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When Do Expert Teams Fail to Create Impactful 
Inventions?

Simon J. D. Schillebeeckx, Yimin Lin and Gerard George
Singapore Management University

ABSTRACT We investigate the salience of expertise in creating high impact inventions and 
question experts’ ability to deploy novel ideas. Specifically, we examine the relationships be-
tween expertise, component originality, and a team’s structural holes’ position in the collabora-
tive network and propose that, in relative terms, expert teams create lower impact inventions 
if they deploy more original components and if they occupy structural holes. We test and 
confirm our hypotheses in a sample of semiconductor firms. In post-hoc analyses, we find a 
three-way interaction where the negative effect of structural holes almost disappears when an 
expert team experiments with original components whereas an increase in non-redundancy 
is detrimental when teams with high expertise use familiar components. Our findings inform 
a foundational view of the invention process and provide novel insights into the contingent 
benefits of domain expertise.

Keywords: component originality, expertise, inventor teams, patents, structural holes

INTRODUCTION

During their careers, inventors acquire knowledge, make discoveries, develop new ideas, 
and create inventions. In doing so, they develop expertise within and across domains. 
In general, multi-level research findings have established positive effects of expertise 
on invention-related outcomes. For individual actors, experience with specific technol-
ogies or products is positively linked to learning (Christensen et al., 2001; Johnson and 
Russo, 1984), for team actors, experience with patenting positively inf luences the like-
lihood that a patent is a breakthrough invention (Kaplan and Vakili, 2015; Singh and 
Fleming, 2010), for organizational actors, prior experience boosts likelihood of engaging 
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in impactful technology development (Stuart and Podolny, 1996), and for industry ac-
tors, experience with technological components relates positively to the impact of inven-
tions that recombine those components (Fleming, 2001).

Such findings provide support for the so-called ‘foundational view’ which proffers 
that inventing requires the identification of  anomalies or inconsistencies in a knowledge 
domain and that this identification is almost impossible without a foundational under-
standing of  a domain’s underlying assumptions, weaknesses, and strengths (Kaplan and 
Vakili, 2015; Weisberg, 1999). An opposing view of  invention however suggests that 
deep expertise may ‘entrench’ actors into narrow ways of  thinking, limiting creativity, 
and eventually reducing novelty and/or impact (Audia and Goncalo, 2007; Dane, 2010; 
George et al., 2008; Kaplan and Vakili, 2015). This problem may be exacerbated for 
teams, especially if  team members work together on multiple projects because repeated  
prior collaboration may further entrench their ways of  working, limit perspective- 
taking, and reduce creative abrasion, thus undermining the ability to generate truly novel 
ideas (Hoever et al., 2012; Skilton and Dooley, 2010). Given these opposing schools of  
thought, our research questions whether it is possible for there to be too much expertise 
and if  so, whether teams can avoid such competency traps by integrating original ideas in 
their inventions (Siggelkow and Levinthal, 2005)? Our theoretical arguments suggest that 
expert teams underperform when they are strongly exposed to original content, either 
in terms of  the knowledge components they use, or in terms of  non-redundancy in the 
collaboration network. We examine this issue in a sample of  over 40,000 patents of  105 
US semiconductor firms and make three contributions to the literature.

First, we ask whether teams with high domain expertise are better or worse at de-
ploying original knowledge components, a form of  exploration, than teams with less 
expertise. While some have claimed that ‘near consensus exists on the need for balance’ 
between explorative and exploitative search (Gupta et al., 2006, p. 967), the entrench-
ment view stipulates that distant search is needed to break out of  the narrow trenches of  
expertise and avoid competency traps (Leonard-Barton, 1992; Siggelkow and Levinthal, 
2005). For instance, Jung and Lee (2016) established a strong link between original search 
and invention impact. The foundational view on the other hand posits that local search, 
through its strong relation with the likelihood of  cognitive breakthroughs, positively af-
fects invention impact (Kaplan and Vakili, 2015). Unlike Jung and Lee (2016), we find 
a negative effect of  knowledge originality and postulate that teams with high domain 
expertise benefit less from using original knowledge than teams with less expertise. Our 
findings confirm this hypothesis.

Our second contribution establishes non-redundancy in the social network as a bound-
ary condition for expertise’s effect on invention impact. In doing so, we contribute to a 
growing literature on the contingent effects of  inventor networks on invention outcomes 
(Guan and Liu, 2016; Paruchuri and Awate, 2017; Wang et al., 2014). We investigate 
how a team’s structural holes’ position in the inventor network influences the contribu-
tion of  expertise to the generation of  impactful inventions. While such a position has 
typically been found to boost search and exploration, its effect on invention impact is less 
clear-cut (Ahuja, 2000; Guan and Liu, 2016). Stepping away from the purely ‘structural-
ist’ perspective (Carnabuci and Diószegi, 2015), we proffer that structural holes may be 
considered substitutes for domain expertise, consequently we anticipate an antagonistic 
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relationship between both predictors (Andersson et al., 2014), which is confirmed in our 
findings.

A third contribution stems from a post-hoc analysis that focuses on how both con-
tingencies interact. Because both original components and structural holes can be in-
terpreted as sources of  novelty, it may be so that combining them imposes excessive 
cognitive difficulty on teams, making them substitutes, or that they can complement one 
another, e.g., when a non-redundant prior collaborator can help illuminate the use cases 
of  an original knowledge component. We find empirical evidence of  this three-way in-
teraction and discuss how this finding adds boundary conditions to our focal hypotheses. 
Expert teams that are connected to non-redundant ties in the social network and use 
highly original components significantly underperform those that are either less con-
nected or those that use more familiar components. Overall, expert teams that use famil-
iar components and are not connected to non-redundant ties create the highest impact 
inventions. As such, our paper provides strong support for the foundational view that sees 
creativity and successful invention as processes that require both high levels of  expertise 
and a within-domain search focus, rather than as an outcome of  boundary-spanning, 
multi-disciplinary search.

THEORETICAL BACKGROUND

Through a combination of deliberate practice, implicit and explicit learning, inventors 
amass significant knowledge in a domain. Accumulating such knowledge takes time 
and is susceptible to time compression diseconomies, which makes it valuable and hard 
to imitate (Barney, 1991; Dierickx and Cool, 1989). Once sufficient knowledge in a 
particular domain is mastered, we can say the inventor has become an expert and her 
expertise, defined as ‘a high level of domain-specific knowledge acquired through expe-
rience’, sets her apart from others (Dane, 2010, p. 580). Domain experts have a broad 
knowledge scope, in terms of the quantity of diverse components within a focal domain 
that they master, and have an in-depth understanding of the variety of ways and the in-
tensity with which these components are interlinked (Dane, 2010). But scope alone is not 
enough for true expertise, for inventors to be truly successful, they also require signifi-
cant knowledge depth (Boh et al., 2014). By combining deep and broad knowledge, ex-
pertise underpins absorptive capacity and architectural competence that enable teams 
to recombine components to achieve inventive success (Henderson and Clark, 1990). 
Given these strengths of domain expertise, we question whether there are constraints to 
experts’ abilities to recombine knowledge components into impactful inventions.

Specifically, because novelty creation is essential to the inventive process, our focal re-
search question asks whether expert teams are better or worse at turning original knowl-
edge into successful inventions. Because firms, teams, and inventors are embedded in 
collaborative and knowledge component networks within which they search for ideas 
and solutions to problems (Guan and Liu, 2016; Kotha et al., 2013; Wang et al., 2014), 
we conceive of  original knowledge in two complementary ways: original knowledge 
components taken from the knowledge component network, and original ideas accessed 
through their structurally advantageous position in the collaboration network. Teams 
can focus on reusing familiar components that are well-understood in the industry and 
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for which each new use case creates new information flows and enhances the recombi-
natorial potential (Fleming and Sorenson, 2001; Kok et al., 2018). Alternatively, they can 
engage in more distant search and deploy original components, thereby introducing new 
ideas to the industry which could boost impact as well (Kaplan and Vakili, 2015). Within 
the social network, teams can occupy more or less advantageous positions. Burt (2004) 
stipulated that actors in structural hole positions are better positioned for good ideas 
but they might struggle with the implementation of  those ideas, what Obstfeld (2005) 
referred to as the action problem of  structural holes. We ground our theory in the foun-
dational view and develop hypotheses on conditions when expert teams fail to generate 
impactful inventions.

HYPOTHESES

Team domain expertise captures the domain knowledge that team members ac-
quire during their inventive history. Knowledge is organized in the form of schemas. 
Compared to novices, experts have larger schemas consisting of more domain-specific 
knowledge components as well as a stronger relationships between those components 
(Dane, 2010). Expertise thus implies a historically built-up knowledge stock and cogni-
tive structure in which inventors can look for previously deployed and developed ideas 
and reuse them. It is generally easier to invent within a familiar domain, as these in-
ventions fit into existing cognitive structures and can leverage established channels of 
communication (Normann, 1971; Zander and Kogut, 1995). An expert inventor can 
then recycle mechanical representations and concepts because a ‘creative technologist 
possesses a mental set of stock solutions from which he draws in addressing problems’ 
( Jenkins, in Gorman et al., 1990, p. 141). The path-dependent nature of intra-domain 
knowledge accumulation (Dierickx and Cool, 1989) and the unique rules and heuristics 
by which the firm interacts with the knowledge domain (Normann, 1971) are valuable, 
rare, and hard to imitate, creating a potential advantage (Barney, 1991).

More experienced inventors have knowledge schemas that more accurately reflect (a 
part of) the knowledge landscape, making it easier to locate new knowledge in the vicin-
ity of  their own idiosyncratic existing knowledge. Expertise helps inventors create new 
knowledge and to create new recombinations and this requires both an in-depth under-
standing of  the focal domain as well as significant breadth within this domain which 
exposes inventors to new ideas that can be meaningfully integrated (Boh et al., 2014).

High expertise is also associated with a reduction in the probability of  making mistakes 
in the selection of  components or combinations (Fleming, 2001; Levinthal and March, 
1981). Moreover, because expertise improves understanding about which components 
are tightly coupled, experts have a lower risk of  making mistakes in the recombination 
of  those components or combination, thus reducing experimentation failure (Katila and 
Ahuja, 2002; Yayavaram and Chen, 2015). Expert teams heightened abilities in finding, 
selecting, and recombining components (or their combinations) are the essence of  ab-
sorptive capacity, the ability to recognize, assimilate, and apply new external knowledge 
(Zahra and George, 2002; Zou et al., 2018), which in turn is susceptible to time compres-
sion diseconomies, making it both valuable and hard to substitute (Dierickx and Cool, 
1989).
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In addition, more knowledgeable inventors have a better perspective on what is re-
quired to create a successful product. They know the necessary steps and can envision 
plausible solutions thanks to a forward-thinking orientation (Dane, 2010). This enables 
expert teams to decompose a problem set into more manageable problems that can be 
worked on in parallel or in an efficient sequence (Eisenhardt and Tabrizi, 1995). This 
capacity to envision a future invention during the invention process is rooted in the actor’s 
position in the knowledge landscape. Each position is idiosyncratic and provides a unique 
vantage point, a platform for future inventive activity. Inventors or teams with more ex-
pertise have access to more diverse knowledge components, each of  which forms a possi-
ble stepping stone from which to start another invention process. Thus, teams that invent 
in domains in which they have high expertise are likely to see unique opportunities: ‘The 
more distinctive the view, the more likely that such a view can encompass valuable op-
portunities not similarly visible to other firms – implying at least a temporary advantage 
for the firm that identifies the opportunity’ (Denrell et al., 2003, p. 988).

Yet, expertise has potential downsides. Dane (2010) argues a trade-off  exists between 
expertise and flexibility because experts may become cognitively entrenched in specific 
schemas and ways of  thinking that reduce their ability to come up with creative solutions. 
In addition, high experience in one domain may result in core rigidities and induce teams 
to rely on historically established ideas and routines, thereby decreasing their chances 
of  novelty and impact (Audia and Goncalo, 2007; Leonard-Barton, 1992; Singh and 
Fleming, 2010). Also, while Boh et al. (2014) find that the combination of  breadth and 
depth has a very small negative influence on impact generation, we believe this is more 
likely to hold at the individual than at the team level, because teams can consist of  gen-
eralists and specialists, rather than their elusive ‘polymaths’, and thus benefit from the 
best of  both worlds. Also, given that technological domains are broad and malleable 
knowledge areas that are continually being reinvented, not only by inventors but also 
by patent officers who can assign new inventions to existing domains by broadening the 
domain’s boundaries, it is unlikely that individual inventors will ever reach domain satu-
ration, suggesting that the recombinant potential of  extant knowledge need not decrease 
over time (Fleming and Sorenson, 2001). This is because new inventions not only take up 
space within a domain but also enlarge it, creating new possibilities for invention through 
further recombination (Normann, 1971). Because of  the combined benefits of  the ac-
cumulated knowledge stock, the superior ability to find, select, and use components, the 
ability to envision objectives clearly, and because knowledge breadth and depth need not 
be embodied in a single inventor when considering team expertise, we propose that:

Hypothesis 1: Team domain expertise exhibits a positive relationship with invention 
impact

Domain expertise and component originality

Knowledge components that have been used frequently are more reliable (Fleming, 
2001). They have gone through extensive testing and verification which makes them 
useful to actors with sufficient absorptive capacity to understand and deploy them (Zou 
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et al., 2018), such that teams with high domain expertise should have a natural advan-
tage when reusing them. Due to the path dependent nature of knowledge accumulation 
(Nelson and Winter, 1982), teams with strong domain expertise are likely to be well 
aware of how knowledge components can be used and have been used before. If they 
rely on components that have been used extensively in the industry, they are engaging 
in a form of local search by reusing components with an established track record. This 
reduces the risk of experimentation and increases the chances of success. Kaplan and 
Vakili (2015) have found that local search leads to cognitive novelty which in turn leads 
to impact. For expert teams, engaging in local search requires sticking to what they 
know best and thus using common knowledge components.

Yet, it is possible that frequently used components edge closer to a technological fron-
tier and thus have a lower recombination potential (Dosi, 1982). This would diminish the 
probability of  detecting novel and impactful combinations, simply because there is less 
novelty to detect (Galunic and Rodan, 1998). Such a view aligns with the entrenchment 
effect of  invention which suggests that search beyond the familiar helps firms overcome 
path dependency (Ahuja and Katila, 2001; Rosenkopf  and Nerkar, 2001). However, 
other authors have proposed that with every component recombination, new informa-
tion flows emerge that actually broaden the future recombination potential (Katila and 
Chen, 2008). If  it is indeed true that prior recombination increases the potential for 
future recombination opportunities (Yang et al., 2010), expert teams’ superior absorptive 
capacity should enhance their ability to learn from these new information flows and 
their higher architectural competence, rooted in past experimentation and learning from 
failure, should improve their ability to recombine familiar components. One could think 
of  the new information embedded in each component recombination as having public 
good characteristics. It is only through the complementarity between that public good 
and expertise that teams can synergistically use these knowledge flows to achieve superior 
impact. Non domain-experts and novices would thus be at a disadvantage.

Even if  a higher incidence of  past recombination reduces the future recombination 
potential (Dosi, 1982; Galunic and Rodan, 1998), teams with high domain expertise 
should be less susceptible to these dynamics, because their position in the technologi-
cal landscape gives them a unique perspective on the latent recombinative possibilities, 
enhancing their chances of  discovering even narrow pathways to high peaks (Fleming 
and Sorenson, 2004). In addition, even if  the technological potential of  components 
decreases with increased use (Dosi, 1982), the process of  historical component selection 
is not random such that frequently used components are likely to have inherently higher 
recombination potential. Capaldo et al. (2017) therefore state that components that have 
not been taken up by the industry are likely to have lower technological applicability.

As expertise increases, the relative benefit of  deploying commonly used components 
goes up because more experienced teams are also more likely to be familiar with these 
components that have been used before in the industry. This benefit however disappears 
when expert teams deploy original components which are generally as unfamiliar to 
them as they are to inexperienced teams. Finally, we have also acknowledged that exper-
tise may have a downside, especially because it may reduce flexibility and impose mental 
blockades, which may make experts less receptive to new ideas. This cognitive entrench-
ment may drive expert teams to deploy tried and tested schemas when using original 
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components even if  they are poorly suited for the novel knowledge (Audia and Goncalo, 
2007; Dane, 2010). Non-expert teams should not have these problems and therefore 
should be relatively better at deploying original knowledge. In line with the foundational 
view (Kaplan and Vakili, 2015), these arguments lead to the following hypothesis:

Hypothesis 2: The positive effect of team domain expertise on invention impact is neg-
atively moderated by component originality such that experienced teams create lower 
impact inventions when they recombine original components.

Social network position: the downside of structural holes

Knowledge creation is inf luenced by the composition and structure of collaborative 
networks (Schilling and Phelps, 2007) within which individuals, teams, or firms can 
take up positions that are associated with diverging performance (Savino et al., 2017). 
Like original components, structural holes are associated with access to information and 
could provide an alternative source of novelty that improves recombination potential 
(Burt, 2004; Schillebeeckx et al., 2019). Two complementary explanations drive this 
effect. First non-redundant ties could facilitate early access to novel information and 
dynamic, tacit, transient, and social knowledge such that the team may have an advan-
tage in learning about recent developments and trends, and may know more about the 
distribution of knowledge within the inventor community (i.e., who knows what) (Wang 
et al., 2014). Secondly, researchers whose social networks are rich in structural holes 
may have more autonomy during their inventive activities because they are typically able 
to work free from interference (Burt, 1992, 2004; Guan and Liu, 2016).

While recent work has established a positive relation between structural holes and various 
invention-related outcomes (Guan and Liu, 2016; Paruchuri and Awate, 2017; Wang et al.,  
2014), these authors have so far not yet investigated the influence of  invention impact. 
Moreover, Ahuja (2000) established a negative relation between a firm’s structural holes 
and its inventive output, leading to further questions about the causal logic. Furthermore, 
most network studies remain agnostic about the quality of  the node, evidencing a lack of  
synthesis between attribute and relation-based approaches to the team-performance rela-
tionship (Balkundi and Harrison, 2006). While collaborative ties are ‘conduits for the flow 
of  interpersonal resources’ (Balkundi and Harrison, 2006, p. 50), the provenance of  these 
interpersonal resources that can flow through ties is often ignored. Rodan and Galunic 
(2004) for instance argue that it is essential to consider ‘the knowledge held by actors in 
the network’ above and beyond the structure itself. While the connectionist perspective 
presumes that the ability of  an actor to succeed in some endeavour ‘is a function of  the 
quality and quantity of  resources controlled by the actor’s alters’ (Borgatti and Foster, 
2003, p. 1004), we would be remiss to ignore the resources controlled by the focal actor.

Thus, if  we consider the ego to be a team with high domain expertise, non-redundant 
ties may add limited value in the form of  knowledge access because the team already has 
direct access to unique knowledge from its members. Also teams of  domain experts tend 
to receive autonomy within their organizations by virtue of  their expertise, irrespective 
of  their social network position. In addition, recent findings suggest that individuals with 



1080 S. J. D. Schillebeeckx et al. 

© 2019 The Authors. Journal of Management Studies published by Society for the Advancement of Managment Studies 
and John Wiley & Sons Ltd.

an invention-oriented cognitive style do not benefit from their structural hole position 
(Carnabuci and Diószegi, 2015). While experts do not know everything, one can ques-
tion whether the added value of  information provided by non-redundant ties can reliably 
lead to high impact inventions? Wang et al. (2014) for instance fail to confirm that a 
structural holes’ position in the collaboration network improves researcher productivity, 
suggesting that the information provided may not be actionable.

In this light, Obstfeld (2005) suggested that while structural holes represent an oppor-
tunity structure for idea generation, they may create an action problem as well, making 
harder to mobilize resources and turn an idea into a successful invention. This problem 
may be particularly salient for expert teams for two reasons. First, expert teams are likely 
to be constrained by mental models and schemas that determine their way of  think-
ing about specific problems. Because individuals work within cognitive frames, they are 
bound to think about problems along relatively consistent lines, forcing them into local 
search habits and limiting exploration (March, 1991). Access to diverging information 
may then create some form of  cognitive dissonance that experts fail to resolve in the 
recombinatorial process. In addition, expert teams have worked along a specific tech-
nological trajectory, developing their expertise over time. This creates expectations of  
continuity within the firm, making it easy for experts to mobilize resources, but only if  
they stick to what they know.

Finally, at the impact side, structural holes in the collaboration network could facilitate 
idea diffusion which heightens the probability of  receiving more attention. However, social 
attention can also be driven by expertise rather than by network structure. Put differently, 
the attention network can be much thicker than the collaboration network, making the 
latter largely redundant in terms of  idea diffusion, and this effect is likely to increase with 
expertise. On the other hand, being connected, even indirectly, to others may increase the 
network’s reliance on you, especially if  you are an expert. This may divert attention away 
from your own inventive work, leading to lower quality and eventually lower impact.

Thus, as team expertise increases, the commonly cited benefits of  structural holes’ 
non-redundancy in the collaboration network – access to novel, often tacit, information, 
structural autonomy, and increased diffusion of  ideas – may be respectively redundant 
and distracting, driven by expertise rather than the collaboration network, and embedded 
in a much thicker attention network. We therefore anticipate an ‘antagonistic interaction’ 
where both predictor and moderator are assumed to contribute to impact but their inter-
action is in the opposite direction (see Andersson et al., 2014). This leads us to propose:

Hypothesis 3: The positive effect of team domain expertise on invention impact is neg-
atively moderated by the team’s structural holes’ position in the collaboration network 
such that expert teams create lower impact inventions when they have access to more 
diverse non-redundant ties.

DATA AND METHODS

We envisage invention as the end result of a problem-solving exercise conducted by an 
inventor or, more commonly, a team of inventors (Wuchty et al., 2007). A patent is a 
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formal representation of an externally validated and novel solution to a problem and 
therefore is a useful proxy for successful inventive activity (Katila, 2002; Walker, 1995). 
Patent documents provide ‘a reasonably complete description of the invention’ which 
makes them especially useful in answering research questions around the antecedents of 
inventive success (Griliches, 1998, p. 291). Patent examiners assign technological classes 
and subclasses to each invention and these serve as fine-grained identifications of the 
technological domains within which the invention is situated. A number of prior studies 
has used patent subclasses as proxies for experience, recombination of technological com-
ponents, and the relationships between various technological domains (Carnabuci and 
Operti, 2013; Fleming, 2001; Fleming and Sorenson, 2001, 2004; Schillebeeckx et al.,  
2019; Sorenson et al., 2006). In line with these and many other patent studies, we will 
use the rich information captured in patents to proxy technological domains (patent 
classifications), knowledge components and their age (prior art citations and their grant 
dates), impact (received forward citations), and team information.

The empirical setting for this study is the US semiconductor industry. We chose a sin-
gle industry because dominant paradigms of  ‘things that work’ are likely to exist within 
the same industry but differ across industries such that using multiple industries could 
have caused unrelated variation (Kaplan and Vakili, 2015). In comparison to other in-
dustries, US semiconductor firms have been noted to have exceptionally high invention 
rates, as well has high propensities to patent most of  these inventions, especially since 
the 1980s (Hall and Ziedonis, 2001; Schillebeeckx et al., 2019; Stuart, 2000). Therefore, 
patents serve as an appropriate proxy for invention in this context.

Data Sources

We began by combining the list of US semiconductor firms used in Hall and Ziedonis 
(2001) with all other US semiconductor firms that are available via COMPUSTAT (SIC 
code = 3674). This additional source was required since Hall and Ziedonis (2001) only 
consider firms which were active between 1975 and 1995, whereas our data extends to 
2004, and our forward citations to 2015. To ensure that no major semiconductor firm was 
left out of our dataset, we supplemented our list with those firms listed on the annual pub-
lication by iSuppli Corporation which ranks semiconductor firms (Schillebeeckx et al.,  
2019). Following these methods, we compiled a list of 171 US semiconductor firms, all 
of which have a COMPUSTAT record. We limited ourselves to US firms to avoid vari-
ation in institutional context and patenting behaviour, which would have been hard to 
control for in a meaningful way (Alnuaimi and George, 2016).

Next, we retrieved the patents assigned to these firms by comparing our list of  171 
firms to the 247,309 assignees that were granted a USPTO patent during the time- 
period 1975–2008. A simple name-matching algorithm would have not been accurate 
because of  the various ways in which many firms are named on a patent document. 
For example, the firm’s name may appear in full or as an acronym, or a subsidiary. To 
ensure that each firm’s patents were aggregated as accurately as possible, first, we used 
the unique numerical identifiers1  available from the NBER patent project which groups 
unique firms. Then, we used the Directory of  American Firms Operating in Foreign 
Countries, which lists each variation in the names of  the subsidiaries associated with US 
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firms. These variations were compared against the 247,309 assignees that were granted 
a USPTO patent during the time period spanning 1975 and 2008.

We excluded patents that were applied for after 2004 to avoid right censoring of  the 
forward citation data. Thus, our main sample spanned the time period 1975 and 2004, 
and contained 92,252 patents assigned to 159 firms. It is notable that inventive activity 
was rather slow for these firms in the first 15 years as 83,786 patents were applied for 
since 1990. We therefore chose to build our sample using only the 1990–2004 period, 
which is useful because it excludes exogenous variation following a number of  important 
institutional changes in the 1980s (Hall and Ziedonis, 2001; Mody and Wheeler, 1986). 
Because we require team historical information to measure experience, our focal sample 
is limited to the 2000–04 period, which gives us 10 years of  historical data about firm 
inventions. The number of  patents in the five-year period is 40,138.

Dependent Variable

Invention impact. We define the impact as the number of forward citations received by 
the focal patent during a ten-year period following its application date. Hence, for a 
patent applied for on 17/08/2000, we measure all forward citations until 17/08/2010. 
Forward citations have been shown to be correlated with the economic importance of 
inventions and expert evaluation of their value (Albert et al., 1991; Hall et al., 2005; Jaffe 
et al., 2002), making them an appropriate and frequently used measure of impact. Using 
a sliding ten year window improves comparability of the results as citation frequency 
tends to decrease over time. E.g. for patents applied for in 2000, the average number of 
citations in the first five years is 6.51. This goes up to 12.02 if we extend the window to 
ten years and then further rises to only 14.04 if we extend the window until 2015.

Explanatory Variables

Team Domain Experience (TDE) captures the experience of each individual team member 
in the four digit CPC subclasses to which the focal invention is assigned. Our sample 
contains 448 distinct four digit CPC subclasses, while there are a total of 705 such sub-
classes (Leydesdorff et al., 2017).2  The most frequently occurring one is H01L ‘semicon-
ductor devices; electric solid state devices not otherwise provided for’. The second most 
used class is G06F ‘electric digital data processing’. We follow Fleming and co-authors 
(Fleming, 2001; Fleming and Sorenson, 2004; Fleming et al., 2007; Singh and Fleming, 
2010) in arguing that patent classifications are appropriate measures for technological 
combinations. Classifications are assigned by the USPTO ‘thus, unlike patent citations, 
they are not biased by firms’ strategic considerations’ (Carnabuci and Operti, 2013, p. 
ev. 9). We create a measure that considers depth, breadth, and domain relevance and 
operationalize a domain as a subclass in the cooperative classification, e.g., H01L.

The depth of  inventor experience in a subclass is the number of  patents assigned to 
that subclass in the inventor’s portfolio (pit). For a specific subclass (e.g., H01L) it can thus 
range from zero (inventor has never patented in this class before) to the number of  pat-
ents the inventor has applied for before (if  every single one of  them is assigned to H01L). 
The breadth of  knowledge is the number of  different subgroups within a subclass in 
which a focal inventor has invented during her invention history (sit). If  an inventor has 
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only one prior patent and this one is assigned to five distinct subgroups within a subclass 
of  H01L, the breadth count will thus be 5. Finally, we determine the relevance of  this 
domain experience to the focal invention as the fraction of  subclasses of  the focal patent 
that are within CPCi = fi). This measure is summed across all CPCi classes (k) to which 
the focal patent is assigned and then aggregated for all team members (t). Because exper-
tise builds up over time and is susceptible to time compression diseconomies (Dierickx 
and Cool, 1989), we chose to include all inventor knowledge in our extended sample, 
so going back to 1975 and until the day before the focal patent application. To reduce 
skewness we use the natural logarithm in the regression.

As an example, consider the Corning (now Dow Silicones Corp) patent US6177071B1, 
which is assigned to three inventors (Lin, Schulz, and Smith) and has eight different clas-
sifications. Of  those eight, five are within A61K (preparations for medical, dental, or 
toilet purposes) and three are within A61Q (specific use of  cosmetics or similar toilet 
preparations). If  we assume, Lin has 10 patents assigned to A61K (depth) for a total of  
17 distinct groups (breadth) and 0 expertise in A61Q, his domain expertise would be 5/8 
* √(10 * 17). Assume Schulz has only expertise in different areas his domain expertise be 
zero. Then, consider that Smith has two prior patents in A61K (with a breadth of  seven) 
and six prior patents in A61Q with a total breadth of  four. Her domain expertise would 
then be 5/8 * √(2 * 7) + 3/8 * √(6 * 4). The team’s domain expertise would then be cal-
culated as ln[1 + 5/8 * (√(170) + 0 + √(14)) + 3/8 * (0 + 0 + √(24)] = 2.589.

Component Originality (CO). The limitations of  using prior art citations are well known. Many 
of  them are added by the USPTO which makes them poor proxies for direct knowledge 
transfers (Alcacer and Gittelman, 2006; Alcacer et al., 2009; Giuri et al., 2007). But, 
because prior art chiefly serves to demarcate ownership of  previous inventions, they are a 
useful proxy for the components upon which a focal patent implicitly or explicitly builds. 
We measure the average number of  times a prior art citation has been cited before in the 
industry by counting its incidence between 1975 when our database starts and the focal 
patent’s application date.  Component originality then equals CO = 1 / (count + 1).

Team Structural Hole Position (TSH). Using a static, undirected network of collaborative 
ties between inventors in the 1990–99 period, we determine team structural holes as the 
aggregated structural holes’ value of each team member. Following Burt (2004), we first 
calculate the node constraint value for each team member in the collaboration network 
and then determine the structural holes’ value for each node as two minus the constraint 
value. The average of this value per team is then used as the structural holes value. The 

node’s constraint value C is determined by Ci =
∑

j∈EGi�{i}

�

pij +
∑

q∈EGi�{i ,j}
piqpqj

�2

 

and ~ pij =
aij+aji

∑

k∈EGi �{i}
(aik+aki)

, where EG is node i’s ego network, and ‘a’ is the weight 

of an edge, i.e., the number of prior collaborations of two inventors in the 10-year 
collaboration network.

Team domain experience (TDE )= ln
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Control Variables

We add controls at the firm, team, and patent level to capture different sources of variance 
that help explain invention impact. At the firm level, we control for size (# employees /  
1,000), debt/asset ratio (annual firm liabilities / firm assets), absorptive capacity (annual R&D 
spending/ annual sales), search (# subclasses / # 4-digit CPC classes of firm invention 
portfolio in five years before focal patent application year), and mean inventor productivity 
(firm’s total patent count divided by number of different patenting inventors in prior 
5 years). We used the inventor database, which identifies unique USPTO inventors and 
matches them to their respective patents (Lai et al., 2011), to create this last variable.

At the team level, we control for team size because patents developed by larger teams 
composed typically receive more forward citations, as size correlated with knowledge 
breadth and diversity, which enhance the usefulness of  inventions (Singh and Fleming, 
2010). We control for non-domain experience, which is construed in the same way as domain 
experience but then for all CPCi classes in which the team members have invented before 
that are not assigned to the focal patent. We add further controls for the number of  first 
time inventors because new team members lack experience but could bring in fresh ideas, 
the number of  non-directional prior direct ties between the team members and their collabo-
rators in the five years before the application date, and the team’s collaboration experience in 
the prior five years. We operationalized the latter as the sum of  direct and indirect prior 
ties among team members, with all direct ties weighted twice as strongly as indirect ties. 
Finally, we add a control for the aggregate structural holes value for the team’s inventors’ 
knowledge components (defined as 4-digit CPC classes).

Then, at the patent level, we control for the number of  claims, prior art citations, 
subclasses and 4-digit CPC classes which have all been found to positively correlate with 
invention impact (Fleming and Sorenson, 2001; Stuart and Podolny, 1996). In addition, 
we add a count variable for the number of  4-digit CPC classes that occur for a first time 
in our sample which suggests teams bridging into unfamiliar knowledge domains.

We use the same approach used to determine component originality to construct a 
standard-normalized measure for the average age gap (in days) between the focal pat-
ent’s priority dates and the priority dates of  the prior art citations. Unlike Nerkar (2003), 
we use priority dates rather than grant dates as these are more proximate to the time 
during which the inventive activity took place and during which the knowledge was 
novel. Component age (CA) is an important control because even a standardized measure 
of  component originality, grouped by application year, is still not independent of  the 
relative age of  the cited art because more recent backward citations have had less time to 
be cited. We also control for the age variation of  the prior art by controlling for the time 
spread in days between the 75th and the 25th quantile of  the prior art citations, divided by 
365. We prefer this measure over the standard deviation because of  the lower correlation 
with component age.

We added technology dummies for six technological categories Hall et al. (2001), because 
the number of  citations received by patents may differ across technological fields (Hall 
et al., 2005). However, none of  these dummies were significant so we omitted them from 
the analysis regression. Finally, we control for the age profile of  the patent by including 
dummies for both application and grant year. We also add a variable that measures the 
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time difference in years between the application and the priority date of  the focal patent 
because this suggests that the patent has probably been applied for before in another 
jurisdiction, meaning its anteceding patent may have absorbed some forward citations 
already.

Analysis

Most patent research uses negative binomial (NB) regressions in Stata to analyse count 
data because invention impact (proxied by a count of forward citation) tends to be highly 
skewed leading to overdispersion (mean impact << standard deviation impact). In our 
sample, overdispersion is moderate (µ = 9.71, σ = 14.48), suggesting Poisson regression 
may be more efficient. Using xtnbreg in Stata comes at the price of lower robustness, as 
unconditional fixed effects and clustering of standard errors around the firm identifier 
are problematic, which is not the case for the Poisson regression. We therefore present 
the conventional Negative Binomial and perform robustness checks using other regres-
sion techniques. We deploy a Hausman (1978) specification test which was significant 
(p < 0.001), suggesting that fixed effects are required. This confirms the suspicion that 
some of our independent variables are likely to be correlated with the individual effects. 
To check for collinearity, we ran an OLS regression without indicator variables, qua-
dratic terms, and interactions as they artificially inf late the variance inf lation factors 
(Allison, 2012). Two strongly correlated control variables (firm search and firm mean 
inventor productivity) have VIF above 4 (Wooldridge, 2014). We checked the stability of 
their sign and significance by excluding either one, both, or none, and found the results 
to be entirely consistent, so we chose to leave in both variables.

RESULTS

Descriptive statistics and correlations are displayed in Table I. Despite some high cor-
relation coefficients, multicollinearity should not be problematic as the variance inf la-
tion factors were low enough (Wooldridge, 2014). Table II presents a stepwise inclusion of 
the variables to investigate potential spurious effects or sign shifts. Column 1 in Table II  
contains only the control variables. A team’s non-domain expertise and the team’s  
position in the knowledge network are both insignificant. We report three decimals in 
the text (to provide additional detail) and two decimals in the table. Team collabora-
tion experience has a positive effect (β = 0.003, σ = 0.001) and so do patent technical 
breadth (both patent subclasses and the number of distinct 4-digit CPC classes have a 
positive effect), number of claims (β = 0.005, σ = 0.000) and search breadth in terms of 
prior art citations (β = 0.002, σ = 0.000). We also see a strong negative coefficient for 
average component age (β = −0.090, σ = 0.008) suggesting that more recent knowledge 
components are associated with higher impact. However, inventions that span temporal 
boundaries correlate positively with impact (β = 0.007, σ = 0.002). The effect of the 
time gap between application and priority year is significantly negative (β = −0.051, 
σ = 0.004) as anticipated.

Model 2 introduces the focal variables and finds a strong positive coefficient for team 
domain expertise (β = 0.018, σ = 0.004) which supports hypothesis 1. As expected, teams 



1086 S. J. D. Schillebeeckx et al. 

© 2019 The Authors. Journal of Management Studies published by Society for the Advancement of Managment Studies 
and John Wiley & Sons Ltd.

T
ab

le
 I

. C
or

re
la

tio
n 

m
at

ri
x 

an
d 

de
sc

ri
pt

iv
e 

st
at

is
tic

s

M
ea

n
SE

M
in

M
ax

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23

1
Im

pa
ct

9.
77

14
.5

3
0

38
3

2
Im

pa
ct

 S
N

0
0.

76
−

0.
8

3
0.

88

3
T

D
E

2.
03

1.
69

0
6.

88
0.

07
0.

07

4
T

SH
1.

13
0.

65
0

1.
95

0.
02

0.
02

0.
58

5
C

O
0.

32
0.

27
0

1
−

0.
05

−
0.

05
−

0.
31

−
0.

3

6
C

om
p 

ag
e

0
0.

89
−

2.
36

3.
49

−
0.

06
−

0.
06

−
0.

12
−

0.
04

−
0.

11

7
F

ir
m

 s
iz

e
29

.6
29

.1
8

0
86

.1
−

0.
03

−
0.

04
−

0.
07

−
0.

04
0.

17
−

0.
08

8
F

ir
m

 a
ca

p
0.

2
0.

22
0

6.
31

0
0.

01
−

0.
07

−
0.

06
−

0.
02

−
0.

01
−

0.
22

9
F

ir
m

 D
/A

0.
04

0.
08

0
4.

2
−

0.
02

−
0.

02
0.

1
0.

05
−

0.
03

0.
01

−
0.

12
0.

08

10
F

ir
m

 s
ea

rc
h

17
2

13
1.

1
0.

5
58

9.
5

−
0.

02
−

0.
04

0.
37

0.
27

−
0.

3
−

0.
04

0.
07

−
0.

05
0.

16

11
F

ir
m

 in
v 

pr
od

3
2.

59
0.

17
9.

41
−

0.
01

−
0.

03
0.

39
0.

31
−

0.
39

0
−

0.
23

−
0.

06
0.

15
0.

86

12
T

ea
m

 s
iz

e
2.

3
1.

5
1

19
0.

06
0.

07
0.

28
0.

05
0

−
0.

03
0.

02
−

0.
01

0
−

0.
13

−
0.

14

13
N

on
-d

om
ai

n 
ex

p
1.

17
0.

9
0

5.
15

0.
03

0.
04

0.
65

0.
55

−
0.

19
−

0.
05

−
0.

05
−

0.
04

0.
06

0.
32

0.
34

0.
36

14
K

N
 s

tr
. h

ol
e

1.
44

0.
52

0
1.

91
0.

02
0.

02
0.

35
0.

61
−

0.
22

−
0.

02
−

0.
07

−
0.

01
0.

03
0.

17
0.

21
−

0.
04

0.
34

15
#

 1
st

 t
im

er
s

0.
56

0.
94

0
12

0.
01

0.
01

−
0.

34
−

0.
47

0.
14

0.
04

0.
01

0.
03

−
0.

03
−

0.
21

−
0.

21
0.

44
−

0.
33

−
0.

48

16
C

ol
la

bo
ra

ti
on

 
ex

p.
15

.5
25

.5
8

0
56

1
0.

04
0.

05
0.

59
0.

41
−

0.
13

−
0.

09
−

0.
05

−
0.

03
0.

07
0.

09
0.

1
0.

51
0.

59
0.

18
−

0.
17

17
T

ea
m

 c
ol

 e
xp

.
15

.3
47

.8
1

0
63

5
0.

01
0.

01
0.

3
0.

24
−

0.
19

0.
03

−
0.

09
−

0.
03

0.
07

0.
3

0.
35

−
0.

2
0.

25
0.

12
−

0.
17

0.
05

18
Pa

t c
la

ss
es

5.
76

7.
67

1
15

6
0.

11
0.

11
0.

21
0.

1
−

0.
16

0.
03

−
0.

06
0

0.
06

0.
15

0.
14

0.
04

0.
07

0.
06

0.
02

0.
04

0.
12

19
#

 d
if

. C
P

C
1.

52
0.

86
1

14
0.

04
0.

04
−

0.
05

0.
03

−
0.

01
0.

1
−

0.
03

0.
01

0.
03

0.
04

0.
05

0.
02

0.
01

0.
02

0.
04

−
0.

01
0.

05
0.

35

20
#

 1
st

 C
P

C
0

0.
05

0
6

0
0

−
0.

02
−

0.
01

0.
02

0.
04

0.
01

−
0.

01
0

−
0.

01
−

0.
01

0.
01

0
−

0.
01

0.
01

−
0.

01
−

0.
01

0.
01

0.
04

21
#

 p
ri

or
 a

rt
17

.4
29

.1
3

0
52

5
0.

05
0.

07
0.

16
0.

11
−

0.
28

0.
18

−
0.

06
−

0.
01

0.
04

0.
2

0.
23

0.
05

0.
11

0.
08

0.
01

0.
04

0.
18

0.
19

0.
09

0

22
#

 c
la

im
s

22
.3

15
.5

9
1

41
8

0.
09

0.
11

0.
06

0
−

0.
07

−
0.

02
−

0.
06

0.
05

0.
02

0.
16

0.
18

0.
01

0.
08

0.
01

−
0.

01
0

0.
05

0.
02

0.
02

0
0.

11

23
ap

p-
pr

io
r 

ye
ar

1
1.

59
0

14
−

0.
05

−
0.

06
0.

13
0.

29
−

0.
33

0.
13

−
0.

12
−

0.
03

0.
04

0.
17

0.
32

−
0.

01
0.

1
0.

2
0.

01
−

0.
02

0.
22

0.
21

0.
15

0
0.

2
−

0.
07

24
C

om
p 

ag
e 

sp
re

ad
4.

48
3.

84
0

74
.9

2
−

0.
04

−
0.

04
−

0.
1

−
0.

05
−

0.
03

0.
72

−
0.

05
−

0.
02

0.
01

−
0.

06
−

0.
01

−
0.

02
−

0.
03

−
0.

03
0.

04
−

0.
07

0.
01

0.
02

0.
10

0.
05

0.
1

−
0.

01
0.

08

A
ll 

co
rr

el
at

io
ns

 a
bo

ve
 |

0.
02

| 
ar

e 
si

gn
if

ic
an

t a
t p

 ≤
 0

.0
1.



 When Do Expert Teams Fail to Create Impactful Inventions? 1087

© 2019 The Authors. Journal of Management Studies published by Society for the Advancement of Managment Studies 
and John Wiley & Sons Ltd.

Table II. The inf luence of team domain experience, component originality and structural holes on 
invention impact

DV: invention impact (1) (2) (3) (4) (5)

Firm size −0.00*** −0.00*** −0.00*** −0.00*** −0.00***

(0.00) (0.00) (0.00) (0.00) (0.00)

Firm Absorptive 0.04† 0.04† 0.04† 0.04† 0.04

Capacity (0.03) (0.03) (0.03) (0.03) (0.03)

Firm Debt/Asset 0.06 0.06 0.06 0.06 0.06

Ratio (0.06) (0.06) (0.06) (0.06) (0.06)

Firm search 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)

Firm Mean Inventor −0.04*** −0.05*** −0.05*** −0.05*** −0.05***

Productivity (0.01) (0.01) (0.01) (0.01) (0.01)

Team size 0.03*** 0.03*** 0.03*** 0.02*** 0.02***

(0.00) (0.01) (0.01) (0.01) (0.01)

Team Non-domain −0.00 −0.01 −0.01 −0.01 −0.01

Expertise (0.01) (0.01) (0.01) (0.01) (0.01)

Team Str. holes 0.01 0.01 0.01 0.01 0.01

in knowledge network (0.01) (0.01) (0.01) (0.01) (0.01)

# 1st time inventors −0.00 0.00 0.00 0.01 0.01

(0.01) (0.01) (0.01) (0.01) (0.01)

# Non-directional −0.00 −0.00† −0.00* −0.00 −0.00

Prior ties (0.00) (0.00) (0.00) (0.00) (0.00)

Team Collaboration 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

Experience (0.00) (0.00) (0.00) (0.00) (0.00)

Patent subclasses 0.01*** 0.01*** 0.01*** 0.01*** 0.01***

(0.00) (0.00) (0.00) (0.00) (0.00)

Distinct 4-digit 0.03*** 0.03*** 0.04*** 0.03*** 0.03***

CPC classes (0.01) (0.01) (0.01) (0.01) (0.01)

1st Occurrences of −0.03 −0.01 −0.01 −0.01 −0.01

CPC class (0.08) (0.08) (0.08) (0.08) (0.08)

Prior Art Citations 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

(0.00) (0.00) (0.00) (0.00) (0.00)

Claims 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

(0.00) (0.00) (0.00) (0.00) (0.00)

App year – Priority −0.05*** −0.06*** −0.06*** −0.06*** −0.06***

Year (0.00) (0.00) (0.00) (0.00) (0.00)

Component Age 0.01*** 0.01*** 0.01*** 0.01*** 0.01***

Time spread (0.00) (0.00) (0.00) (0.00) (0.00)
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that have access to a larger domain-specific knowledge stock can benefit from their knowl-
edge breadth and depth and are capable to create higher impact inventions. We find no 
main effect for a team’s structural hole position (β = −0.015, σ = 0.011) and a strong 
negative effect of  component originality (β = −0.119, σ = 0.019), suggesting that using 
original components generally does not improve impact. Model 3 tests hypothesis 2 by 
adding the interaction effect between team domain expertise and component originality. 
The interaction between team domain expertise and component originality is negative  
(β = −0.033, σ = 0.011), providing support for H2: teams with high domain expertise seem 
to be less able to deploy original knowledge then teams lacking such domain expertise.

We note that our measure for component originality is distinct from the “original 
knowledge” measure used by Jung and Lee (2016). These authors find a strong posi-
tive effect of  original knowledge whereas we find the opposite. Our measure captures 
the average number of  times the prior art has been cited since it was patented which 
proxies how familiar the industry currently is with a specific component. Jung and Lee 
(2016) on the other hand define original knowledge as a component combination that 
appeared for a first time in a specific patent, and argue that original knowledge ‘is typ-
ically underdeveloped and in uncertain condition’ (p. 1730) which is surely true at the 
time of  invention. However, this is not necessarily true anymore at the time of  citing as it 
is possible this such component combination has enjoyed refinement over time and been 
used often since the original invention. We contend that uncertainty about knowledge is 
driven primarily by how many times it has been used since its invention, not by how novel 

DV: invention impact (1) (2) (3) (4) (5)

Component Age −0.09*** −0.09*** −0.09*** −0.09*** −0.09***

Average (0.01) (0.01) (0.01) (0.01) (0.01)

Team Domain 0.02*** 0.03*** 0.04*** 0.05***

Expertise (TDE) (0.00) (0.01) (0.01) (0.01)

Component −0.12*** −0.07** −0.12*** −0.06*

Originality (CO) (0.02) (0.03) (0.02) (0.03)

Team Social Network −0.01 −0.01 −0.00 0.01

Structural Holes (TSH) (0.01) (0.01) (0.01) (0.01)

TDE x CO −0.03** −0.04***

(0.01) (0.01)

TDE x TSH −0.01* −0.02**

(0.01) (0.01)

Chi square 6,417 6,482 6,491 6,489 6,504

Log Likelihood −128,493 −128,459 −128,455 −128,456 −128,451

Constant, application and grant year dummies unreported; firm FEs, SEs in parentheses. Observations = 40,138, 
Firms = 105.
†p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001. Invention impact (the dependent variable (DV)) is operationalized as 
10-year forward citations.

Table II. Continued
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a combination was at the time of  invention. This difference in interpretation of  original 
knowledge may explain why our results differ from theirs.

Model 4 then tests hypothesis 3 by adding the interaction between team domain ex-
pertise and the team’s structural hole value, which is also found to be negative and sig-
nificant (β = −0.013, σ = 0.005) in support of  H3: Teams with high domain expertise do 
not seem to successfully exploit their structurally advantageous network position and fail 
to absorb and implement the original ideas they may extract as a consequence of  their 
structural hole position. Model 5 includes both interaction effects and find consistent and 
significant results, providing support for our three hypotheses. We depict the marginal 
effects in Figures 1 and 2.

Robustness checks

We discuss alternative regression techniques, model specifications, variable operational-
ization and an instrumental variable approach. First, we repeat the above analyses using 
negative binomial regression without fixed effects but with firm dummies and clustered 
standard errors as well as using Poisson regression on a response variable, winsorized 
at 3 standard deviations to reduce skewness. Support for hypotheses 1 and 2 remains 
strong but the significance of the interaction between team domain expertise and team 
structural holes disappears, suggesting the support for hypothesis 3 is perhaps not as 
robust as Table II indicated. We dive deeper into this question below.

Second, we checked the quadratic specification of  our independent effects. This is 
important because there are reasons to believe that excessive expertise may damage the 
invention process by narrowing the team’s collective mindset and create some form of  
collective cognitive entrenchment as it does for individuals (Dane, 2010). Authors that 
hypothesized quadratic effects of  familiarity have typically relied on arguments that 

Figure 1. Marginal effect of team domain expertise on invention impact at different levels of component 
originality (CO)
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relate to aging knowledge (e.g. older knowledge may be harder to recombine because 
it may be poorly remembered or because it may fit poorly in the current technological 
paradigm), but we capture these dynamics with a control for knowledge age (Heeley and 
Jacobson, 2008; Katila, 2002; Katila and Ahuja, 2002; Nerkar, 2003). Capaldo et al. 
(2017) for instance investigate the effects of  knowledge maturity (component age) and 
use a measure of  component familiarity at the firm level as a robustness check, finding 
identical results for both.

Table III presents four regression results in which our three focal independent vari-
ables are included with their quadratic effects. We can see that in all cases the main 
effect of  team domain expertise is not significant anymore while the quadratic term is, 
suggesting that expertise ostensibly becomes increasingly valuable as it grows. So rather 
than diminishing returns to expertise, we see somewhat increasing returns to expertise 
for the logged measure. Using proper tests for the statistical significance, we find that 
no support for a U-shape because the Fieller interval includes the lowest value of  team 
domain expertise, suggesting there is no statistical certainty there is an initial downward 
slope (Lind and Mehlum, 2010). When using the original, non-logged measure we find a 
significant and positive independent effect and a negative quadratic effect, but the 95 per 
cent Fieller interval includes the highest value of  domain expertise, suggesting this is not 
a real inverted U-shape but merely slowly diminishing returns (Haans et al., 2016; Lind 
and Mehlum, 2010) which is consistent with our theory. These tests convince us that the 
expertise does not relate curvilinearly to impact, supporting H1. For network structural 
holes, inclusion of  the quadratic term eliminates the significance of  both terms in three 
of  the four models: the quadratic term does not improve the model.

Looking at component originality, we find ostensibly significant curvilinear results 
across all models. When conducting Lind and Mehlum’s (2010) curvilinearity tests, we 
find that these significant quadratic relationships do not create actual U-shaped effects, 
except for the cluster-robust negative binomial regression (Table III, column 2). For the 

Figure 2. Marginal effects of team domain expertise on invention impact at different structural hole 
positions
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three other models, the Fieller interval includes the extreme values so that we can rule 
out a real U-shape. While component originality ranges between 0.005 and 1, for model 
2 the extreme point is at 0.70 with the 95 per cent Fieller interval [.62 0.87] and a t-value 
of  2.67 (p < 0.01). With almost 12 per cent of  observations higher than the extreme 
value, the curvilinear effect seems to represent an authentic effect in this regression, 
suggesting that very original components may overturn the negative effect of  originality. 
To check how salient this would be, we repeated the regressions from Table II with an 
additional dummy variable that took on the value 1 if  component originality was higher 
than the extreme point. The dummy’s coefficient was significant and positive but did 
affect the other results. We also ran the regression with the quadratic term for compo-
nent originality included and all ensuing interactions included. While the significance 
of  the interactions with team domain expertise disappeared, the marginal effects and 
the graphical representation were almost identical to the ones presented, suggesting the 
linear approximation captures the underlying relationship quite well.

Third, we conduct some checks regarding the operationalization of  our focal mea-
sures. We repeat the analysis presented in Table II but operationalize our focal variables 
differently. Table IV, model 1 operationalizes team domain expertise as the non-logged 
measure described above. Model 2 replaces our component originality measure with a 

Table III. Quadratic effects of main explanatory variables

(1) (2) (3) (4)

NB-FE NB-robust Poisson OLS

Team Domain −0.01 −0.02 −0.01 −0.01

Experience (TDE) (0.01) (0.01) (0.01) (0.01)

TDE^2 0.01*** 0.01*** 0.01*** 0.01***

(0.00) (0.00) (0.00) (0.00)

Team Social Network 0.06† 0.01 0.05 0.04

Structural Holes (TSH) (0.03) (0.04) (0.05) (0.03)

TSH^2 −0.03* −0.00 −0.03 −0.02

(0.02) (0.02) (0.03) (0.02)

Component Originality −0.23*** −0.65*** −0.59*** −0.38***

(CO) (0.07) (0.11) (0.13) (0.09)

CO^2 0.11† 0.46*** 0.40** 0.26**

(0.06) (0.10) (0.12) (0.08)

Chi square 6,512 7,640 45,900 R2 = 7.94%

Log likelihood −128,447 −130,114 −239,075 −43,760

All non-focal variables unreported but included. Firm fixed effects (except model 2 which has firm dummies), Robust, 
clustered standard errors in parentheses (except model 1). Observations = 40,138, Firms = 105.
Models 1-2 use 10-year forward citations as DV. The Poisson model (column 3) uses 10-year forward citations, win-
sorized at 3 standard deviations to reduce skewness. Model 4 uses the 10-year forward citations, standard-normalized 
per application year and winsorized at 3 standard deviations.
†p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.
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mean-adjusted measure of  component familiarity. Specifically, we average the number 
of  times a prior art citation has been cited before in the industry across all prior art cited 
in the focal patent and then we standard-normalize this measure, grouped by the appli-
cation year of  the focal patent. This gives us a measure that increases with prior com-
ponent use. To reduce skewness, we right-winsorize this variable at the 99th percentile. 
A low (negative) value reflects the fact that most prior art has rarely been used while a 
high value reflects industry familiarity with the cited prior art. The results of  using this 
measure for component familiarity rather than originality are consistent with Table II.  
The sign of  the interaction between domain expertise and component familiarity is  
predictably opposite to the sign in Table II, further providing support for hypothesis 
2. In column 3, we replace our measure for team average structural holes’ position in 
the collaboration network with the maximum individual team member structural holes’ 
value. If  structural holes are indeed conduits of  original ideas (Burt, 2004), then using the 
maximum value of  a single team member rather than the average over all team members 

Table IV. Robustness checks: alternative variable operationalizations

(NB1) (NB2) (NB3) (NB4) (NB5) (IV regression)

DV: Invention impact 10-year forward citations No self-citations

Team Domain 0.00*** 0.04*** 0.07*** 0.00*** 0.03* 0.26**

Experience (TDE) (0.00) (0.01) (0.01) (0.00) (0.01) (0.09)

Team Social Netw. 0.01 0.01 0.01 0.02† −0.01 0.10

Structural Holes (0.01) (0.01) (0.01) (0.01) (0.01) (0.07)

Component −0.12*** 0.00 −0.06* 0.03*** −0.03 −0.07

Originality (CO) (0.02) (0.01) (0.03) (0.01) (0.03) (0.03)

TDE x TSH −0.00** −0.02** −0.02** −0.00** −0.01† −0.15**

(0.00) (0.01) (0.01) (0.00) (0.01) (0.06)

TDE x CO −0.00 0.01** −0.04** −0.00 −0.02* −0.07**

(0.00) (0.00) (0.01) (0.00) (0.01) (0.03)

Constant 0.51*** 0.46*** 0.47*** 0.46*** 0.45*** −0.45***

(0.11) (0.11) (0.11) (0.11) (0.12) (0.09)

Chi square 6,540 6,486 6,502 6,511 5,171 Root 
MSE = 0.76

Log Likelihood −128,443 −128,460 −128,451 −128,453 −121,117 Residual 
SS = 21,254

All non-focal variables unreported but included. Coefficients in italics ref lect alternative variable operationalizations 
(respectively team domain expertise, component originality, and structural holes value in models NB1, NB2, and 
NB3). Note that the alternative operationalization for component originality is mean adjusted component familiarity 
and should thus have opposite effects (we underline the coefficients for which opposite effects are expected because 
of this change). Finally, in model NB4, coefficients in bold are the result of an interaction between two alternative 
variable operationalizations.
Model 5 has non-self forward citations as response variable. Observations = 40,138, Firms = 105.
The IV regression has as dependent variable the natural logarithm of the 10-year forward citation measure.
†p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.
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may make more sense. Results remain consistent. Model 4 uses all the alternative oper-
ationalizations together and still finds similar results, although the significance of  the 
interaction with component familiarity disappears. Finally, column 5 depicts the results 
for the number of  non-self-citations as response variable.

Instrumental Variable Approach

A final validity check acknowledges the possibility that domain expertise and a team’s 
network position are both driven by an omitted variable such as talent and/or are deter-
mined contemporaneously, created by endogeneity problems. To see if our main results 
are robust to potential endogeneity bias we instrument our measure for team structural 
holes with three measures that may inf luence the likelihood that teams within the firm 
would occupy structural hole positions but are unlikely to inf luence the impact of single 
patent (i.e., the instruments are presumed to be exogenous). We use a measure for the 
breadth of firm knowledge (log of total number of firm portfolio subclasses in the last 
five years), a measure for team knowledge concentration (Herfindahl index of the team’s 
portfolio subclasses in the last five years), as well as the total number of team collabora-
tors over the last five years. These three measures are checked for exogeneity by includ-
ing them in the original regressions from Table II and verifying that both indeed do not 
significantly impact the response variable.

We run an instrumental variable regression (see Table IV) with the above three in-
struments and their interactions with team domain expertise, to instrument for team 
social network structural holes and its interaction with team domain expertise. We can 
reject the Hansen J statistic at the 5 per cent level, suggesting over-identification is not a 
significant issue, despite the inclusion of  the interaction effects. The under-identification 
and weak identification tests are both strongly rejected (p < 0.001) and the F-tests for 
excluded instruments take on acceptable values of  above 10. Although the instruments 
are not perfect – the Anderson-Rubin Wald test suggests over-identifying restrictions 
are not valid – the overall results of  the instrumental variable regression supports our 
initial findings. Moreover, via Stata’s implementation of  the endogeneity test we cannot 
reject the conclusion that our endogenous network variable can be treated as exogenous 
(p = 0.59). Irrespectively, we see in Table IV, final column that the instrumented team 
structural hole variable is not significant but the interaction with team domain expertise 
is significant and negative (β = −0.147, σ = 0.056) and the interaction effect between 
team domain expertise and component originality also remains significant (β = −0.074, 
σ = 0.027) providing additional support for hypotheses 2 and 3.

A three-way interaction

Because it is important to ‘understand when the pattern of social ties is most inf luen-
tial’ (Balkundi and Harrison, 2006, p. 50) and because structural holes and original 
components could be considered substitute sources of new information, it is not unlikely 
that a three-way interaction would manifest among our three focal variables. If struc-
tural holes indeed provides access to novel information and good ideas (Burt, 2004), this 
may be more valuable when the team seeks to deploy original components which are 
characterized by uncertainty and recombinant challenges. Under these circumstances, 
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even a team with high domain expertise may still benefit from access to new and non- 
redundant information.

On the other hand, the structural hole position may also add to the cognitive difficulty 
of  processing original knowledge components because there is noise in the information 
that is being obtained and it may be incorrect (Guan and Liu, 2016). Intuitively, one 
could presume that expert teams would benefit from their structural hole position when 
they deploy familiar components and not vice versa, while expert teams that are far away 
from structural hole positions could benefit more from original components. However, it 
may also be true that structural holes provide added value when using original compo-
nents. To see if  such a three-way interaction indeed exists, we present Table V. Column 
1 displays the regression results from Table II, this time including the triple interaction 
term. Note that we have to add the interaction term between component originality 
and team structural holes as well for statistical purposes and that this term is negative, 
suggesting that on average teams in structural hole positions do better when they refrain 
from using original components.

In Table V, we provide alternative analyses methods to verify whether our finding 
of  a triple interaction is robust to model specification. Model 2 depicts a negative bi-
nomial regression without fixed effects but with firm dummies and robust standard er-
rors. We then repeat the analysis in columns 3 and 4 where we use the more robust 
Poisson regression with firm-clustered standard errors. Although the dependent variable 
is over-dispersed, the Poisson model provides a good fit and the results are confirmed 
in model 3. The second Poisson model we run repeats the analysis but uses a response 
variable that is winsorized at 3 standard deviation to reduce skewness. Finally, we run 
the analysis as a simple OLS regression on the number of  yearly standard-normalized 
response variable, winsorized at 3 standard errors. These results are depicted in column 
5 in Table V and are also consistent with the main findings. We repeat all these analyses 
for a shorter (5 years) and longer yet uneven (all data until 2015) forward citation window 
and find consistent results (not reported). The triple interaction term is positive while the 
interaction between component originality and team structural hole position is negative, 
suggesting a complex net effect of  the three focal terms on invention impact. Unlike the 
unreported models discussed previously, the findings here across all models are highly 
consistent, suggesting that ‘the true model’ may indeed be better approximated by this 
model that includes a triple interaction.

In order to provide clarity about how to interpret the interaction effect we provide 
two complementary graphical representations (Aiken and West, 1991). Figure 3 depicts 
the marginal effect of  domain expertise at low and high values of  both component orig-
inality and team structural holes. The figure clarifies that domain expertise makes its 
largest marginal contribution to invention impact when teams are not in structural holes’ 
positions and when they use familiar components. When using original components, the 
effect of  structural holes barely alters the slope of  domain expertise’s marginal contri-
bution to invention impact, although the net effect remains higher for low values of  
structural holes. Inexperienced teams do best when they have access to non-redundant 
information in their social network and when they use familiar components. Under these 
conditions, inexperienced teams may even outperform more experienced ones.
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Table V. Robustness Checks – Alternative Regression Analyses

DV: invention impact 1. NB FE 2. NB Robust 3. Poisson 4. Poisson 5. OLS

Firm Size −0.00*** 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)

Firm Absorptive 0.04 0.11* 0.06 0.04 0.04

Capacity (0.03) (0.04) (0.06) (0.05) (0.05)

Firm Search 0.00 0.00* 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)

Firm Mean Inventor −0.04*** −0.07*** −0.06* −0.06* −0.04*

Productivity (0.01) (0.02) (0.03) (0.03) (0.02)

Team size 0.02*** 0.02* 0.03** 0.02** 0.02**

(0.01) (0.01) (0.01) (0.01) (0.01)

Team Non-domain −0.01 −0.03* −0.04† −0.02 −0.01

Expertise (0.01) (0.01) (0.02) (0.02) (0.01)

Team str. holes 0.01 0.03† 0.04 0.02 0.01

in knowledge networks (0.01) (0.02) (0.02) (0.02) (0.01)

1st time inventors 0.01 0.02† 0.02 0.02† 0.01

(0.01) (0.01) (0.02) (0.01) (0.01)

Team Collaboration 0.00*** 0.00* 0.00*** 0.00*** 0.00***

Experience (0.00) (0.00) (0.00) (0.00) (0.00)

Patent subclasses 0.01*** 0.02*** 0.01*** 0.01*** 0.01***

(0.00) (0.00) (0.00) (0.00) (0.00)

Distinct 4-digit 0.03*** 0.05*** 0.05*** 0.06*** 0.03***

CPC classes (0.01) (0.01) (0.01) (0.01) (0.01)

Prior art citations 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

(0.00) (0.00) (0.00) (0.00) (0.00)

Claims 0.00*** 0.01*** 0.01*** 0.01*** 0.00***

(0.00) (0.00) (0.00) (0.00) (0.00)

App year – Priority −0.06*** −0.08*** −0.09*** −0.08*** −0.05***

Year (0.00) (0.01) (0.01) (0.01) (0.01)

Component Age 0.01*** 0.01** 0.01*** 0.01*** 0.01***

Time spread (0.00) (0.00) (0.00) (0.00) (0.00)

Component Age −0.09*** −0.13*** −0.14*** −0.14*** −0.08***

(0.01) (0.01) (0.02) (0.01) (0.01)

Team domain 0.07*** 0.09*** 0.12** 0.10*** 0.07**

Expertise (TDE) (0.01) (0.02) (0.04) (0.03) (0.02)

Component −0.02 −0.03 −0.03 −0.04 −0.01

Originality (CO) (0.04) (0.06) (0.06) (0.05) (0.03)

Team social network 0.02 0.04 0.04 0.04 0.02

Structural holes (TSH) (0.02) (0.03) (0.03) (0.02) (0.02)
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Figure 4 provides another perspective. The dark lines represent marginal effects of  
a change in domain expertise on forward citations, for increasing levels of  component 
originality at five distinct levels of  structural holes. At minimal and mean values of  struc-
tural holes, domain expertise’s marginal effect on impact reduces as the team uses more 
original components. At high structural hole values, the effects are however positive, 
although the significance of  the effect disappears as originality crosses its mean value. 

DV: invention impact 1. NB FE 2. NB Robust 3. Poisson 4. Poisson 5. OLS

TDE x CO −0.09** −0.12* −0.16* −0.13* −0.10**

(0.03) (0.05) (0.08) (0.06) (0.04)

TDE x TSH −0.03*** −0.03† −0.04 −0.04† −0.03†

(0.01) (0.01) (0.03) (0.02) (0.02)

CO x TSH −0.04 −0.12* −0.13* −0.10* −0.06*

(0.04) (0.06) (0.07) (0.04) (0.03)

TDE x CO x TSH 0.04* 0.07* 0.10† 0.07† 0.05†

(0.02) (0.03) (0.05) (0.04) (0.03)

Chi square 6,512 7,964 229,834 41,835 R2 = 7.87%

Log likelihood −128,449 −130,143 −278,213 −239,278 −43,777

Constant, application and grant year dummies and insignificant variables unreported. Observations = 40,138, 
Firms = 105. (Robust) standard errors in parentheses.
Models 1-3 use 10-year forward citations as response, model 4 uses the same DV, winsorized at 3 standard deviations 
to reduce skewness. Model 5 uses the standard-normalized DV per application year, also winsorized at 3 standard 
deviations.
†p < 0.1; *p < 0.05; **p < 0.01; ***p < 0.001.

Table V. Continued

Figure 3. 2D visualization of threeway interaction
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The presence of  the three-way interaction provides boundary conditions for hypotheses 
2 and 3. While the average effect of  structural holes indeed reduces the impact of  expert 
teams, this is chiefly so when the teams use more familiar components and less so if  the 
team uses very original components. It seems that the structural holes indeed provide 
non-redundant information that help the expert team make sense of  original compo-
nents. Looking at it differently, the average effect of  component originality is negative 
for experienced teams, but this reverses as the team becomes increasingly connected to 
non-redundant ties.

Finally, we provide some additional clarity on the economic significance of  the effects 
by running a simple OLS regression (unreported) on the 10-year forward citation count. 
While this model has poorer overall fit due to the poor alignment between the distri-
bution of  the dependent variable and the assumptions of  the OLS model, it facilitates 
the interpretation of  the economic significance of  the effects. Because we are interested 
in the impact of  the focal variables on the number of  forward citations only, we put all 
control variables and fixed effects to zero. Looking at the interaction of  team domain 
expertise and component originality at mean team structural holes, we see that low team 
domain expertise (mean – 1 standard deviation) combined with highly original compo-
nents (mean + 1 standard deviation), results in a 10.6% decrease in invention impact 
(liken to a mean impact of  9.77), whereas the opposite (high team domain expertise and 
low component originality) is associated with a 44 per cent increase in impact. The latter 
effect decreases to + 21 per cent when component originality increases from low to high. 
Looking at the interaction of  team domain expertise with team structural holes’ value at 
mean component originality, we see that at low team domain expertise, an increase from 
low to high structural holes’ value leads to an 11 per cent decrease in impact (from −1 per 

Figure 4. 3D visualization - Marginal effects of a change in team domain expertise on the standard 
normalized number of forward citations. The 3D graph is based on the results obtained from the full OLS 
regression with fixed firm effects, and standard errors clustered around firms, using the Stata command 
‘surface’
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cent to −12 per cent), whereas at high domain expertise the effect is opposite, increasing 
from + 29 per cent to + 36 per cent as the structural hole value evolves from low to high.

DISCUSSION AND FUTURE RESEARCH

Our findings shed new light on the relation between expertise and invention impact. 
Expertise results from path-dependent investments that create domain-specific absorp-
tive capacity, which in turn helps develop an idiosyncratic perspective on the knowl-
edge space that creates competitive advantage (Dierickx and Cool, 1989). Our findings 
suggest this advantage is quite persistent: even if teams build up enormous reservoirs of 
domain expertise, the worst effect we witness is perhaps decreasing marginal returns 
but no statistical support for negative returns. This finding aligns with the foundational 
view and goes against the entrenchment perspective which suggests that individuals or 
teams can become ‘too expert’ in such a way that it constrains their exploration and 
future success (Kaplan and Vakili, 2015; Singh and Fleming, 2010).

Empirically, we do observe a negative correlation between component originality and 
domain expertise but rather than arguing in favour of  entrenchment, we posit that this 
reduced distant search is actually a rational strategy for expert teams, as they are better 
able to turn familiar components into impactful inventions than their non-expert coun-
terparts. Thus, we proffer that the foundational and entrenchment views may not be 
contradictory nor incompatible (Kaplan and Vakili, 2015). Specifically, our results imply 
that experts should stick to what they know, exploiting anomalies in the knowledge struc-
ture and identifying sources of  invention through a deep and foundational engagement 
with the knowledge. Because experts have high absorptive capacity in this domain and 
because acquiring this knowledge is subject to time compression diseconomies (Dierickx 
and Cool, 1989), they possess a unique advantage in this space. However, non-experts 
may benefit more from non-local search, experiments with original components, and 
novelty creation through unexpected component combinations rather than through ar-
chitectural recombination of  existing components.

The results also provide support for a non-structuralist perspective in network research 
(Carnabuci and Diószegi, 2015; Obstfeld, 2005). While prior research has looked at the 
effects of  network structure at the level of  the actor (either a firm or individual), our 
focus on the unit level (i.e. an invention) presents diverging results. Firstly, because we 
focus on the patent-level (see also Schillebeeckx et al., 2019), network characteristics do 
not provide the significant main effects found at the actor-level of  analysis (see Guan and 
Liu, 2016; Paruchuri and Awate, 2017; Wang et al., 2014). Thus, while structural holes 
in an actor’s social network may create an opportunity structure that enhances the actor’s 
exploration, it is not so this automatically translates into higher impact at the invention 
level. We contend that much of  the benefits associated with structural holes provide less 
of  a differential when a team has significant expertise as experts possess substitute re-
sources that more directly influence their inventive success.

While we do not address questions of  diversity directly, our finding that non-domain 
expertise has no significant effect is of  interest. Most of  the literature has argued that 
experience diversity is positively associated with inventive outcomes such as individual 
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team member creativity (Shin et al., 2012), invention breadth (Choudhury and Haas, 
2018), and likelihood of  breakthrough success (Singh and Fleming, 2010). Yet, these 
findings are not universal either as Nerkar (2003) for instance does not find a significant 
relationship between his team diversity measure and impact. In unreported regressions, 
we investigated whether there would be a positive interaction effect between domain 
expertise and non-domain expertise but we did not find such a relation. This adds fur-
ther credence to the foundational view of  invention. If  teams can combine deep domain 
knowledge with sufficient knowledge breadth within that domain, they have the neces-
sary expertise to create high impact inventions (Boh et al., 2014).

This raises the question of  how managers can best organize their firm’s capacity to 
invent and innovate. Our findings support more focus on local search and specialization, 
and less on boundary-spanning – possibly reopening avenues for research on these im-
portant determinants of  invention impact. One consideration in such research should 
be a meaningful theorization about the boundaries of  localness. If  Dane (2010) is right 
in arguing that expertise is a combination of  the quantity and diversity of  knowledge 
components as well as the connections between them, it could be so that diversity of  
knowledge within a domain is preferable over diversity across domains. Within domain 
diversity then allows for cohesive yet complex schemas to develop in the mind of  the 
inventor whereas beyond domain diversity may inevitably be associated with insufficient 
specialization.

Next, the strong empirical support for our post-hoc analysis of  a three-way interaction 
among expertise, non-redundancy in the social network, and component originality gives 
us pause. While domain expertise positively influences invention impact, this effect was 
found to be contingent on both team position in the collaborative network and on the 
industry’s familiarity with used knowledge components. Inventors’ non-redundant social 
ties and used original components can operate as substitutes or complements, depending 
on team expertise. For inventors that are not located near structural holes, the marginal 
effect of  expertise decreases as they deploy more original components. For inventors with 
many non-redundant ties however, using original components may actually improve the 
effect of  expertise on invention impact. Looking at it differently, inventors experimenting 
with original components will benefit more from domain expertise as they have more 
non-redundant ties in their social network but the effect is very small. The differential 
effect of  low versus high structural ties is negligible when the team deploys highly origi-
nal components. However, when expert teams use familiar components, they create the 
highest impact when they are not occupying structural positions.

If  we can consider network structural holes or original components VRIN resources 
for a team of  inventors, our findings suggest these resources do not automatically lead 
to higher performance. One could potentially argue that network non-redundancy and 
component originality are not ‘valuable’ – a contentious concept in the resource-based 
view (Priem and Butler, 2001a, 2001b; Schmidt and Keil, 2013). The negative interac-
tion effects points to the importance of  not strictly the resources themselves, but rather 
how that resource is deployed to create value (Costa et al., 2013; Sirmon et al., 2011). 
Our findings suggest that VRIN resources may not always be performance-enhancing 
as it depends on the context in which they are used, to whom they are accessible, and 
whether they are ‘actionable’ or whether they can be effectively orchestrated with the rest 
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of  the firm’s resource base. Tacit knowledge embedded in networks comes with strings 
attached and may be time-consuming to maintain, divert attention processes, and be 
largely redundant. While our results suggest this may be true for structural holes, it would 
be interesting to see if  the same holds of  network centrality. Network researchers could 
further investigate how the historically acquired (knowledge) resources of  a specific node 
in a network and its position interact in various contexts to improve our understanding of  
the relative contributions of  network structure versus node characteristics like expertise. 
In addition, more research could focus on what types of  resources networks provide and 
to what extent these can be substituted.

Finally, our findings add to the literature on the effects of  time on inventive success. 
While we focused on component originality, we also controlled for knowledge component 
age and the time spread in the age of  deployed knowledge components. It is noteworthy 
that our results do not always align with prior research. We proffer these divergences may 
be explained by a frequently occurring conflation of  arguments around knowledge ma-
turity in terms of  temporal lapse or recency (e.g., fit, nascent capability-building, risk of  
retaliation), familiarity (e.g., reliability, uniqueness, search costs), and time spread (com-
binatorial difficulties), as well as the transference of  findings across units of  analysis (e.g., 
Capaldo et al., 2017; Heeley and Jacobson, 2008; Katila, 2002; Katila and Ahuja, 2002; 
Katila and Chen, 2008; Kok et al., 2018; Nerkar, 2003). Researchers could clarify the 
confusion by investigating knowledge age, recency of  use, time spread, and repeated use 
across units of  analysis and across contexts to identify possible universal or contingent 
effects between time and invention outcomes.

CONCLUSION

Teams with high domain-specific expertise are generally able to create more impact-
ful inventions. We establish this baseline hypothesis and then investigate whether such 
expert teams are also more capable at integrating novelty successfully. We look at both 
expert teams’ ability to deploy original components and their ability to benefit from 
non-redundant structural holes in their collaboration networks, as both are possible 
sources of novelty. We posit and find that relatively speaking, experts are not good at in-
tegrating these sources of novelty and identify a complex three-way interaction between 
expertise, component originality, and structural holes. Overall, our findings provide 
an alternative viewpoint to a commonly held belief that boundedly rational individuals 
search excessively in familiar domains (Cyert and March, 1963; Simon, 1982). Unlike 
Rosenkopf and Almeida’s (2003) submission, we find that teams, especially those with 
high expertise, may actually spend too much time searching in distant landscapes. Jung 
and Lee (2016) found that those who search locally are more likely to develop cogni-
tive breakthroughs that are antecedents to high impact inventions. Biologist Jennifer 
Owen spent the better part of 30 years studying her own garden, identifying over 2,500 
species, and discovering four new ones. With additional expertise the total tally could 
have reached about 8,000 (Brown, 2010). Perhaps the real takeaway is that once people 
have developed domain expertise, moving beyond that in order to engage in cross- 
disciplinary research simply does not pay for the majority, which is why it is so hard to 
find researchers willing to do it.
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NOTES

 [1] This data is available from two sources: https ://sites.google.com/site/paten tdata proje ct/Home and 
http://www.nber.org/paten ts/. The first source is used for this research as it is a more up to date 
version.

 [2] The Cooperative Patent Classification was adopted officially on the first of January 2013 by both 
USPTO and its European counterpart EPO. CPC is largely based on the European Classification 
System (ECLA) and very consistent with the International Patent Classification (IPC) schema. It 
however differs significantly from the USPC and there is no straightforward conversion between 
the CPC and the USPC schemas, although the USPC makes the concordance available. For the 
semiconductor class 438 for instance almost all its subclasses are assigned to H01L (see https ://www.
uspto.gov/web/paten ts/class ifica tion/uspc4 38/us438 toipc8.htm). H (electricity), H01 (basic electric 
elements), H01L (semiconductor devices; electric solid state devices not otherwise provided for). The 
CPC system is more logically and more hierarchically structured such that components co-occurrence  
and linkages and knowledge accumulation within domains should be better captured by the CPC 
system than by the USPC system. This is why the collaboration of the USPC and the EPO that  
created the CPC has chosen to use the European system as the baseline for the CPC and not the 
USPC. As more and more countries are starting to use the CPC schema, it will facilitate global  
comparability of patents. Additional info can be found on http://www.coope rativ epate ntcla ssifi cat-
ion.org. A detailed description of the USPC classification is available via https ://www.uspto.gov/
sites/ defau lt/files/ paten ts/resou rces/class ifica tion/overv iew.pdf Leydesdorff et al. (2017) provide a 
statistical comparison of different categorization schema.
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