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Abstract

In recent years, skeleton-based action recognition has

become a popular 3D classification problem. State-of-the-

art methods typically first represent each motion sequence

as a high-dimensional trajectory on a Lie group with an

additional dynamic time warping, and then shallowly learn

favorable Lie group features. In this paper we incorporate

the Lie group structure into a deep network architecture to

learn more appropriate Lie group features for 3D action

recognition. Within the network structure, we design rota-

tion mapping layers to transform the input Lie group fea-

tures into desirable ones, which are aligned better in the

temporal domain. To reduce the high feature dimensional-

ity, the architecture is equipped with rotation pooling layers

for the elements on the Lie group. Furthermore, we propose

a logarithm mapping layer to map the resulting manifold

data into a tangent space that facilitates the application of

regular output layers for the final classification. Evalua-

tions of the proposed network for standard 3D human ac-

tion recognition datasets clearly demonstrate its superiority

over existing shallow Lie group feature learning methods as

well as most conventional deep learning methods.

1. Introduction

Due to the development of depth sensors, 3D human

activity analysis [27, 45, 23, 43, 41, 3, 42, 37, 44, 26,

35, 17] has attracted more interest than ever before. Re-

cent manifold-based approaches are quite successful at 3D

human action recognition thanks to their view-invariant

manifold-based representations for skeletal data. Typical

examples include shape silhouettes in the Kendall’s shape

space [40, 3], linear dynamical systems on the Grassmann

manifold [39], histograms of oriented optical flow on a

hyper-sphere [11], and pairwise transformations of skele-

tal joints on a Lie group [41, 3, 42]. In this paper, we focus

on studying manifold-based approaches [41, 3, 42] to learn

more appropriate Lie group representations of skeletal ac-

tion data, that have achieved state-of-the-art performances

for some 3D human action recognition benchmarks.

As studied in [41, 3, 42], Lie group feature learning

methods often suffer from speed variations (i.e., temporal

misalignment), which tend to deteriorate classification ac-

curacy. To handle this issue, they typically employ dynamic

time warping (DTW), as originally used in speech process-

ing [30]. Unfortunately, such process costs additional time,

and also results in a two-step system that typically performs

worse than an end-to-end learning scheme. Moreover, such

Lie group representations for action recognition tend to be

extremely high-dimensional, in part because the features are

extracted per skeletal segment and then stacked. As a result,

any computation on such nonlinear trajectories is expensive

and complicated. To address this problem, [41, 3, 42] at-

tempt to first flatten the underlying manifold via tangent

approximation or rolling maps, and then exploit SVM or

PCA-like method to learn features in the resulting flattened

space. Although these methods achieve some success, they

merely adopt shallow linear learning schemes, yielding sub-

optimal solutions on the specific nonlinear manifolds.

Deep neural networks have shown their great power in

learning compact and discriminative representations for im-

ages and videos, thanks to their ability to perform nonlin-

ear computations and the effectiveness of gradient descent

training with backpropagation. This has motivated us to

build a deep neural network architecture for representation

learning on Lie groups. In particular, inspired by the clas-

sical manifold learning theory [38, 36, 4, 12, 20, 19], we

equip the new network structure with rotation mapping lay-

ers, with which the input Lie group features are transformed

to new ones with better alignment. As a result, the effect of

speed variations can be appropriately mitigated. In order

to reduce the high dimensionality of the Lie group features,

we design special pooling layers to compose them in terms

of spatial and temporal levels, respectively. As the output

data reside on nonlinear manifolds, we also propose a Rie-

mannian computing layer, whose outputs could be fed into

any regular output layers such as a softmax layer. In short,

our main contributions are:

• A novel neural network architecture is introduced to

deeply learn more desirable Lie group representations

for the problem of skeleton-based action recognition.
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• The proposed network provides a paradigm to incorpo-

rate the Lie group structure into deep learning, which

generalizes the traditional neural network model to

non-Euclidean Lie groups.

• To train the network within the backpropagation

framework, a variant of stochastic gradient descent op-

timization is exploited in the context of Lie groups.

2. Relevant Work

Already quite some works [46, 34, 2, 29, 33, 14, 15] have

applied aspects of Lie group theory to deep neural networks.

For example, [33] investigated how stability properties of a

continuous recursive neural network can be altered within

neighbourhoods of equilibrium points by the use of Lie

group projections operating on the synaptic weight matrix.

[14] studied the behavior of unsupervised neural networks

with orthonormality constraints, by exploiting the differen-

tial geometry of Lie groups. In particular, two sub-classes

of the general Lie group learning theories were studied

in detail, tackling first-order (gradient-based) and second-

order (non-gradient-based) learning. [15] introduced deep

symmetry networks (symnets), a generalization of convolu-

tional networks that forms feature maps over arbitrary sym-

metry groups that are basically Lie groups. The symnets

utilize kernel-based interpolation to tractably tie parameters

and pool over symmetry spaces of any dimension.

Moreover, recently some deep learning models have

emerged [10, 7, 28, 25, 18, 21] that deal with data in a non-

Euclidean domain. For instance, [10] proposed a spectral

version of convolutional networks to handle graphs. It ex-

ploits the notion of non shift-invariant convolution, relying

on the analogy between the classical Fourier transform and

the Laplace-Beltrami eigenbasis. [25] developed a scalable

method for treating an arbitrary spatio-temporal graph as a

rich recurrent neural network mixture, which can be used to

transform any spatio-temporal graph by employing a certain

set of well-defined steps. For shape analysis, [28] proposed

a ‘geodesic convolution’ on local geodesic coordinate sys-

tems to extract local patches on the shape manifold. This

approach performs convolutions by sliding a window over

the manifold, and local geodesic coordinates are used in-

stead of image patches. To deeply learn symmetric positive

definite (SPD) matrices - used in many tasks - [18] devel-

oped a Riemannian network on the manifolds of SPD matri-

ces, with some layers specially designed to deal with such

structured matrices.

In summary, such works have applied some theories of

Lie groups to regular networks, and even generalized the

common networks to non-Euclidean domains. Neverthe-

less, to the best of our knowledge, this is the first work that

studies a deep learning architecture on Lie groups to handle

the problem of skeleton-based action recognition.

3. Lie Group Representation for Skeletal Data

Let S = (V,E) be a body skeleton, where V =
{v1, . . . , vN} denotes the set of body joints, and E =
{e1, . . . , eM} indicates the set of edges, i.e. oriented rigid

body bones. As studied in [41, 3, 42], the relative geome-

try of a pair of body parts en and em can be represented in

a local coordinate system attached to the other. The local

coordinate system of body part en is calculated by rotating

with minimum rotation so that its stating joint becomes the

origin and it coincides with the x-axis. With the process,

we consequently get the transformed 3D vectors êm, ên for

the two edges em, en respectively. Then we can compute

the rotation matrix Rm,n (RT
m,nRm,n = Rm,nR

T
m,n =

In, |Rm,n| = 1) from em to the local coordinate system

of en. Specifically, we can firstly calculate the axis-angle

representation (ω, θ) for the rotation matrix Rm,n by

ω =
êm ⊗ ên

‖êm ⊗ ên‖
, (1)

θ = arccos(êm · ên). (2)

where ⊗, · are outer and inner products respectively. Then,

the axis-angle representation can be easily transformed to

a rotation matrix Rm,n. In the same way, the rotation ma-

trix Rn,m from en to the local coordinate system of em

can be computed. To fully encode the relative geometry be-

tween em and en, Rm,n and Rn,m are both used. As a

result, a skeleton S at the time instance t is represented by

the form (R1,2(t),R2,1(t) . . . ,RM−1,M (t),RM,M−1(t)),
where M is the number of body parts, and the number of

rotation matrices is 2C2
M (C2

M is the combination formula).

The set of n×n rotation matrices in R
n forms the special

orthogonal group SOn which is actually a matrix Lie group

[22, 9, 16]. Accordingly, each motion sequence of a moving

skeleton is represented with a curve on the Lie group SO3×
. . .×SO3. It is known that the matrix Lie group is endowed

with a Riemannian manifold structure that is differentiable.

Hence, at each point R0 on SOn, one can derive the tangent

space TR0
SOn that is a vector space spanned by the set

of skew-symmetric matrices. When the anchor point is the

identity matrix In ∈ SOn, the resulting tangent space is

known as the Lie algebra son. As the tangent spaces are

equipped with the inner product, the Riemannian metric on

SOn can be defined by the Frobenius inner product:

< A1,A2 >= trace(AT
1 A2),A1,A2 ∈ TR0

SOn. (3)

The logarithm map logR0
and exponential map expR0

at R0 on SOn associated with the Riemannian metric can

be expressed in terms of the usual matrix logarithm log and

exponential exp as

logR0
(R1) = log(R1R

T
0 ) with R0,R1 ∈ SOn, (4)

expR0
(A1) = expA1R

T

0 with A1 ∈ TR0
SOn. (5)
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Figure 1. Conceptual illustration of the proposed Lie group Network (LieNet) architecture. In the network structure, the data space of each

RotMap/RotPooling layer corresponds to a Lie group, while the weight spaces of the RotMap layers are Lie groups as well.

4. Lie Group Network for Skeleton-based Ac-

tion Recognition

For the problem of skeleton-based action recognition, we

build a deep network architecture to learn the Lie group

representations of skeletal data. The network structure is

dubbed as LieNet, where each input is an element on the

Lie Group. Like convolutional networks (ConvNets), the

LieNet also exhibits fully connected convolution-like layers

and pooling layers, named rotation mapping (RotMap) lay-

ers and rotation pooling (RotPooling) layers respectively.

In particular, the proposed RotMap layers perform transfor-

mations on input rotation matrices to generate new rotation

matrices, which have the same manifold property, and are

expected to be aligned more accurately for more reliable

matching. The RotPooling layers aim to pool the resulting

rotation matrices at both spatial and temporal levels such

that the Lie group feature dimensionality can be reduced.

Since the rotation matrices reside on non-Euclidean mani-

folds, we have to design a layer named logarithm mapping

(LogMap) layer, to perform the Riemannian computations

on. This transforms the rotation matrices into the usual

skew-symmetric matrices, which lie in Euclidean space and

hence can be fed into any regular output layers. The archi-

tecture of the proposed LieNet is shown in Fig.1.

4.1. RotMap Layer

As well-known from classical manifold learning theory

[38, 36, 4, 12, 20, 19], one can learn or preserve the origi-

nal data structure to faithfully maintain geodesic distances

for better classification. Accordingly, we design a RotMap

layer to transform the input rotation matrices to new ones

that are more suitable for the final classification. Formally,

the RotMap layers adopt a rotation mapping fr as

f (k)
r ((Rk−1

1 ,Rk−1
2 . . . ,Rk−1

M̂
);W k

1 ,W
k
2 . . . ,W k

M̂
)

= (W k
1 R

k−1
1 ,W k

2 R
k−1
2 . . . ,W k

M̂
R

k−1

M̂
)

= (Rk
1 ,R

k
2 . . . ,R

k

M̂
)

(6)

where M̂ = 2C2
M (M is the number of body bones

in one skeleton, C2
M is the combination computation),

(Rk−1
1 ,Rk−1

2 . . . ,Rk−1

M̂
) ∈ SO3 × SO3 . . . × SO3 is

the input Lie group feature (i.e., product of rotation ma-

trices) for one skeleton in the k-th layer, W k
i ∈ R

3×3

is the transformation matrix (connection weights), and

(Rk
1 ,R

k
2 . . . ,R

k

M̂
) is the resulting Lie group representa-

tion. Note that although there is only one transformation

matrix for each rotation matrix, it would be easily extended

with multiple projections for each input. To ensure the form

(Rk
1 ,R

k
2 . . . ,R

k

M̂
) becomes a valid product of rotation ma-

trices residing on SO3 × SO3 . . . × SO3, the transforma-

tion matrices W k
1 ,W

k
2 , . . . ,W

k

M̂
are all basically required

to be rotation matrices. Accordingly, both the data and the

weight spaces on each RotMap layer correspond to a Lie

group SO3 × SO3 . . .× SO3.

Since the RotMap layers are designed to work together

with the classification layer, each resulting skeleton rep-

resentation is tuned for more accurate classification in an

end-to-end deep learning manner. In other words, the major

purpose of designing the RotMap layers is to align the Lie

group representations of a moving skeleton for more faith-

ful matching.

4.2. RotPooling Layer

In order to reduce the complexity of deep models, it is

typically useful to reduce the size of the representations to
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decrease the amount of parameters and computation in the

network. For this purpose, it is common to insert a pooling

layer in-between successive convolutional layers in a typi-

cal ConvNet architecture. The pooling layers are often de-

signed to compute statistics in local neighborhoods, such as

sum aggregation, average energy and maximum activation.

Without loss of generality, we here just introduce max

pooling1 to the LieNet setting with the equivalent notion

of neighborhood. Since the input and output of the special

pooling layers are both expected to be rotation matrices, we

call this kind of layers as rotation pooling (RotPooling) lay-

ers. For the RotPooling, we propose two different concepts

of neighborhood in this work. The first one is on the spa-

tial level. As shown in Fig.2(a)→(b), we first pool the Lie

group features on each pair of basic bones em, en in the

i-th frame, which is represented by the two rotation matri-

ces Rk−1,i
m,n ,Rk−1,i

n,m (here k − 1 is the order of the layer) as

aforementioned. Then, as depicted in Fig.2(b)→(c), we can

perform pooling on the adjacent bones that belong to the

same group (here, we can define five part groups, i.e., torso,

two arms and two legs, of the body). However, the second

step would inevitably result in a serious spatial misalign-

ment problem, and thus lead to bad matching performances.

Therefore, we finally only adopt the first step pooling. In

this setting, the function of the max pooling is given by

f (k)
p ({Rk−1,i

m,n ,Rk−1,i
n,m }) = max({Rk−1,i

m,n ,Rk−1,i
n,m })

=

{

Rk−1,i
m,n , if Θ(Rk−1,i

m,n ) > Θ(Rk−1,i
n,m ),

Rk−1,i
n,m , otherwise,

(7)

where Θ(·) is the representation of the given rotation matrix

such as quaternion, Euler angle or Euler axis-angle. For

example, the Euler axis ω and angle θ representations are

typically calculated by

ω(Rn,m) =
1

2 sin(θ(Rn,m))





Rn,m(3, 2)−Rn,m(2, 3)
Rn,m(1, 3)−Rn,m(3, 1)
Rn,m(2, 1)−Rn,m(1, 2)



 ,

(8)

θ(Rn,m) = arccos

(

trace(Rn,m)− 1

2

)

, (9)

where Rn,m(i, j) is the i-the row, j-th column element of

Rn,m. Unfortunately, except the angle representation, it is

non-trivial to define an ordering relation for a quaternion

or an axis-angle representation. Hence, in this paper, we

finally adopt the angle form Eqn.9 of rotation matrices and

its simple ordering relation to calculate the function Θ(·).
The other pooling scheme is on the temporal level. As

shown in Fig.2 (c)→(d), the aim of the temporal pooling

1In contrast to sum and mean poolings, max pooling can generate valid

rotation matrices directly, and hence suits the proposed LieNets. On the

other hand, leveraging Lie group computing to enable sum and mean pool-

ing to work for the LieNets, however, goes beyond the scope of this paper.
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Figure 2. Illustration of spatial pooling (SpaPooling) (a)→(b)→(c)

and temporal pooling (TemPooling) (c)→(d) schemes.

is to obtain more compact representations for a motion se-

quence. This is because a sequence often contains many

frames, which results in the problem of extremely high-

dimensional representations. Thus, pooling in the temporal

domain can reduce the model complexity as well. Formally,

the function of this kind of max pooling is defined as

f (k)
p ({(Rk−1,1

1,2 . . .R
k−1,1
M−1,M ) . . . , (Rk−1,p

1,2 . . . ,R
k−1,p
M−1,M )})

= (max({Rk−1,1
1,2 . . . ,R

k−1,p
1,2 }) . . . ,

max({Rk−1,1
M−1,M . . . ,R

k−1,p
M−1,M})),

(10)

where M is the number of body parts in one skeleton, p is

the number of skeleton frames for pooling, and the function

max(·) is defined in the way of Eqn.7.

4.3. LogMap Layer

Classification of curves on the Lie group SO3 × . . . ×
SO3 is a complicated task due to the non-Euclidean nature

of the underlying space. To address the problem as in [42],

we design the logarithm map (LogMap) layer to flatten the

Lie group SO3 × . . .× SO3 to its Lie algebra so3 × . . .×
so3. Accordingly, by using the logarithm map Eqn.4, the

function of this layer can be defined as

f
(k)
l ((Rk−1

1 ,Rk−1
2 . . . ,Rk−1

M̂
))

= (log(Rk−1
1 ), log(Rk−1

2 ) . . . , log(Rk−1

M̂
)).

(11)

One typical approach to calculate the logarithm map is

to use the approach log(R) = U log(Σ)UT , where R =
UΣUT , log(Σ) is the diagonal matrix of the eigenvalue

logarithms. However, the spectral operation not only suffers

from the problem of zeroes occurring in log(Σ) due to the

property of the rotation matrix R, but also consumes too

much time for matrix gradient computation [24]. Therefore,

we resort to other approaches to perform the function of this
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layer. Fortunately, we can explore the relationship between

the logarithm map and the axis-angle representation as:

log(R) =

{

0, if θ(R) = 0,
θ(R)

2 sin(θ(R)) (R−RT ), otherwise,
(12)

where θ(R) is the angle Eqn.9 of R. With this equation,

the corresponding matrix gradient can be easily derived by

traditional element-wise matrix calculation.

4.4. Output Layers

After performing the LogMap layers, the outputs can

be transformed into vector form and concatenated directly

frame by frame within one sequence due to their Euclidean

nature. Then, we can add any regular network layers such

as rectified linear unit (ReLU) layers and regular fully con-

nected (FC) layers. In particular for the ReLU layer, we

can simply set relatively small elements to zero as done in

classical ReLU. In the FC layer, the dimensionality of the

weight is set to dk × dk−1, where dk and dk−1 are the class

number and the vector dimensionalities, respectively. For

skeleton-based action recognition, we employ a common

softmax layer as the final output layer. Besides, as studied in

[37, 26], learning temporal dependencies over the sequen-

tial data can improve human action recognition. Hence, we

can also feed the outputs into Long Short-Term Memory

(LSTM) unit to learn useful temporal features. Because of

the space limitation, we do not study this any further.

5. Training Procedure

In order to train the proposed LieNets, we exploit the

Stochastic gradient descent (SGD) algorithm that is one of

the most popular network training tools. To begin with, let

the LieNet model be represented as a sequence of function

compositions f = f (l)◦f (l−1) . . .◦f (1) with a parameter tu-

ple W = (Wl,Wl−1 . . . ,W1), where f (k) is the function

for the k-th layer, Wk (dropping the sample index for sim-

plicity) represents the weight parameters of the k-th layer,

and l is the number of layers. The loss of the k-th layer is

defined by L(k) = ℓ ◦ f (l) . . . ◦ f (k), where ℓ is the loss

function for the final output layer.

To optimize the deep model, one classical SGD algo-

rithm needs to compute the gradient of the objective func-

tion, which is typically achieved by the backpropagation

chain rule. In particular, the gradients of the weight Wk

and the data Rk−1 (dropping the sample index for simplic-

ity) for the k-th layer can be respectively computed by the

chain rule:

∂L(k)(Rk−1, y)

∂Wk

=
∂L(k+1)(Rk, y)

∂Rk

∂f (k)(Rk−1)

∂Wk

, (13)

∂L(k)(Rk−1, y)

∂Rk−1
=

∂L(k+1)(Rk, y)

∂Rk

∂f (k)(Rk−1)

∂Rk−1
, (14)

where y is the class label, Rk = f (k)(Rk−1). Eqn.13 is

the gradient for updating Wk, while Eqn.14 computes the

gradients in the layers below to update Rk−1.

The gradients of the data involved in RotPooling,

LogMap and regular output layers can be calculated by

Eqn.14 as usual. Particularly, the gradient for the data in

RotPooling can be computed with the same gradient com-

puting approach used in a regular max pooling layer in the

context of traditional ConvNets. For the data in the LogMap

layer, the gradient can be obtained by the element-wise gra-

dient computation on the involved rotation matrices.

On the other hand, the computation of the gradients of

the parameter weights defined in the RotMap layers is non-

trivial. This is because the weight matrices are enforced

to be on the Riemannian manifold SO3 of the rotation

matrices, i.e. the Lie group. As a consequence, merely

using Eqn.13 to compute their Euclidean gradients rather

than Riemannian gradients in the procedure of backpropa-

gation would not generate valid rotation weights. To handle

this problem, we propose a new approach of updating the

weights used in Eqn.6 for the RotMap layers. As studied in

[1], the steepest descent direction for the used loss function

L(k)(Rk−1, y) with respect to Wk on the manifold SO3 is

the Riemannian gradient ∇̃L
(k)
Wk

, which can be obtained by

parallel transporting the Euclidean gradients onto the corre-

sponding tangent space. In particular, transporting the gra-

dient from a point W t
k to another point W t+1

k requires sub-

tracting the normal component ∇̄L
(k)
Wk

, at W t+1
k , which can

be obtained as follows:

∇̄L
(k)
Wk

= ∇L
(k)
Wk

W
T
k Wk, (15)

where the Euclidean gradient ∇L
(k)
Wk

is computed by using

Eqn.13 as

∇L
(k)
Wk

=
∂L(k+1)(Rk, y)

∂Rk

R
T
k−1. (16)

Thanks to the parallel transport, the Riemannian gradient

can be calculated by

∇̃L
(k)
Wk

= ∇L
(k)
Wk

− ∇̄L
(k)
Wk

. (17)

Searching along the tangential direction takes the update

in the tangent space of the SO3 manifold. Then, such up-

date is mapped back to the SO3 manifold with a retraction

operation. Consequently, an update of the weight Wk on

the SO3 manifold is of the following form

W
t+1
k = Γ(W t

k − λ∇̃L
(k)
Wk

), (18)

where W t
k is the current weight, Γ is the retraction opera-

tion, λ is the learning rate.
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6. Experiments

We employ three standard 3D human action datasets to

study the effectiveness of the proposed LieNets.

6.1. Evaluation Datasets

G3D-Gaming dataset [5] contains 663 sequences of 20 dif-

ferent gaming motions. Each subject performed every ac-

tion more than two times. Besides, 3D locations of 20 joints

(i.e., 19 bones) are provided with the dataset.

HDM05 dataset [31] consists of 2,337 sequences of 130

action classes executed by various actors. Most of the mo-

tion sequences have been performed several times by all

five actors according to the guidelines in a script. As G3D-

Gaming [5] dataset, 3D locations of 31 joints (i.e., 30 bones)

of the subjects are provided as well with this dataset.

NTU RGB+D dataset [37] is, to the best of our knowledge,

currently the largest 3D action recognition dataset, which

contains more than 56,000 sequences. A total of 60 differ-

ent action classes are performed by 40 subjects. 3D coordi-

nates of 25 joints (i.e., 24 bones) are also offered. Due to its

large scale, the dataset is highly suitable for deep learning.

6.2. Implementation Details

For the feature extraction, we use the code of [42] to rep-

resent each human skeleton with a point on the Lie group

SO3 × . . . × SO3. As preprocessed in [42], we normal-

ize any sequence of motion into a fixed N -length one. As

a result, for each moving skeleton, we finally compute a

Lie group curve of length 100, 16, 64 for the G3D-Gaming,

HDM05 and NTU RGB-D datasets, respectively.

As the focus of this work is on skeleton-based action

recognition, we mainly utilize manifold-based approaches

for comparison. The two baseline approaches are the spe-

cial Euclidean group (SE) [41] and the special orthogo-

nal group (SO) [42] representations based shallow learn-

ing methods. For a fair comparison, we use the source

codes from the original authors, and set the involved pa-

rameters as in the original papers. For the proposed LieNet,

we build its architecture with single or multiple block(s)

of RotMap/RotPooling layers illustrated in Fig.1 before the

three final layers being LogMap, FC and softmax layers.

The learning rate λ is fixed to 0.01, the batch size is set

to 30, the weights in the RotMap layers are initialized as

random rotation matrices, the number of samples for the

temporal RotPooling (TemPooling) layer is set to 4. For

training the LieNet, we just use an i7-6700K (4.00GHz)

PC without any GPUs. As the LieNet gets promising re-

sults on all datasets with the same configuration, this shows

its insensitivity to the parameter settings. Note that, for

the LieNets, we do not employ the dynamic time warping

(DTW) technique [30], which has been used in the SO and

SE methods to solve the problem of speed variations.

Method G3D-Gaming

RBM+HMM [32] 86.40%

SE [41] 87.23%

SO [42] 87.95%

LieNet-0Block 84.55%

LieNet-1Block 85.16%

LieNet-2Blocks 86.67%

LieNet-3Blocks 89.10%

Table 1. Recognition accuracies on the G3D-Gaming database.

6.3. Experimental Results

G3D-Gaming dataset [5]. For the dataset, we follow a

cross-subject test setting, where half the subjects are used

for training and the other half are employed for testing. All

the results reported for this dataset are averaged over ten

different combinations of training and testing datasets.

Table 1 compares the proposed LieNet with the state-

of-the-art methods (i.e., RBM-HMM [32], SE [41] and SO

[42]) reported for the G3D-Gaming dataset. To be fair, we

report their results without using the Fourier Temporal Pyra-

mid (FTP) post-processing (their accuracies are 91.09%

and 90.94% after using FTP). As shown in Table 1, the

LieNet shows its superiority over the two baseline methods

SO and SE. Besides, our LieNet with 3 blocks of RotMap

and RotPooling layers achieves the best performance. For

this dataset, we also study the performances of different

block numbers in the LieNet architecture. As the number

of frames in each sequence was fixed to 100 as mentioned

before, adding more blocks to the LieNet will finally degen-

erate the temporal sequence into only 1 frame. In theory,

this extreme case would result in the loss of the temporal

resolution and thus undermine the performance of recog-

nizing activities. In order to keep the balance between com-

pact spatial feature learning and temporal information en-

coding, we therefore equip the LieNet with a limited num-

ber of blocks in different settings. Thus, we study 4 blocks

at most for our LieNets. For the case of stacking 4 blocks,

we find its performance (87.28%) is lower than that of the

3-block case, which justifies the above argumentation. Nev-

ertheless, as observed from Table 1, stacking some more

RotMap/RotPooling blocks can improve the performance of

the proposed LieNet.

In addition, we evaluate the performances of different

LieNet configurations as shown in Fig.3. The left of Fig.3

verifies the necessity of using RotMap, RotPooling and

LogMap layers to improve the proposed LieNet-3Blocks.

In addition, we also compare the LieNet with and with-

out DTW. On this dataset, the performance (88.89% vs.

89.10%) of these two cases is approximately equal. There-

fore, the benefit of using RotMap layers somehow shows
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Figure 3. (a) Comparison of different LieNet configurations: with-

out using RotMap layers (w/o-RotMap), w/o-RotPooling layers,

w/o-LogMap layers and using all (w/-All) in LieNet-3Blocks for

G3D-Gaming. (b) Comparison of different pooling schemes:

using 1 spatial RotPooling layer (1SpaPooling, i.e., LieNet-

1Block), 2 spatial RotPooling layers (2SpaPooling), 1SpaPool-

ing+1 temporal RotPooling layer (1Spa1TemPooling, i.e., LieNet-

2Blocks), 1SpaPooling+2TemPooling (1Spa2TemPooling, i.e.,

LieNet-3Blocks) for G3D-Gaming.

…(b) Input (c) 1st layer: RotMap (d) 2nd layer: RotPooling (e) 7th layer: LogMap

Punch

Right

Punch

Right

Kick

Left

Kick

Left

Figure 4. The example skeletons are reconstructed by the output

rotation matrices of some representative LieNet layers for pro-

cessing four action sequences from the G3D-Gaming dataset. The

bones in red are the interesting ones for the action classes.

it can take the role of DTW that solves the problem of

speed variations. The right of Fig.3 analyses the effec-

tiveness of the 1SpaPooling case (i.e., Fig.2(a)→(b)), and

shows the decreasing performance behavior of the 2Spa-

Pooling case (i.e., Fig.2(a)→(b)→(c)). Thus, we finally uti-

lize 1SpaPooling and 2TemPooling (i.e., Fig.2(c)→(d)) in

the LieNet-3Blocks structure. Besides, we also study the

behavior of adding a rectified linear unit (ReLU)-like layer

(i.e., setting the matrix elements below a threshold ǫ = 0.1
to zero) on the top of the LogMap layer as presented before.

Yet, the performance was worse (87.58%) than without.

Further, to validate the improvements are from the contribu-

tion of the RotMap and RotPooling layers rather than deeper

architectures, we build a regular (LeNet-like) deep struc-

ture, i.e., LogMap→2×(FC→MaxPooling)→FC→ReLU

→FC→Softmax, that applies 8 regular layers on the con-

Method HDM05

SPDNet [18] 61.45%±1.12

SE [41] 70.26%±2.89

SO [42] 71.31%±3.21

LieNet-0Block 71.26%±2.12

LieNet-1Block 73.35%±1.14

LieNet-2Blocks 75.78%±2.26

Table 2. Recognition accuracies on the HDM05 database.

catenated output Euclidean forms of the LogMap layer. The

step for MaxPooling is set to 4, and the sizes of differ-

ent FC weights are set to 307800 × 40000, 10000 × 4000,

1000× 400 and 400× 20 respectively. The performance of

this network is 85.49%, which supports the validation.

For a better understanding of the proposed LieNet, we

also visualize the output results of some representative lay-

ers. In particular, we roughly estimate the 3D location of

each body bone, given the learned rotation matrix and the

3D coordinate of the beginning edge in the torso part. In

Fig.4, we present the visualization of some layers for four

action sequences, that belong to the classes of ‘punch right’

and ‘kick left’. As shown in Fig.4, we observe that they

yield meaningful semantic information layer by layer for

specific classes. Specifically, the reconstructions from the

first layer (RotMap) and the second layer (RotPooling) typ-

ically still mix some patterns specific for the action classes

with some rather confusing ones. But, when arriving at the

the seventh layer (LogMap), the patterns for specific motion

classes become more discriminative.

HDM05 dataset [31]. Following [18], we conduct 10 ran-

dom evaluations, each of which randomly selects half of the

sequences for training and the rest for testing.

As listed in Table 2, besides to the two baseline methods

SE and SO, we also study the SPDNet method [18] that has

reached the best performance so far for this dataset. The

large improvement of SE and SO over SPDNet suggests the

effectiveness of the Lie group representations for the prob-

lem of skeleton-based action recognition. As the last exper-

iment on the G3D-Gaming dataset, we also study the pro-

posed LieNet with different numbers of blocks of RotMap

and RotPooling layers. Note that since the length of each

sequence in this database is fixed to 16 frames, as studied

in the last evaluations, adding too much LieNet blocks will

lead to the loss of the temporal resolution. Thus, we im-

plemented the LieNet with 3 blocks at most for the dataset.

As adding 3 blocks will generate 1 frame for each video, its

performance (70.42%) is not as promising as other cases. In

contrast, as reported in Table 2, using more blocks (below 3

blocks) improves over using less blocks, and gets the state-

of-the-art on the dataset, again showing its advantages over

SE and SO shallow learning methods.
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Method RGB+D-subject RGB+D-view

HBRNN [13] 59.07% 63.97%

Deep RNN [37] 56.29% 64.09%

Deep LSTM [37] 60.69% 67.29%

PA-LSTM [37] 62.93% 70.27%

ST-LSTM [26] 69.2% 77.7%

SE [41] 50.08% 52.76%

SO [42] 52.13% 53.42%

LieNet-0Block 53.54% 54.78%

LieNet-1Block 56.35% 60.14%

LieNet-2Blocks 58.02% 62.52%

LieNet-3Blocks 61.37% 66.95%

Table 3. Recognition accuracies for the cross-subject and cross-

view evaluations on the NTU RGB+D database.

NTU RGB+D dataset [37]. This dataset has two standard

testing protocols. One is cross-subject test, for which half of

the subjects are used for training and the rest is for testing.

The other one is cross-view test, for which two views are

employed for training and the rest one is utilized for testing.

Since this dataset is large enough to train deep networks,

recent works [37, 26] studied typical Recurrent Neural Net-

works (deep RNN and deep LSTM) as well as two variants,

i.e., part-aware (PA) and spatio-temporal (ST) versions of

LSTM. The common advantage of these deep networks is

to learn temporal information, and significantly outperform

the Lie group representation learning methods SE and SO,

which are good at learning spatial information, but are not

deep learning models. In this paper, our LieNet fills the gap

by showing the effectiveness of deep learning on the spa-

tial representations. As shown in Table 3, our LieNet with

more stacked blocks can significantly improve the two base-

line methods SE and SO, which validates the effectiveness

of the deep learning. By comparing with the state-of-the-

art methods, our LieNet behaves better or equally well as

most deep networks (e.g., deep RNN and deep LSTM) that

exploit temporal information. The LieNet is still outper-

formed by the recently proposed PA-LSTM and ST-LSTM

however, which jointly learn spatial and temporal features

of moving skeletons. This is reasonable because the LieNet

is mainly designed to learn the spatial features with only

pooling temporal information.

Properties of LieNet training algorithm. While the con-

vergence of the used SGD algorithm on Riemannian man-

ifolds has been studied well in [8, 6] already, the conver-

gence behavior (see Fig.5) of our LieNet training algorithm

also demonstrates that it can converge to a stable solution

after 100 epochs. In terms of the runtime, training LieNet-

3Blocks takes about 6 minutes(m) per epoch on the G3D-

gaming, and 514m per epoch on the NTU RGB+D. Train-

ing LieNet-2Blocks takes around 122m per epoch on the
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Figure 5. The convergence behavior of the proposed LieNet for the

G3D-Gaming dataset.

HDM05. In testing, the LieNet (i.e., the forward pass)

takes about 3m, 4m and 86m respectively on G3D, HDM05

and NTU RGB+D. Note that, like usual network toolboxes,

the current LieNet can be sped up a lot by implement-

ing a GPU version. Regarding the memory requirement,

LieNet-3Block-G3D, LieNet-2Block-HDM05 and LieNet-

3Blocks-NTURGBD require around 1.2GB, 1.1GB and

1.4GB, respectively.

7. Summary and Future Work

We studied a deep network architecture in the domain of

Lie group features, that is successful for skeleton-based ac-

tion recognition. In order to handle the key issues of speed

variation and high dimensionality of the Lie group features,

we designed special mapping layers and pooling layers to

process the resulting rotation matrices. In addition, we also

exploited logarithm mapping layers to perform Riemannian

computing on the representations, with which regular out-

put layers are supplied in the new network structure. The fi-

nal evaluations on three standard 3D action datasets not only

demonstrated the effectiveness of the proposed network, but

also compared its different configurations. Moreover, we

also showed an interesting visualization for the network,

which somewhat discloses its intrinsic mechanism.

As the proposed network is, to the best of our knowledge,

the first attempt to perform deep learning on Lie groups

for skeleton-based action recognition, there are quite a few

open issues. For example, studying multiple rotation map-

pings per RotMap layer and exploiting a ReLU-like layer in

the context of a Lie group network are worth paying atten-

tion to. Besides, building a deeper network, beginning from

the raw 3D joint locations up to the Lie group features in an

end-to-end learning manner, could be more effective. Last

but not least, encouraged by the success of the deep spatio-

temporal networks [37, 26], exploring the potential of the

proposed network in the temporal setting would also be an

interesting direction.
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