof of Lemma 3, the client’s profit under the MS strategy is 
 Π୑ୗ = ߶ଶ[ߙଵ + ߠ}ଶߙߛ + (1 − {ߛ(ߠ + ߠ} + (1 − ߠ}{ߣ(ߠ + (1 − ߣ(ߠ − ଵߙ)ߣ + ߠ}− {(ଶߙ + (1 − ߣ(ߠ − ଵߙ)ߣ + ଶ)}ଶ2ߙ − ଵଶ2ߙ − ଶ2ߛଶଶߙ ] 
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Note that if ߠ}ߛ + (1 − {ߛ(ߠ < ఒమଵାఒమ then ߙଶ = 0 and if ߠ}ߛ + (1 − {ߛ(ߠ > 1 + ఊమఒమ then ߙଵ = 0. Therefore, under multisourcing we obtain 

the following results: 
 

Case (i) If 0 ≤ ߠ}ߛ + (1 − {ߛ(ߠ < ఒమଵାఒమ, then ߙଶ = ଵߙ ,0 = ଵଵାఒమ, and Π୑ୗ = ߶ଶ ቂ{ఏା(ଵିఏ)ఒ}మଶ + ଵଶ(ଵାఒమ)ቃ. 
 

Case (ii) If 
ఒమଵାఒమ≤ ߠ}ߛ + (1 − {ߛ(ߠ < 1 + ఊమఒమ, then ߙଵ = ఊమାఒమିఒమఊ{ఏା(ଵିఏ)ఊ}ఊమାఒమାఊమఒమ  and ߙଶ = (ଵାఒమ)ఊ{ఏା(ଵିఏ)ఊ}ିఒమఊమାఒమାఊమఒమ  . Hence  Π୑ୗ = ߶ଶ[ߙଵ + ߠ}ଶߙߛ + (1 − {ߛ(ߠ + ߠ} + (1 − ߠ}{ߣ(ߠ + (1 − ߣ(ߠ − ଵߙ)ߣ + {(ଶߙ − {ఏା(ଵିఏ)ఒିఒ(ఈభାఈమ)}మଶ − ఈభమଶ − ఈమమఊమଶ ]  

 = ߶ଶ ቂ{ఏା(ଵିఏ)ఒ}మଶ + ఊమାఒమିଶఒమఊ{ఏା(ଵିఏ)ఊ}ା(ଵାఒమ)[ఊ{ఏା(ଵିఏ)ఊ}]మଶ(ఊమାఒమାఊమఒమ) ቃ. 
 

Case (iii) If ߠ}ߛ + (1 − {ߛ(ߠ > 1 + ఊమఒమ, then ߙଵ = ଶߙ ,0 = ఊ{ఏା(ଵିఏ)ఊ}ఊమାఒమ , and Π୑ୗ = ߶ଶ ቂ{ఏା(ଵିఏ)ఒ}మଶ + [ఊ{ఏା(ଵିఏ)ఊ}]మଶ(ఊమାఒమ) ቃ. 
 

A numerical comparison of the SS- and MS-based profits under different values of ߛ ,ߠ, and ߣ now yields the results in the proposition. 
(These comparisons are plotted in Figure 2 of the main text.) 

Proof of Proposition 4. Here we consider only the case when tasks are modular. Also, for this proof we normalize ߶ to 1; doing so does not 
affect the analysis because it merely acts as a scaling factor in our model. 

Single-sourcing. We can state the client’s contract problem under SS as follows, where “CE” denotes “certainty equivalent”: 

 
 max௙(∙)	Πୗୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ,ଵ̃݁)	|	(ܵ)݂]ܧ ݁̃ଶ)] (P4.1) 

 
subject to 
 

 ݁̃ଷ = arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) − ,ଵ̃݁)	|	(ܵ)݂]ܧ ݁̃ଶ)], (P4.2) 
 

 ݁̃ଵ, ݁̃ଶ = arg	max௘భ,௘మஹ଴	CE[݂(ܵ)	|	(݁ଵ, ݁ଶ)] − ܿଵ(݁ଵ) − ܿଶ(݁ଶ), (P4.3) 
 

 and CE[݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ܿଵ(݁̃ଵ) − ܿଶ(݁̃ଶ) ≥ 0. (P4.4) 
 

The client is risk neutral and so takes only the expected value of the contract into account; in contrast, the vendor is risk averse and 
therefore, when making its decisions, accounts instead for the certainty equivalent of the contract. We first use a CARA model to derive the 
form of the certainty equivalent for a risk utility function, in which case the uncertainty ߝଶ is normally distributed. For the CARA model, ܷ(ݔ) = 1 − ݁ି௥௫, where ݎ is the absolute coefficient of risk aversion. Because the verifiable signal is of the form ܵ = ݁ଵ + ଶ݁ߛ + ଷ݁ߣ +  ,ଶߝ
we seek the certainty equivalent of a general signal of the type ܵ = ܣ +  ଶ. Let CE(ܵ) denote the certainty equivalent of signal ܵ. Thenߝ

 

 1 − ݁ି௥	େ୉(ௌ) = ׬ ൛1 − ݁ି௥(஺ାఌమ)ൟஶିஶ ଵ√ଶగఙ ݁ିఌమమ/ଶఙమ	݀ߝଶ 

 = 1 − ݁ି௥஺ ׬ {݁ି௥ఌమ}ஶିஶ ଵ√ଶగఙ ݁ିఌమమ/ଶఙమ	݀ߝଶ5 

 = 1 − ݁ି௥஺ ׬ 	 ଵ√ଶగఙ ݁ିఌమమ/ଶఙమି௥ఌమି	ೝమ഑రమ഑మ 	ା	ೝమ഑రమ഑మ ଶஶିஶߝ݀	  

 = 1 − ݁ି௥஺	ା	ೝమ഑రమ഑మ ׬ 	 ଵ√ଶగఙ ݁ି(ఌమା௥ఙమ)మ/ଶఙమ݀ߝଶஶିஶ  

 

Yet because ׬ 	 ଵ√ଶగఙ ݁ି(ఌమା௥ఙమ)మ/ଶఙమ݀ߝଶஶିஶ = 1, it follows that 

 

(ܵ)CE	ݎ  = ܣݎ − ௥మఙమଶ 		⟹ 		CE(ܵ) = ܣ − ௥ఙమଶ  

. 
If tasks are modular, then ܵ = (݁ଵ + (ଶ݁ߛ + ߣ) ଶ because project outcomes do not depend on client effortߝ = 0). We shall focus on linear 
contracts of the form ܶ +  .ܵߙ

Effort choice. The FOCs for devoting first-best efforts to the outsourced tasks are 
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 ݁̃ଵ = arg	max௘భ	CE[݂(ܵ)	|	݁ଵ, ݁ଶ] − ܿ(݁ଵ) − ܿ(݁ଶ) = arg	max௘భ	ܶ + ଵ݁]ߙ + [ଶ݁ߛ − ଶ2ߙଶߪݎ − ݁ଵଶ2 − ݁ଶଶ2 =  ߙ

 
and, similarly, 
 
 ݁̃ଶ =  ߛߙ
. 
Here the participation constraint is expressed as CE[݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿ(݁̃ଵ) − ܿ(݁̃ଶ) ≥ 0 and so the client will set ܶ	such that CE[݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿ(݁̃ଵ) − ܿ(݁̃ଶ) = 0, which makes the vendor’s participation constraint tight and also extracts all the surplus. Therefore, 
 

 ܶ + [ܵ]ܧߙ − ௥ఙమఈమଶ − ܿ(݁̃ଵ) − ܿ(݁̃ଶ) = 0 and ݁̃ଷ= arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) ,ଵ̃݁)	|	(ܵ)݂]ܧ− ݁̃ଶ)] 
 

It follows that  
 ݁̃ଷ= arg	max௘యஹ଴	݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + ߠ} + (1 − ଷ݁{ߣ(ߠ − ݁ଷଶ2 − ݁̃ଵଶ2 − ݁̃ଶଶ2 − ଶ2ߙଶߪݎ  = ߠ + (1 −  ߣ(ߠ

 

Contract design. According to equation (P4.1), the contract design problem can be stated as 

 
 max௙(∙)	Πୗୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ,ଵ̃݁)	|	(ܵ)݂]ܧ ݁̃ଶ)] 
  

 Maxఈ	Πୗୗ = ݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + ߠ} + (1 − ଷ̃݁{ߣ(ߠ − ௘̃యమଶ − ௘̃భమଶ − ௘̃మమଶ − ௥ఙమఈమଶ  

 

since ܧ[݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ, ݁̃ଷ)] = 	 ௘̃భమଶ + ௘̃మమଶ . Substituting the values of ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ into the contract design problem then yields 

 
 maxఈ	Πୗୗ = ߙ + ߠ}ߙߛ + (1 − {ߛ(ߠ + ߠ} + (1 −  ଶ{ߣ(ߠ

 − {ఏା(ଵିఏ)ఒ}మଶ − ఈమଶ − ఈమఊమଶ − ௥ఙమఈమଶ  

 
which is a concave function in ߙ. The FOC for the contract design problem now gives us 
ߙ  = 1 + ߠ}ߛ + (1 − 1{ߛ(ߠ + ଶߛ + ଶߪݎ  

 
and the firm’s profits under SS are given by 
 Πୗୗ = ߠ] + (1 − ଶ2[ߣ(ߠ + [1 + ߠ}ߛ + (1 − ଶ2[1[{ߛ(ߠ + ଶߛ + [ଶߪݎ  

 

Multisourcing. The client’s contract problem in the MS case can be stated as 

 
 max௙೔(∙)	Π୑ୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ]ܧ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ]ܧ ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)]  (P4.5) 

 
subject to the following conditions: 
 

 ݁̃ଷ = arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) − ]ܧ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ]ܧ ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] (P4.6) 
 

 ݁̃ଵ = arg	max௘భஹ଴	CE[ ଵ݂(ܵ)	|	(݁ଵ, ݁̃ଶ)] − ܿଵ(݁ଵ) (P4.7) 
 

 ݁̃ଶ = arg	max௘మஹ଴	CE[ ଶ݂(ܵ)	|	(݁̃ଵ, ݁ଶ)] − ܿଶ(݁ଶ) (P4.8) 
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 CE[ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ܿଵ(݁̃ଵ) ≥ 0 (P4.9) 
 

 CE[ ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ܿଶ(݁̃ଶ) ≥ 0 (P4.10) 

 

Effort choice. The FOCs for the first-best efforts on the outsourced tasks are 

 
 ݁̃ଵ = arg	max௘భ	CE[ ଵ݂(ܵ)	|	݁ଵ, ݁̃ଶ] − ܿଵ(݁ଵ) 
 
 ݁̃ଶ = arg	max௘మ	CE[ ଶ݂(ܵ)	|	݁̃ଵ, ݁ଶ] − ܿଶ(݁ଶ) 
 
therefore, 
 

 ݁̃ଵ = arg	max௘భܶ + ଵ(݁ଵߙ + (ଶ݁ߛ − ௥ఙమఈభమଶ − ௘భమଶ =  ଵߙ

 

 ݁̃ଶ = arg	max௘మ	ܶ + ଶ(݁ଵߙ + (ଶ݁ߛ − ௥ఙమఈమమଶ − ௘మమଶ =  ଶߙߛ

 
Here the participation constraints are CE[ ଵ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿଵ(݁̃ଵ) ≥ 0 and CE[ ଶ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿଶ(݁̃ଶ) ≥ 0. The client will set ଵܶ and ଶܶ such 
that CE[ ଵ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿଵ(݁̃ଵ) = 0 and CE[ ଶ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿଶ(݁̃ଶ) = 0, thus making the vendor’s participation constraint tight and 
extracting all the surplus. Hence 
 ଵܶ + [ܵ]ܧଵߙ − ௥ఙమఈభమଶ − ܿଵ(݁̃ଵ) = 0 and ଶܶ + [ܵ]ܧଶߙ − ௥ఙమఈమమଶ − ܿଶ(݁̃ଶ) = 0 

 
from which we conclude that 
 ݁̃ଷ	= arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) ]ܧ	− ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] ]ܧ	− ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] = arg	max௘యஹ଴	݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + ߠ} + (1 − ଷ −݁ଷଶ2݁{ߣ(ߠ − ݁̃ଵଶ2 − ݁̃ଶଶ2 − ଵଶ2ߙଶߪݎ − ଶଶ2ߙଶߪݎ ߠ= + (1 −  ߣ(ߠ

 

Contract design. The client’s contract design problem is 

 
max௙(∙)	Π୑ୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ]ܧ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] ]ܧ	− ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] 

maxఈభ,ఈమ	Π୑ୗ = ݁̃ଵ + ߠ} + (1 − ଶ̃݁{ߛ(ߠ + ߠ} + (1 − ଷ̃݁{ߣ(ߠ − ݁̃ଷଶ2 − ݁̃ଵଶ2 − ݁̃ଶଶ2 − ଵଶ2ߙଶߪݎ − ଶଶ2ߙଶߪݎ  

 

the reason is that ܧ[ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] =	௘̃భమଶ + ௥ఙమఈభమଶ   and ܧ[ ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] =	௘̃మమଶ + ௥ఙమఈమమଶ . Substituting the values of ݁̃ଵ, ݁̃ଶ, and ݁̃ଷ into the 

contract design problem now yields 
 

maxఈభ,ఈమஹ଴	Π୑ୗ = ଵߙ + ߠ}ଶߙߛ + (1 − {ߛ(ߠ + ߠ} + (1 − ߠ}− ଶ{ߣ(ߠ + (1 − ଶ2{ߣ(ߠ − ଵଶ2ߙ − ଶ2ߛଶଶߙ − ଵଶ2ߙଶߪݎ − ଶଶ2ߙଶߪݎ  

 

which is a concave function in ߙଵ and ߙଶ. By the FOC for the contract design problem, ߙଵ = ଵଵା௥ఙమ and ߙଶ = {ఏା(ଵିఏ)ఊ}ఊఊమା௥ఙమ . We can see that 

the first-best outcomes are not attained under the multisourcing of modular tasks if vendors are risk averse: 
 Π୑ୗ ߠ]= + (1 − ଶ2[ߣ(ߠ + 12(1 + (ଶߪݎ + ߠ}ଶߛ + (1 − ଶߛ)ଶ2{ߛ(ߠ + (ଶߪݎ  

 

Comparing profits from the SS and MS of modular tasks under risk aversion. We are now in a position to compare the profits from 
single-sourcing and multisourcing. Thus, 
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 Πୗୗ = [ఏା(ଵିఏ)ఒ]మଶ + [ଵାఊ{ఏା(ଵିఏ)ఊ}]మଶ[ଵାఊమା௥ఙమ]  and  Π୑ୗ = 	 [ఏା(ଵିఏ)ఒ]మଶ + ଵଶ(ଵା௥ఙమ) + ఊమ{ఏା(ଵିఏ)ఊ}మଶ(ఊమା௥ఙమ)  

 
These equations confirm our expectations that SS and MS strategies both have lower profits when vendors are risk averse.  
 
We next compare the relative efficacy of these two sourcing strategies as follows: 
 Π୑ୗ − Πୗୗ = 12ቈ 1(1 + (ଶߪݎ + ߠ}ଶߛ + (1 − ଶߛ)ଶ{ߛ(ߠ + (ଶߪݎ − [1 + ߠ}ߛ + (1 − ଶ[1[{ߛ(ߠ + ଶߛ + [ଶߪݎ ቉ 
 
Put ߞ = ߠ}ߛ + (1 −  Then the preceding equation can be rewritten as .{ߛ(ߠ
 Π୑ୗ − Πୗୗ = 12ቈ 1(1 + (ଶߪݎ + ଶߛ)ଶߞଶߛ + (ଶߪݎ − [1 + ଶ[1[ߞߛ + ଶߛ +  ଶ]቉ߪݎ
 
and further simplification yields 
 Π୑ୗ − Πୗୗ = 12[1 + ଶߛ + ଶ]ቈߪݎ ଶ(1ߛ + (ଶߪݎ + ଶߛ)ଶߞଶߛ + (ଶߪݎ −  ቉ߞߛ2
 
From the term in brackets, it trivially follows that there exist ߪݎଶതതതതത > 0 such that Π୑ୗ − Πୗୗ ≥ 0 for all ߪݎଶ ≤ ଶതതതതത  and Π୑ୗߪݎ − Πୗୗ < 0 for 

all ߪݎଶ > ቂ (ଶ as the variableߪݎ with) ଶതതതതത is the positive root of the quadratic equationߪݎ ଶതതതതത. Hereߪݎ ఊమଵା௥ఙమ + ఊమ఍మఊమା௥ఙమ − ቃߞߛ2 = 0. 

 

Proof of Proposition 5. Proving this proposition will require that we compute the optimal efforts of the vendor(s) as a simultaneous effort 
decision, since their costs of coordination depend on the efforts exerted on both tasks. We first compute the first-best efforts with inter-
dependent costs and modular tasks. We normalize ߶ = 1 to simplify the calculations; this has no effect on the insights that we derive. 

 

Modular tasks. The coordinated firm solves the problem 

 max௘భ,௘మ,௘య	݁ଵ + ߠ} + (1 − ଶ݁{ߛ(ߠ + ߠ} + (1 − ଷ݁{ߣ(ߠ − ݁ଵଶ2 − ݁ଶଶ2 − ݁ଷଶ2 − ܽ݁ଵ݁ଶ 

 
This function is concave with respect to effort, as can be verified from the Hessian. The FOCs for the first-best efforts are 
 
 1 = ݁ଵ∗ + ܽ݁ଶ∗,  {ߠ + (1 − {ߛ(ߠ = ݁ଶ∗ + ܽ݁ଵ∗,  ݁ଷ∗ = ߠ} + (1 −  {ߣ(ߠ
 
Solving the first two equations simultaneously gives the following coordinated solution: 
 

 ݁ଵ∗ = ଵି௔{ఏା(ଵିఏ)ఊ}ଵି௔మ ,  ݁ଶ∗ = {ఏା(ଵିఏ)ఊ}ି௔ଵି௔మ ,  ݁ଷ∗ = ߠ} + (1 −  {ߣ(ߠ
 
Depending on the relative values of ߛ	and ܽ, the coordinated firm may decide to invest in only one of tasks 1 and 2. 
 

Case (i) If 0 < ߠ} + (1 − {ߛ(ߠ < ܽ, then ݁ଵ∗ = 1, ݁ଶ∗ = 0, and ݁ଷ∗ = ߠ} + (1 −  .{ߣ(ߠ
 

Case (ii) If ܽ < ߠ} + (1 − {ߛ(ߠ < ଵ௔, then ݁ ଵ∗ = ଵି௔{ఏା(ଵିఏ)ఊ}ଵି௔మ , ݁ ଶ∗ = {ఏା(ଵିఏ)ఊ}ି௔ଵି௔మ , and ݁ ଷ∗ = ߠ} + (1 −  In this case, the firm .{ߣ(ߠ

invests effort on all three tasks. 
 

Case (iii) If {ߠ + (1 − {ߛ(ߠ > ଵ௔, then ݁ଵ∗ = 0, ݁ଶ∗ = ߠ} + (1 − ∗and ݁ଷ ,{ߛ(ߠ = ߠ} + (1 −  .{ߣ(ߠ
 

We now compare the efficacy of single- and multisourcing strategies when interdependent tasks are costly. We first compute vendor effort 
in the SS case. 
 

Single-sourcing. The client’s contract design problem can be stated as 
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max௙(∙)	Πୗୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ,ଵ̃݁)	|	(ܵ)݂]ܧ ݁̃ଶ)] 

 
subject to 
 
 ݁̃ଷ = arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) − ,ଵ̃݁)	|	(ܵ)݂]ܧ ݁̃ଶ)] 
 
 ݁̃ଵ, ݁̃ଶ = arg	max௘భ,௘మஹ଴	ܧ[݂(ܵ)	|	(݁ଵ, ݁ଶ)] − ܿଵ(݁ଵ) − ܿଶ(݁ଶ) −	ܽ݁ଵ݁ଶ, 
 and ܧ[݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ܿଵ(݁̃ଵ) − ܿଶ(݁̃ଶ)	− ܽ݁ଵ݁ଶ≥ 0 
 
For the modular tasks case, we have ܵ = (݁ଵ + (ଶ݁ߛ +  .ଶ and focus on linear contractsߝ
 

Effort choice. The FOCs for the first-best efforts on the outsourced tasks are 

 
 ݁̃ଵ = arg	max௘భ	ܧ[݂(ܵ)	|	݁ଵ, ݁ଶ] − ܿ(݁ଵ) − ܿ(݁ଶ) − ܽ݁ଵ݁ଶ 

 = arg	max௘భ	ܶ + ଵ݁)]ߙ + [(ଶ݁ߛ − ௘భమଶ − ௘మమଶ − ܽ݁ଵ݁ଶ 

 
and, similarly,  

 ݁̃ଶ = arg	max௘మ	ܶ + ଵ݁)]ߙ + [(ଶ݁ߛ − ௘భమଶ − ௘మమଶ − ܽ݁ଵ݁ଶ 

 
and ݁̃ଷ = ,ଵ̃݁	|	(ܵ)݂]ܧ The participation constraint is written as .ߠ ݁̃ଶ] − ܿ(݁̃ଵ) − ܿ(݁̃ଶ)	− ܽ݁̃ଵ݁̃ଶ	≥ 0. The client will set ܶ	such that ܧ[݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿ(݁̃ଵ) − ܿ(݁̃ଶ)	− ܽ݁̃ଵ݁̃ଶ	= 0, making the vendor’s participation constraint tight and extracting all the surplus. Therefore, ܶ + [ܵ]ܧߙ −ܽ݁̃ଵ݁̃ଶ	− ܿ(݁̃ଵ) − ܿ(݁̃ଶ) = 0. 
 
So in order to see whether single-sourcing will attain the client’s first-best outcome, we need only check for the existence of an ߙ that can 

yield the vendor’s first-best efforts. Given that the first-best efforts maximize the function ݁ଵ + ߠ} + (1 − ଶ݁{ߛ(ߠ + ଷ݁ߠ − ௘భమଶ − ௘మమଶ − ௘యమଶ −ܽ݁ଵ݁ଶ, it is easy to see that SS will yield the first-best outcome for the client if and only if ߠ = 0 or ߛ = 1. 
 

Multisourcing. Because we assume that the cost of task interdependence is borne by the primary vendor (and thus we assume, without loss 
of generality, that the primary vendor performs the second task), the client’s contract design problem can be stated as 

 
 Max௙೔(∙)	Π୑ୗ = ,ଵ̃݁)ݒ]ܧ ݁̃ଶ, ݁̃ଷ)] − ܿଷ(݁̃ଷ) − ]ܧ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ]ܧ ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] 
 
subject to the following conditions: 
 
 ݁̃ଷ = arg	max௘యஹ଴	ݒ]ܧ(݁̃ଵ, ݁̃ଶ, ݁ଷ)] − ܿଷ(݁ଷ) − ]ܧ ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ]ܧ ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] 
 
 ݁̃ଵ = arg	max௘భஹ଴	ܧ[ ଵ݂(ܵ)	|	(݁ଵ, ݁̃ଶ)] − ܿଵ(݁ଵ) 
 
 ݁̃ଶ = arg	max௘మஹ଴	ܧ[ ଶ݂(ܵ)	|	(݁̃ଵ, ݁ଶ)] − ܿଶ(݁ଶ) −	ܽ݁ଵ݁ଶ 
 
]ܧ  ଵ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ܿଵ(݁̃ଵ) ≥ 0 
 
]ܧ  ଶ݂(ܵ)	|	(݁̃ଵ, ݁̃ଶ)] − ܿଶ(݁̃ଶ) −	ܽ݁̃ଵ݁̃ଶ≥ 0 
 

Effort choice. The FOCs for the first-best efforts on the outsourced tasks are 

 
 ݁̃ଵ = arg	max௘భ	ܧ[ ଵ݂(ܵ)	|	݁ଵ, ݁ଶ] − ܿ(݁ଵ) = ଵ, and ݁̃ଷߙ =  ,ߠ
 
and, similarly, ݁̃ଶ = max{ߙଶߛ − ܽ݁̃ଵ, 0} = ߛଶߙ) − ]ܧ ଵ)ା. Here the participation constraints areߙܽ ଵ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿ(݁̃ଵ) ≥ 0 and ܧ[ ଶ݂(ܵ)	|	݁̃ଵ, ݁̃ଶ] − ܿ(݁̃ଶ) −	ܽ݁̃ଵ݁̃ଶ	≥ 0. The client will set ௜ܶ 	such that the vendor’s participation constraint is tight, thereby extracting all the 
surplus; hence ଵܶ + [ܵ]ܧଵߙ − ܿଵ(݁̃ଵ) = 0 and ଶܶ + [ܵ}ଶߙ −ܽ݁̃ଵ݁̃ଶ− ܿଶ(݁̃ଶ) = 0. Therefore, the client can attain its first-best outcome if it 
can set feasible values for ߙଵ and ߙଶ that also yield first-best efforts by vendors. We now demonstrate that the client can indeed set such 
values. 
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Case (i) If 0 < ߠ} + (1 − {ߛ(ߠ < ܽ, then ݁ଵ∗ = 1, ݁ଶ∗ = 0, and ݁ଷ∗ = ଶߙ In this case, the client can set .ߠ = 0 and ߙଵ = 1 to attain 
the first-best outcome. 

 

Case (ii) If ܽ < ߠ} + (1 − {ߛ(ߠ < ଵ௔, then ݁ଵ∗ = ଵି௔{ఏା(ଵିఏ)ఊ}ଵି௔మ , ݁ଶ∗ = {ఏା(ଵିఏ)ఊ}ି௔ଵି௔మ , and ݁ଷ∗ =  Now, setting the contract .ߠ

parameter values such that ߙଵ = ଵି௔{ఏା(ଵିఏ)ఊ}ଵି௔మ  and ߙଶ = {ఏା(ଵିఏ)ఊ}ఊ  results in the client attaining its first-best outcome. 

 

Case (iii) If {ߠ + (1 − {ߛ(ߠ > ଵ௔, then ݁ଵ∗ = 0, ݁ଶ∗ = ߠ} + (1 − ∗and ݁ଷ ,{ߛ(ߠ = ଶߙ Here the client can set .ߠ = {ఏା(ଵିఏ)ఊ}ఊ  and ߙଵ = 0 to attain the first-best outcome. 
 

We therefore conclude that the multisourcing strategy attains the first-best outcome for the client. 
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