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A Benchmark and Comparative Study of
Video-Based Face Recognition

on COX Face Database
Zhiwu Huang, Student Member, IEEE, Shiguang Shan, Senior Member, IEEE,

Ruiping Wang, Member, IEEE, Haihong Zhang, Member, IEEE,
Shihong Lao, Member, IEEE, Alifu Kuerban,

and Xilin Chen, Senior Member, IEEE

Abstract— Face recognition with still face images has been
widely studied, while the research on video-based face recognition
is inadequate relatively, especially in terms of benchmark datasets
and comparisons. Real-world video-based face recognition appli-
cations require techniques for three distinct scenarios: 1) Video-
to-Still (V2S); 2) Still-to-Video (S2V); and 3) Video-to-Video
(V2V), respectively, taking video or still image as query or
target. To the best of our knowledge, few datasets and evaluation
protocols have benchmarked for all the three scenarios. In order
to facilitate the study of this specific topic, this paper contributes a
benchmarking and comparative study based on a newly collected
still/video face database, named COX1 Face DB. Specifically, we
make three contributions. First, we collect and release a large-
scale still/video face database to simulate video surveillance with
three different video-based face recognition scenarios (i.e., V2S,
S2V, and V2V). Second, for benchmarking the three scenarios
designed on our database, we review and experimentally compare
a number of existing set-based methods. Third, we further pro-
pose a novel Point-to-Set Correlation Learning (PSCL) method,
and experimentally show that it can be used as a promising
baseline method for V2S/S2V face recognition on COX Face DB.
Extensive experimental results clearly demonstrate that video-
based face recognition needs more efforts, and our COX Face
DB is a good benchmark database for evaluation.
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I. INTRODUCTION

RECENTLY, the ubiquitous use of video capturing devices
is shifting the focus of face recognition research from

image-based scenarios to video-based ones. Video-based face
recognition identifies a subject with his/her video sequence as
the query or target. Specifically, as shown in Table I, there are
three distinct video-based face recognition scenarios. Among
them, the V2S scenario matches a query video sequence
against still face images such as mug shots, ID photos, driver
license photos, etc., which are generally taken in controlled
setting and thus generally of high quality. This scenario is
very common requirement in watch list screening systems.
On the contrary, the S2V scenario queries a still face image
against a database of video sequences, which can be applied to
locate a person of interest by searching his/her ID photo in the
stored surveillance videos. The third scenario, i.e., the V2V
case, queries a video sequence against a set of target video
sequences, which can be exploited, for example, to track a
person by matching his/her video sequence taken somewhere
against the surveillance videos recorded elsewhere.

Although face recognition has been studied extensively in
the literature, recognizing the subject in unconstrained face
videos is still a field in its childhood. To our best knowl-
edge, the state-of-the-art methods (e.g., [1]–[5]) still perform
poorly on video face databases with real-world setting such as
YouTube Celebrities [2], even though it only contains 47 sub-
jects totally. Furthermore, only a few works (e.g., [6]–[9])
explore the V2S/S2V face recognition scenarios, which are
however vital to a large number of practical applications such
as mug-shot based watch list screening.

To measure the advance of one research problem, appropri-
ate evaluation protocol defined on suitable database is one
of the essential factors. In the past decades, a number of
video face databases have been collected. Based on the list in
the recent survey [10], here we enumerate more public video
face databases in Table II, with brief summary of their key
characteristics. Although these databases are publicly available
to researchers, we find that they are not sufficient to support
research on video-based face recognition. For example, quite

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I

THREE DISTINCT SCENARIOS OF VIDEO-BASED FACE RECOGNITION

TABLE II

SELECTED VIDEO FACE DATASETS. “#SUB”/“#VID” RESPECTIVELY

DENOTE THE NUMBER OF SUBJECTS/VIDEOS, “VARIATION” INCLUDE:
VARYING POSE (p), ILLUMINATION (l), EXPRESSION (e),

RESOLUTION (r), MOTION BLUR (b), WALKING (w)

a few datasets involve a small number of subjects or consist
of a small amount of video sequences. Some video databases
even contain only a limited number of frames for each subject.
For instance, ScFace [11] selects only 3 frames out of each
video sequence. Additionally, videos in currently available
databases such as UT Dallas [12] are usually taken by the
same camera. Moreover, in terms of evaluation protocol, most
of them focus on either V2S/S2V or V2V face recognition
scenario. For example, YouTube Faces DB [13] is designed
only for V2V identification scenario while PaSC [14] dataset
is mainly collected for V2S and V2V face verification tasks.
We also notice that, in terms of database scale (the number
of subjects), only YouTube Face DB [13] and Celebrity-1000
contain videos of more than 1,000 subjects. Furthermore, most
of the subjects in almost all the existing databases are not from
Asia, which forms heavy bias in skin color.

In this paper, aiming to simulate video surveillance scenario,
we collect a large scale face dataset named COX Face DB,
for the evaluation of three video-based face recognition tasks,
i.e. V2S, S2V, and V2V (as shown in Table I). Compared with
most existing datasets, COX Face DB contains more subjects
(1,000), more video sequences (3,000), and more frames with
natural variations in pose, expression, lighting, blur, and face
resolution. In addition, all the subjects are Chinese, which
makes it complementary to the existing ones. More impor-
tantly, the COX videos were captured by 3 camcorders, while
the still frontal face images were taken by a digital camera of
high quality.

An early version of this dataset, named COX-S2V, was
released in [8]. Compared with that early one, the updated
COX Face DB in this paper contains additional videos cap-
tured from a third camcorder, and the video sequences are
made longer to include more video frames. Furthermore, the
new COX Face DB adds two different scenarios of video-based
face recognition (i.e., S2V and V2V scenarios) with both face
identification and face verification protocols for wider range
of evaluations.

Our second contribution is a comparative study of a number
of set-based methods for video-based face recognition, by
evaluating them on the released COX Face DB. Broadly speak-
ing, video-based face recognition methods can be categorized
into sequence-based ones and set-based ones [10]. The former
methods (e.g., [2], [6], [27]–[29]) exploit the temporal or
dynamic information of the face in the video, while the latter
(e.g., [1], [3]–[5], [30], [31]) represent video as image set
of the separated video frames, without using the temporal
information. Since the existing set-based methods make fewer
assumptions on face video sequence and commonly achieve
more appealing performance, in this paper, we focus on this
category of methods and carry out a comparative study on
them on our database.

Based on the comparative study, we find only a small
number of set-based methods are suggested for the problem of
V2S/S2V face recognition, where still and video are usually
treated as point and set respectively. Therefore, to accom-
modate most of statistical models that are usually employed
in set-based methods, we further make a third contribution
by proposing a new approach named Point-to-Set Correlation
Learning (PSCL) for V2S/S2V face recognition task. Since
usual set models such as linear subspace typically reside on a
specific type of Riemannian manifold [32]–[34], inspired by
our previous work [35], we formulate this kind of tasks as
a problem of learning correlations between Euclidean points
and Riemannian elements. To handle this problem, by deriving
kernel functions on certain types of Riemannian manifolds,
our proposed method exploits Kernel Canonical Correlation
Analysis (KCCA) [36] to learn maximum correlations between
the heterogeneous data (i.e. Euclidean points vs. Riemannian
elements). The final extensive experimental results on our
COX Face DB show that our method has achieved a promising
baseline for the V2S/S2V benchmark tests.

The rest of the paper is organized as follows. Section II
describes the released COX Face DB. Section III surveys the
state-of-the-art set-based methods for video-based face recog-
nition. Section IV presents the new Point-to-Set Correlation
Learning method for the problem of V2S/S2V face recog-
nition. Section V reports comparative testing results on our
COX Face DB for both V2S/S2V and V2V face recognitions,
followed by conclusions in Section VI.

II. DESCRIPTION OF COX FACE DB

In this section, we describe our COX Face DB in details,
including how the still face images and face videos were
collected, how the data is further processed, and the evaluation
protocols accompanying the released data.



HUANG et al.: BENCHMARK AND COMPARATIVE STUDY OF VIDEO-BASED FACE RECOGNITION 5969

A. Data Collection: Image/Video Capturing Environment,
Equipment Setup and Recording Procedure

As mentioned previously, we aim at a new face database for
better evaluating three different scenarios of video-based face
recognition, especially for applications like video surveillance.
For this purpose, we need to take videos as wildly as possible,
to include rich variations in face pose, facial expression, face
resolution, and environmental lighting, as well as image qual-
ities in terms of noise and blurring. For V2S/S2V scenarios,
we also need to take still face images of each subject to
simulate ID photo. With the above considerations in mind,
we elaborately designed the image/video collecting procedure,
which is described in the following.

1) Data Collecting Venue: The videos were taken in a large
gym with very high ceilings. The gym has one side wall
made of transparent glass. Besides good for the volunteers
and devices, such a gym forms an imaging environment with
complex half indoor and half outdoor lighting in the daytime.
Also, a small part of the videos is collected in the night with
strong fluorescent on ceilings open. So, overall speaking, the
lighting on the faces in our database is natural and very close
to many practical applications.

2) Data Collecting Devices: Totally, the devices we used
include three digital camcorders and one digital camera.
To capture high quality still image of each subject, Canon EOS
500D DC was exploited. Please refer to the following part for
how the still images are captured. For video acquisition, we
used three SONY HDR-CX350E DV camcorders, which were
fixed on tripods about 2 meters high. For more details of how
they are mounted, readers are referred to the video capturing
part.

3) Still Image Capturing: For each subject, still face images
were taken with the DC. To capture ID photo like images,
the DC is mounted on a tripod about 3 meters away from the
subjects, who was asked to sit on a chair with face upright and
neutral expression. The photographing room was set up with
standard indoor lighting, and the flash of the DC was always
used to alleviate shadows due to top lighting. One example of
still image is shown in Fig. 2 (a).

4) Video Capturing: To simulate surveillance video, we
took video of every subject when he/she was walking.
To include more variations in the facial appearance, we elabo-
rately pre-designed the walking route, as well as the mounting
of the cameras. Specifically, as shown in Fig. 1, the subjects
were asked to walk from the starting point to the end point,
roughly along the S-shape route, as freely as possible at regular
speed. Three camcorders, indexed as Cam1, Cam2 and Cam3,
were mounted at 3 fixed locations of about 2 meters high.
As shown in Fig. 2 (b), (c), (d), they could respectively capture
video of the walking subject when he/she was on the route
marked in red, green, and blue.

It is easy to understand, such an S-shape route is good for
including more face appearance variations in pose, lighting,
blur, and face resolution. Especially, as the subject walked
along the two semicircles, he/she was naturally changing
his/her face orientations continuously, which leads to changing
face poses, as well as varying lighting thanks to outdoor
lighting through the big glass wall.

Fig. 1. Walking route of subjects and camcorders setting. Every subject was
asked to walk freely from the starting point to the end point, roughly along
the S-shape route. Three camcorders, Cam1, Cam2 and Cam3, were placed
at 3 fixed locations, respectively capturing video of the subject when walking
on the route marked in red, green, and blue. The radius of the two semicircles
in the S-shape is 3 meters.

Fig. 2. Example still images collected by our digital camera (a) and example
video frames from video clips captured by three camcorders Cam1 (b),
Cam2 (c) and Cam3 (d). In (b), (c) and (d), the t value in red in each frame
indicates the index of the frame in the video sequence.

B. Data Processing and Formatting

With the still images and videos of all the 1,000 subjects
captured, we further process the data in order to facilitate
future evaluation. This process is necessary because the cam-
corders were kept power on during the video recording,
which implies many void frames without faces of the subject.
In addition, for the purpose of convenient evaluation, it is
desirable that all the video frames contain only the head-
shoulder or even only the head part of the subject.

To satisfy the above goals, we first manually truncated
the long videos recorded by each camcorder into shorter
video clips, each of which starts from the appearance of one
subject until his/her disappearance (coarsely corresponding to
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Fig. 3. Statistics of the number of frames in the video clips recorded
by 3 different camcorders respectively. (a) Cam1. (b) Cam2. (c) Cam3.

the viewing field as shown in Fig.2). This procedure resulted
in 3,000 video clips. Then, we ran a commercialized face
detector, OKAO,2 to detect the faces in the video clips.
However, as the face detector is not perfect, it might gen-
erate some inaccurate or even incorrect detections. For the
convenience of later process, we exploit a simple tracking-
like strategy to remove possible outlier detections. Simply
speaking, if the center of the detected face in one frame is
too far away from those in its previous frames, the face in
this frame will be removed as an outlier. This processing
unavoidably leads to loss of a small number of video frames,
which we think does no hurt to the evaluation. It is also worth
pointing out that, as the walking speeds were different from
subject to subject, the durations of the video clips of different
subjects are different even for the same camera, which also
accounts for the varying number of video frames in this
dataset. In Fig. 3, we statistically show the number of frames
in the videos respectively for three different camcorders, from
which we can see that most of the video clips have more than
100 frames per subject and especially video clips from Cam3
mostly have 170 frames.

Another processing relates to the reduction of the memory
storing the final database. The video recorded originally is of
high resolution, i.e., 1920 × 1080, which leads to too large
memory requirement preventing wide distribution. However,
the video camcorders actually worked in interlaced mode;
therefore, we “de-interlaced” the videos by a commercialized
tool, Aunsoft Final Mate.3 Then, to further reduce the size of
the database, for each frame with a face detected, an image
patch centered at the head of the subject is cropped out. In this
process, we carefully avoided any geometry transform which
might lead to pixel interpolation. In other words, all the inten-
sities of the pixels were directly taken from the uncompressed
video frames. Finally, the cropped head-centered images are

2http://www.omron.com/r_d/technavi/vision/okao/detection.html
3http://www.aunsoft.com/final-mate/

TABLE III

AGE DISTRIBUTION OF THE SUBJECTS IN THE DATABASE

saved as JPG files, in one folder per subject per camcorder.
Due to the above process, the sizes of the cropped face
images vary a lot, from the smallest 66 × 66 pixels to the
largest 798 × 798 pixels.

For convenient evaluation, the video frames and the still
images are all well named. Specifically, the video frames are
named in the way of “subjectID-camIndex-frameIndex.jpg”,
while the still facial images are named as “subjectID-
frontal.jpg”. In this way, every image/frame in the database
was given a unique name with information about the subject’s
unique ID. In addition, the name of every video frame also
includes information about camcorder index, and frame index.
For example, the image named “201103180001-1-0133.jpg” is
the 133th frame of the video clip captured by Cam1 for the
subject with ID “201103180001”. All the data is organized in a
simple file structure. Specifically, all the 1,000 still images are
in one folder named “still”, while all the video frames are in
another one folder named “video” with three sub-folders, i.e.,
cam1, cam2, and cam3, each of which has 1,000 sub-folders
named after the subject ID and containing all the video frames
of that subject.

C. Basic Demographics of the Subjects in the Database

The data collecting was conducted in Xinjiang University.
So, most of the subjects in the database are students, teachers
or professors of the university and nearby residents. Among
the 1,000 volunteers, 435 are males and 565 are females. And,
coarsely, half of them are Mongolian and the other half are
Caucasian. As a feature of university volunteers, most of the
subjects are young people, as indicated by the age distribution
in Table III.

D. COX Face DB Evaluation Protocol for
Video-Based Face Recognition

As our goal is an evaluation protocol for assessing video-
based face recognition algorithms, we intend to design pro-
tocols respectively for three different video-based face recog-
nition scenarios, i.e., V2S, S2V, and V2V. For most video
surveillance applications, both face identification and face
verification are required. Therefore, we designed protocols
for both face identification and face verification evaluations.
Specifically, the identification performance measurement is
defined as Rank-1 recognition rate while the verification
rate can be reported by Receiver Operating Characteristic
(ROC) curve. In keeping with the verification protocol used
in previous challenge problem [14], face recognition algo-
rithms must compute a similarity matrix for all pairs of
images/videos obtained by matching images/videos in a target
set and images/videos in a query set. The resulting similarity
matrix becomes the basis for subsequent analysis, enabling
performance to be expressed in terms of an ROC curve.
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TABLE IV

TRAINING AND TESTING CONFIGURATION FOR V2S SCENARIO

TABLE V

TRAINING AND TESTING CONFIGURATION FOR S2V SCENARIO

We also expect to guarantee fair comparison of different
methods. Therefore, in our protocol, for each evaluation
scenario, we strictly define the training set and testing set.
It is worth noting that, here by “training set” we mean the
set of face images is used to train a feature extractor or
classification model, while testing set is used to form the
target set (or gallery) and query set (or probe). Here, one
question is how to determine the ratio of the training and
the testing data. While more training data commonly leads to
better performance, more testing data implies more accurate
performance estimation. Furthermore, for face identification,
more subjects in the target set are desirable. Therefore, in our
protocols, relatively more data is used for testing. Specifically,
in our protocols, we empirically set the ratio as 3:7, i.e., data of
300 subjects selected randomly can be used for model training
while that of the remaining 700 subjects for testing. For all
the evaluations, 10 groups of random 300/700 partition are
predefined accompanying our database. Correspondingly, we
hope all the future testing on this database should report the
mean and the standard deviation of the face recognition results
of the 10 runs. For face verification, following the work [13],
to depict the ROC curve, we require the final similarity matrix
to be constructed by concating 10 similarity matrices which
are respectively computed in 10 runs.

With the common parts described above, we now define
the particular part of the distinct protocol for each of the three
video-based face recognition scenarios, i.e., V2S, S2V, and
V2V face recognition.

1) Evaluation Protocol for V2S Scenario: As defined
in Table I, in the V2S scenario, the target set contains still
images of the persons with known identities, while the query
samples are video clips of faces to be recognized, generally
by matching against the target still face images. Therefore,
for this scenario, we designed the protocol with the training
and testing data configured as in Table IV. Specifically,
the videos taken by three camcorders form three separated
experiments, i.e., V1-S, V2-S, and V3-S. The 10 random
partitions of the 300/700 subjects for training and testing
are given in the “V2S partitions” folder of the released
database.

TABLE VI

TRAINING AND TESTING CONFIGURATION FOR V2V SCENARIO

2) Evaluation Protocol for S2V Scenario: Compared with
V2S scenario, the target set of the S2V scenario conversely
contains videos while the queries are still face images. There-
fore, as shown in Table V, we can also form three different
experiments, i.e., S-V1, S-V2, and S-V3, according to the
source (/camcorder) of the video in the target set. Similarly,
the 10 random partitions of the 300/700 subjects for training
and testing are given in the “S2V partitions” folder of the
released database.

3) Evaluation Protocol for V2V Scenario: To form
V2V evaluations, for either target set or query set, we have
3 videos per subject respectively from Cam 1, Cam 2, and
Cam 3. Therefore, they can mutually form 6 experiments,
as shown in Table VI. Alternatively, we can also setup more
experiments by taking one or two of the three videos to form
the target set while keeping the remaining as the queries,
which is not considered in this work in order to alleviate
the evaluation burden. Similarly, the 10 random partitions of
the 300/700 subjects for training and testing are given in the
“V2V partitions” folder of the released database.

III. REVIEW OF EXISTING SET-BASED METHODS

FOR VIDEO-BASED FACE RECOGNITION

In this section, we briefly review previous set-based methods
for video-based face recognition. These methods generally
represent each still image with a feature vector (i.e., a point
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TABLE VII

SELECTED SET-BASED METHODS FOR THE PROBLEM OF V2S/S2V FACE RECOGNITION. ACCORDING TO THE USED SET MODEL TYPE, THESE METHODS
ARE GROUPED INTO FOUR CATEGORIZATIONS TO SOLVE THIS PROBLEM BY DEFINING DIFFERENT POINT-TO-SET DISTANCES

TABLE VIII

SELECTED SET-BASED METHODS FOR THE PROBLEM OF V2V FACE RECOGNITION. ACCORDING TO THE USED SET MODEL TYPE, THESE METHODS

ARE GROUPED INTO FOUR CATEGORIZATIONS TO SOLVE THIS PROBLEM BY DEFINING DIFFERENT SET-TO-SET DISTANCES

in Euclidean space) while treating each video as an image
set (i.e., a set of points in Euclidean space). According to
the survey [10], in addition to some super-resolution tech-
niques [53], [54], 3D modeling methods [55]–[57] and frame
selection algorithms [9], [58], [59], a large proportion of set-
based methods focus on the statistical modeling, which can
efficiently capture the pattern variations (such as changes of
poses, expressions and illumination) of face in videos. The
core of this kind of set-based methods is how to model
the set and how to measure the point-to-set and set-to-set
distance respectively for V2S/S2V and V2V face recognition.
As summarized in Table VII (V2S/S2V case) and Table VIII
(V2V case), according to the corresponding set model type,
we classify these methods into four categories, i.e., linear sub-
space, nonlinear manifold, affine/convex hull, and probabilistic
model based methods.

A. Linear Subspace Based Methods

As well recognized, face images form a low dimensional
face subspace in the image space. Similarly, it should be true
that face images of a specific person lie in a lower dimensional
subspace in the face subspace. So, it is a natural choice to
represent the face images from a video sequence as a linear
subspace, as done by Yamaguchi et al. [30]. In the following,
we briefly describe how it can be used to compute point-to-set

distance and set-to-set distance respectively for V2S/S2V and
V2V face recognition scenarios.

1) For V2S/S2V Case: For the problem of face recognition,
Chien and Wu [37] proposed a Nearest Feature Space (NFS)
classifiers to measure the point-to-subspace distance,
which is equal to the well-known distance-from-feature-
space (DFFS) [60]–[62]:

d(x,S) = min
y∈S

‖x − y‖ = ‖x − x ′‖. (1)

where x ′ is the projection of x in the subspace S, also the
nearest point to x in S. With this defined point-to-set distance,
NFS can be applied to V2S/S2V face recognition.

2) For V2V Case: Yamaguchi et al. [30] exploited the
canonical correlations [63] between two linear subspaces to
calculate the set-to-set distance. With the linear subspace
modeling, Kim et al. [1] developed a Discriminant Canonical
Correlations (DCC) method by maximizing the canonical
correlations of within-class subspaces and minimizing those
of between-class subspaces to perform subspace-based classi-
fication more discriminatively. Hamm and Lee [32] treated the
subspaces of fixed dimensionality as elements on Grassmann
manifold, and then applied the projection metric between
subspaces for classification on Grassmann manifold in a kernel
LDA framework. Based on this work, Harandi et al. [43]
further improved the classification on Grassmann manifold
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by simultaneously exploiting the canonical correlation and
the projection distance between the subspaces in a more
generalized graph-embedding learning framework.

B. Nonlinear Manifold Based Methods

In most video-based face recognition scenarios, faces are
recorded with rich appearance variations due to changes in
pose, expression, lighting, etc. This will may make linear
subspace methods lose their advantage in the aspect of set
modeling. Therefore, several works [3], [5], [44], [45] explored
the nonlinear manifold to approximate the nonlinear variations
of a set of face images. Specifically, in these works, each
nonlinear manifold is partitioned into a number of local linear
models (i.e., linear subspaces) by employing the criterion of
Maximal Linear Patch. In the following, we briefly introduce
how manifold models can be used to compute point-to-
set distance and set-to-set distance respectively for different
scenarios of video-based face recognition.

1) For V2S/S2V Case: By applying DFFS [60]–[62],
Wang et al. [3] defined a point-to-manifold distance (PMD)
to match points against sets. With this nolinear manifold
modeling, PMD is defined as the smallest point-to-subspace
distance of any pairs of point and linear subspace as in the
following:

d(x,M) = min
1≤i≤m

d(x,Si ). (2)

where m is the number of local linear subspaces that constitute
the manifold M, Si is the i -th linear subspace, and d(x,Si)
is computed by Eq.1.

2) For V2V Case: Wang et al. [3] measured manifold-
to-manifold distance by integrating the subspace-to-subspace
distances between pair-wise subspaces respectively from
two compared manifolds. In their method, the subspace-to-
subspace distance is defined in a form of weighted average of
canonical correlations between two subspaces and cosine simi-
larities of exemplars in them. To further improve the manifold-
to-manifold matching, Cui et al. [45] and Chen et al. [5]
proposed effective and efficient algorithms for the problem of
the alignment of the subspaces from two matching manifolds
when calculating their canonical correlations.

C. Affine/Convex Hull Based Methods

In real-world scenario, surveillance video sequences are
commonly very short but cover large and complex data vari-
ations. In this kind of setting, linear subspace and nonlinear
manifold methods typically fail to work. To handle this prob-
lem, several works [4], [38], [39] introduced the affine/convex
hull set modeling, which approximates exemplars of each
image set by the affine/convex combination of its samples.
This typically gives a rather loose approximation to the data
of image sets and is insensitive to the positions of the samples
within the affine/convex hull [4].

1) For V2S/S2V Case: Vincent and Bengio [38] proposed
K-local Hyperplane (Convex) Distance Nearest Neighbor algo-
rithm (HKNN/CKNN) to measure the point-to-affine-hull/
point-to-convex-hull distance. In addition, Cevikalp et al. [39]

developed Nearest Hyperdisk method (NHD) to define the
distance of point-to-hyperdisk, which models set with intersec-
tion of affine hull and bounding hypersphere. More recently,
Zhu et al. [40] employed the l2-norm regularized affine hull
defined in [47], and then proposed a novel metric learning
framework to learn appropriate point-to-l2-affine-hull distance.

2) For V2V Case: Given two hulls, Cevikalp and Triggs [4]
defined the inter-hull distance as the distance between the
nearest virtual points in two comparing hulls via a convex
optimization. For more robust classification, Hu et al. [46]
and Yang et al. [47] extended this work by adding sparse
(i.e., l1 based) or collaborative (i.e., l2 based) regularizations to
calculate the inter-hull distance. By employing the basic inter-
hull distance, Zhu et al. [40] proposed a novel distance metric
learning for set-to-set classification. In addition, by modeling
the query set as a convex or regularized hull, Zhu et al. [48]
developed a novel image set based collaborative representation
and classification (ISCRC) method to solve the problem of set-
to-set classification.

D. Probabilistic Model Based Methods

In the literature, probabilistic models have also been
employed to represent image set due to their appealing prop-
erty for characterizing the set data distribution. For instance,
Shakhnarovich et al. [49] and Arandjelović et al. [50] rep-
resented image set with some well-studied probability density
functions. More recently, Wang et al. [34] modeled each image
set by its second-order statistics, i.e. covariance matrix, to fit
the set data tightly and shows strong resistance to outliers.
These models are exploited in video-based face recognition as
described in the following.

1) For V2S/S2V Case: As can be seen from Table VII, few
methods explicitly defined point-to-set distance for probabilis-
tic models, but this does not mean they are not applicable. For
instance, given Gaussian model of a set, point-to-set distance
can be naturally defined based on the probability of the point.
For covariance models, it is also natural to define the point-
to-covariance distance with Mahalanobis distance:

d(x, C) = (x − μ)T C−1(x − μ). (3)

where the model C defines both the covariance matrix C and
the mean μ of the set.

2) For V2V Case: Shakhnarovich et al. [49] and
Arandjelovic et al. [50] applied the Kullback-Leibler diver-
gence (KLD) to measure the distance between Gaussian distri-
butions. Wang et al. [34] employed the Log-Euclidean distance
to measure the distances between covariance matrices and then
classified them on Riemannian manifold, where they reside on.
Based on the Log-Euclidean distance, Vemulapalli et al. [51]
applied multiple kernel learning techniques to exploit more
discriminant information between covariance matrices for
more robust set-to-set classification.

IV. A NEW POINT-TO-SET CORRELATION LEARNING

METHOD FOR V2S/S2V FACE RECOGNITION

As it can be found in previous descriptions, relatively fewer
works have been dedicated to V2S/S2V scenarios, which
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does not match their importance in real-world applications.
So, this paper further proposed a new point-to-set classifi-
cation mathod especially for benchmarking V2S/S2V face
recognition.

A. Overview

As mentioned in the previous section, the V2S/S2V
face recognition is actually a point-to-set classification task.
To tackle this task, we study a Point-to-Set Correlation
Learning (PSCL) framework to accommodate most of statis-
tical models of set data. Inspired by our previous work [35],
we formulate this task as a problem of learning correlations
between Euclidean points and Riemannian elements, which
respectively represent the images as points in Euclidean
space R

D and the usual set models as elements on a spe-
cific Riemannian manifold M. According to the type of set
modeling, we follow [35] to study three different Euclidean-to-
Riemannian matching cases, where the Riemannian elements
are linear subspaces, affine subspaces and covariance matrices
respectively. To more directly handle the three heterogeneous
matching cases compared with [35], we exploit the well-
known Kernel Canonical Correlation Analysis (KCCA) [36] to
learn the maximum correlations between heterogeneous data
for robust V2S/S2V face recognition.

B. Proposed Method

Canonical Correlation Analysis (CCA), proposed by
Hotelling [63], is a well-known method of correlating linear
relationships between two sets of variables. Suppose we have
two sets of data X and Y , CCA learns two different projections
Wx , WY such that the correlation between the projections
W T

x X and W T
Y Y of the variables onto these basis vectors is

mutually maximized:

ρ = max
Wx ,WY

W T
x XY T WY√

W T
x X XT Wx W T

Y YY T WY

(4)

where the maximum canonical correlation is the maximum of
ρ with respect to Wx and WY .

As a kernel extension of CCA, KCCA [36] has been applied
to learn correlations in higher dimensional feature spaces.
Here we provide a brief description on how it is applied in
our case. Formally, given one collection of data for points
X = {x1, x2, . . . , xm} (xi ∈ R

D, 1 ≤ i ≤ m) and one
collection of data for set models Y = {Y1, Y2, . . . , Ym}
(Y j ∈ M, 1 ≤ j ≤ m), we consider the V2S/S2V face
recognition scenario addressed in this paper.

Similar to other traditional kernel learning method, KCCA
also employs the “kernel trick” to implicitly map the het-
erogeneous data into two higher dimensional Reproducing
Kernel Hilbert Spaces (RKHS) Hx ,HY respectively. Here,
we define the two implicit maps as φx : R

D �→ Hx and
φY : M �→ HY . With these two maps, the corresponding
kernels for points and set models are two functions, such
that all xi , x j ∈ X , Yi , Y j ∈ Y satisfy: Kx (xi , x j ) =
〈φx (xi), φx (x j )〉, KY (Yi , Y j ) = 〈φY (Yi ), φY (Y j ). Then the
two different directions Wx , WY in Eq.4 can be rewritten as

the projection of the data onto the direction α,β:

Wx = XT α,

WY = Y T β. (5)

Let Kx = X XT , KY = YY T be the kernel matrices
corresponding to the two representations and substitute Eq.5
into Eq.4, KCCA seeks to solve the optimization [36]:

ρ = max
α,β

αT X XT YY T β√
αT X XT X XT αβT YY T YY T β

= max
α,β

αT Kx KY β√
αT K 2

x αβT K 2
Y β

(6)

As shown in the study [36], the optimal α in Eq.6 is given
by the leading eigenvectors of the generalized eigenproblem of
the form Iα = λ2α, where I is identity matrix. With α solved,

the optimal β in Eq.6 is then calculated by β = K−1
Y Kx α

λ . For
more details to solve this optimization problem Eq.6, please
refer to [36].

Now, we need to study how to define the kernel functions
Kx , KY for points and set models. For the Euclidean points,
the Radial Basis Function (RBF) kernel, a positive definite
kernel, is exploited. Formally, given a pair of points xi , x j in
Euclidean space, the kernel function is defined as:

Kx (xi , x j ) = ex p(−‖xi − x j‖2/2σ 2
x ) (7)

which actually makes use of the Euclidean distance between
two data points xi and x j .

As to the set models, since they are usually defined on
Riemannian manifold rather than Euclidean space [32]–[34],
the above formulation will fail for them. So, it has to be
generalized to Riemannian manifold. For this purpose, given
two points Yi , Y j on Riemannian manifold, we formally define
a generalized kernel function for them as in the following:

KY (Yi , Y j ) = ex p(−d2(Yi , Y j )/2σ 2
Y ) (8)

It is clear that this kernel actually takes the form of Gaussian
function. In the formulation, the most important component
is d(Yi , Y j ), which defines a distance on the Riemannian
manifold that the usual set models Y lies. Specifically, for
three typical set models, i.e., linear subspace, affine subspace
and covariance matrix, this distance is discussed individually
in the following.

1) For Linear Subspaces: A number of works [32], [33],
[43], [51], [64] studied that the space of d-dimensional linear
subspaces of the R

D is a Grassmann manifold G(d, D).
In other words, an element of G(d, D) is a linear subspace,
which can be represented by its orthonormal basis matrix U . U
is formed by the d leading eigenvectors corresponding to the d
largest eigenvalues of the covariance matrix of an image set,
where each image is represented as a D dimensional feature
vector. For two points Yi , Y j on the manifold, their distance
is usually measured by the Projection metric [32]:

d(Yi , Y j ) = 2−1/2‖Ui UT
i − U j UT

j ‖F . (9)

where ‖ · ‖F denotes the matrix Frobenius norm.
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2) For Affine Subspaces: An affine subspaces is actually a
linear subspace with an offset. Accordingly, the work [33]
defined the space of d-dimensional affine subspaces as an
Affine Grassmann manifold AG(d, D). Formally, each point
on AG(d, D) is an affine subspace spanned with an orthonor-
mal matrix U adding the offset μ (i.e., the mean of a set of
Euclidean points) from the origin. In this work, we simply
extend the similarity proposed in [33] to the distance of two
points Yi , Y j on the affine manifold as:

d(Yi , Y j ) = 2−1/2(‖Ui UT
i − U j UT

j ‖F + ‖(I − Ui UT
i )μi

− (I − U j UT
j )μ j ‖F ), (10)

where I ∈ R
D×D is the identity matrix.

3) For Covariance Matrices: As studied in [34] and
[65]–[67], when the covariance matrices are nonsingular
(frequently the case), they are Symmetric Positive Defi-
nite (SPD) matrices C of size d × d , and thus typically
reside on a specific Riemannian manifold S

d+. To define the
distance d(Yi , Y j ) for Eq.8 on the SPD manifold, we exploit
Log-Euclidean distance (LED) [68], which overcomes
the computational limitations of the affine-invariant dis-
tance (AID) [66], [69] framework while retaining favorable
Riemannian geometry. Formally, LED is achieved by clas-
sical Euclidean computations in the domain of SPD matrix
logarithms:

d(Yi , Y j ) = ‖ log(Ci ) − log(C j )‖F . (11)

where log(C) = U log(�)UT with C = U�UT being the
eigen-decomposition of covariance matrix C .

Based on the distances defined in Eq.9, Eq.10 and Eq.11,
the corresponding kernel function on the specific type of
Riemannian manifold can be yielded by using Eq.8. However,
according to Mercer’s theorem, only positive definite kernels
define valid RKHS. By employing the approach developed
in the work [67], we can easily prove the positive definite-
ness of these Gaussian kernels defined on the corresponding
Riemannian manifold. As for details, readers are refered
to [67].

Similar to our previous work [35], according to the type of
Riemannian manifold where the employed set models reside
on, this work can actually deal with three heterogeneous
matching cases: Euclidean-to-Grassmannian (EG), Euclidean-
to-AffineGrassmannian (EA) and Euclidean-to-SPD (ES)
matching cases. Accordingly, we denote the proposed PSCL
working in the three different cases respectively by PSCL-EG,
PSCL-EA and PSCL-ES.

C. Discussion

To address the problem of heterogeneous matching, our pre-
vious approach [35], called Learning Euclidean-to-Riemannian
Metric (LERM), attempts to learn a proper cross-view distance
metric across heterogeneous spaces (i.e., Euclidean space and
Riemannian manifold). In contrast, our new method PSCL
exploits the well-known KCCA to more directly learn correla-
tions between heterogeneous data. Actually, both of these two
methods can be viewed as a two-stage procedure, which firstly
embeds the heterogeneous spaces into two high dimensional

Hilbert spaces, and then learn a couple of transformations from
the two Hilbert spaces to a common subspace. Nevertheless,
their inputs and objectives are quite different: LERM is
designed to learn an optimal distance metric by taking both
positive and negative pairs as constraints, while PSCL aims
to learn the maximum correlations between positive pairs.
Therefore, intuitively, LERM seems to be more sophisticated
than PSCL. However, under the classical KCCA framework,
PSCL is definitely a good benchmark tool to study the cross-
view learning problem of V2S/S2V face recognition.

V. EXPERIMENTS

In this section, we evaluate a number of representative
set-based face recognition methods listed in Table VII and
Table VIII for benchmarking both V2S/S2V and V2V face
recognition on our released COX Face DB.

A. Evaluations on V2S/S2V Face Recognition

In the V2S/S2V face recognition evaluation, either the
still face images of high resolution or the smaller size face
frames from video sequences are all normalized to the same
size grayscale images of 48 × 60. In addition, we adopt
histogram equalization to eliminate the illumination effects on
normalized facial images.

For fair comparison, most of the parameters of the com-
parative methods are empirically tuned according to the rec-
ommendations in the original work as well as the source
codes provided by the original authors: For HKNN, the
regularization parameter λ is set to 50. For PSDML, we set its
parameters ν = 1, λ = 0.8. For our method PSCL and LERM,
we implement three Euclidean-to-Riemannian cases, i.e.,
PSCL-EG/PSCL-EA/PSCL-ES and LERM-EG/LERM-EA/
LERM-ES. In LERM, the parameters λ1 = 0.01, λ2 = 0.1,
the neighborhood number k1 = 1, k2 = 20 and the number
of iterations is set to 30. For PSCL-EG/PSCL-EA/LERM-EG/
LERM-EA, the dimension of (affine) Grassmann manifold is
set to 10. For PSCL-ES and LERM-ES, in order to deal with
possible singularity of covariance matrices, following [34],
regularization technique is applied to the original covariance
matrix C as C∗ = C +λI , where I is the identity matrix and
λ is set to 10−3 × trace(C). For all the cases in PSCL and
LERM, the kernel widths σx , σY are specified from the mean
of distances. The final dimensions of the PSCL and LERM
are both set to c − 1 where c is the number of subjects in
training.

The rank-1 recognition rates on V2S and S2V face recog-
nition evaluations, defined in Table IV and Table V, are both
reported in Table IX. In this table, each result includes both
mean and standard deviation over 10 runs of the evalua-
tion, as detailed in the corresponding evaluation protocol in
Section II.D. For the verification evaluation, the verification
results are shown by depicting ROC curves in Fig. 4. In this
figure, we present the ROC curves of six representative
methods, each of which reached the (second) highest rank-1
recognition rates respectively with different set modelings.
In addition to these results, we also compare their efficiencies
in Table X. This table tabulates the training and testing time
of different methods working in the V2S/S2V scenario on an
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TABLE IX

RANK-1 RECOGNITION RATES (%) OF V2S/S2V FACE RECOGNITION EVALUATIONS SPECIFIED IN TABLE IV AND TABLE V ON COX FACE DB.
THE BOLD VALUES INDICATE THE FIRST THREE HIGHEST PERFORMANCES IN THE CORRESPONDING TESTINGS

Fig. 4. ROC curve of different methods working in V2S/S2V scenario. Here, we show the verification rates (%) of several representative set-based methods
from FAR = 0.001 to FAR = 0.1.

TABLE X

RUNNING TIME (IN SECONDS) COMPARISON OF DIFFERENT METHODS IN THE V2S/S2V FACE RECOGNITION

Intel(R) Core(TM) i7-37700M (3.40GHz) PC. In this table,
training time is only needed by supervised methods. For
testing, we report the classification time for recognizing 1
probe subject from 700 gallery subjects.

From the results in Table IX, we can clearly observe
that the rank-1 recognition rates of most of the compara-
tive methods are quite low. Specifically, the highest recog-
nition rates for Exp.V1-S, Exp.V2-S, and Exp.V3-S, are only
45.71%, 42.80%, and 58.37% respectively; and for Exp.S-V1,
Exp.S-V2, and Exp.S-V3, they are respectively 49.07%,
44.16%, and 63.83%. The top verification rates for Exp.V1-S/
S-V1, Exp.V2-S/S-V2, and Exp.V3-S/S-V3 are 34.30%,
31.12%, 45.97% at false accept rate (FAR)= 0.001, and are
72.63%, 68.37%, 80.46% at FAR= 0.01. It is clear that the
experimental results with V1/V2 videos is much worse than
those with V3 videos, which can be attributed to the low
quality, low resolution, and large pose variations of the faces in
V1/V2. Experiments with V3 videos are easier mainly because

V3 videos record more frontal face images of higher resolu-
tion, as the subjects walked directly to the camera. Overall
speaking, these relatively low recognition rates prove that the
proposed COX Face DB and corresponding evaluations are
very suitable for validating and advancing future V2S/S2V
face recognition technologies.

Since relatively few set-based methods can be directly
applied to V2S/S2V face recognition, most of compara-
tive methods, except PSDML and our method LERM-EG/
LERM-EA/LERM-ES, are unsupervised. As can be seen
from Table IX, among the unsupervised methods, NFS,
Mahalanobis slightly outperform PMD, HKNN, and CKNN.
This may demonstrate that NFS and Mahalanobis are more
robust point-to-set distances than others for S2V/V2V face
recognition on this dataset. Another observation is that the
performances of all these unsupervised methods are very
low due to the challenging setting of this dataset and their
failure to consider the large heterogeneity between still images
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TABLE XI

RANK-1 RECOGNITION RATES (%) OF V2V FACE RECOGNITION EVALUATIONS SPECIFIED IN TABLE VI ON COX FACE DB. THE BOLD
VALUES INDICATE THE FIRST THREE HIGHEST PERFORMANCES IN THE CORRESPONDING TESTINGS

(i.e., points) and video sequences (i.e., sets) in the V2S/S2V
scenarios. As a supervised method, PSDML outperforms
HKNN with the same set modeling (i.e., affine hull modeling)
in most tests but does not beat other unsupervised methods
with different set models. In contrast, our PSCL and LERM
methods with different set modelings achieve much higher
performances than other methods including PSDML. This is
possibly because PSDML fails to respect the non-Euclidean
geometry of the space of set models. As is well known,
neglecting the underlying data structure in the learning stage
will probably lead to undesirable metrics. So, by exploiting
the Riemannian geometry of the manifold of set models
to learn the correlation of heterogeneous data, our LERM
always significantly outperforms the competitive methods in
the V2S/S2V benchmark tests.

B. Evaluations on V2V Face Recognition

In the V2V face recognition testing, each video face frames
is normalized to a grayscale image with a size of 32 × 40.
Similar to the V2S/S2V evaluation, histogram equalization is
employed to eliminate the lighting effects on the normalized
facial images.

According to the original works of the competing meth-
ods, we carefully tune their parameters for fair comparison.
For MSM/DCC/MMD/AHISD, PCA is performed to learn
the linear subspaces by preserving 95% of data energy. For
GDA/GGDA, we set the dimension of (affine) Grassmann
manifold as 10. For GGDA, the number of neighborhood
is set to 10. In MMD/MDA, the number of between-class
Nearest Neighbor local models and the subspace dimension
are specified as [3]/ [44]. For both AHISD and CHISD,
we use their linear versions with the default setting. For
SSDML, we set the parameters λ1 = 0.001, λ2 = 0.5,
the numbers of positive and negative pairs per set is set

to 10 and 20. For RNP, we set the parameters λ1 = 0.001 and
λ2 = 0.1. For ISCRC, we implement the RH-ISCRC version
with l2 regularization due to its relatively high efficiency.
In this method, we set λ1 = 0.001, λ2 = 0.001. For CDL,
since the kernel Partial Least Squares (KPLS)-based CDL
works only when the gallery data is used for training, it is
ineligible for our evaluation protocol on COX Face DB. So, we
only implement the KLDA-based CDL. To yield non-singular
covariance matrices in CDL, we adopt the same regularization
technique on covariance matrices mentioned before. The final
dimension of GDA/GGDA/CDL are all set to c −1 where c is
the number of classes in training. For LMKML, we use median
distance heuristic to tune the widths of Gaussian kernels.

Note that, our method PSCL and LERM are both designed
for cross-view based classification. Since there are three
different sets of videos for training and testing as designed
in Table VI, we also evaluate the performances of PSCL
and LERM. According to different set modeling (i.e., lin-
ear subspace, affine subspace and covariance matrix model-
ing), we denote their corresponding instances as PSCL-GG/
PSCL-AA/PSCL-SS and LERM-GG/LERM-AA/LERM-SS,
where GG, AA, SS respectively correspond to different
manifold-to-manifold matching cases: Grassmann to Grass-
mann (GG), Affine Grassmann to Affine Grassmann (AA),
SPD to SPD (SS). Their parameter settings are the same as
those working in the V2S/S2V scenario.

As defined in Table VI in Section II.D, we report the
rank-1 identification rates and verification rates in the V2V
face recognition scenario. As shown in Table XI, following the
protocol designed in section II.D, the identification results are
consist of both mean and standard deviation over 10 random
runs. The verification results of several representative methods
are represented by the ROC curves depicted in Fig. 5. To study
the efficiencies of the comparative methods, Table XII lists
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Fig. 5. ROC curve of different methods working in V2V scenario. Here, we show the verification rates (%) of several representative set-based methods from
FAR = 0.001 to FAR = 0.1.

TABLE XII

RUNNING TIME (IN SECONDS) COMPARISON OF DIFFERENT METHODS IN THE V2V FACE RECOGNITION

their the running time on an Intel(R) Core(TM) i7-37700M
(3.40GHz) PC.

From Table XI, the first clear impression is that the V2V
recognition rates are much higher than those of S2V/V2S
(as reported in Table IX). In addition, the top verifica-
tion rates in this scenario are also higher: for Exp.V2-V1/
V1-V2, Exp.V3-V1/V1-V3, and Exp.V3-V2/V2-V3 are
66.67%, 75.69%, 70.19% at false accept rate (FAR)= 0.001,
and are 87.26%, 90.77%, 87.14% at FAR= 0.01. Two rea-
sons are enumerated to explain this phenomenon: 1) In the
V2V face recognition scenario, both the query and the target
are videos containing multiple frames, thus providing more
discriminative information for classification. 2) For the V2V
scenario, the query-target matching performs in homogenous
space, which is easier than matching between heterogeneous
spaces (i.e., the space of still images and the space of usual
set models for video sequences).

The second observation is that, among all the
non-discriminant methods, nonlinear manifold based methods
(i.e. MMD) outperforms linear subspace based method
(i.e. MSM) in 4 tests out of all the 6 ones. However, both
of the two methods are beaten by affine/convex hull based
methods (i.e., AHISD and CHISD). We mildly attribute the
superiority of the affine/convex hull based methods to their
generating virtual samples from the relatively sparse original
samples in the high-dimensional image space.

Thirdly, it is also clear that the discriminant methods
(e,g., DCC, GDA, GGDA, MDA, SSDML, CDL, PSCL,
LERM) consistently outperform those non-discriminative
methods (e.g., MSM, MMD, AHISD, CHISD). As analyzed
previously, it is not surprising that discriminant methods have
learned better models for the purpose of classification from
the training data with distribution probabilistically similar to
that of the testing data.

Fourthly, among the discriminant methods, the kernel-
based discriminant methods (e.g., GDA, GGDA, CDL, and
LERM-SS) generally achieve better performances than others

in the V2V face recognition scenarios. The reason is that
the kernel-based discriminant methods usually treat the set
models as elements on a specific Riemannian manifold and
perform feature extraction and classification in the same space.
In contrast, as presented in the existing work [32], the other
discriminant methods typically extract features and classify
subjects in two different spaces, and thus make the latter
benefit less from the former.

Lastly, we also find that, different from the results in the
V2S/S2V evaluation, both our methods LERM and PSCL can
not reach the best performances in the V2V face recognition
scenario. This is because LERM and PSCL is originally
designed for the cross-view problem of V2S/S2V face recog-
nition. In order to adapt them to the V2V scenario, they are
exploited to learn cross-view models on two different video
sources by assuming the videos captured by different cam-
corders belongs to different views. With this strong assumption
to learn the discriminant information on training data, it is
reasonable that LERM and PSCL can not achieve the-state-
of-the-art in the V2V evaluation.

VI. CONCLUSION

This paper released a large scale face database with 1,000
subjects, titled COX Face DB, which contains both still images
taken by DC with seated subjects and surveillance-like videos
captured by camcorders with walking subjects. The dataset
and its evaluation protocol are designed for evaluating all
the three video-based face recognition scenarios: V2S, S2V
and V2V. Evaluation results show that, on our COX Face DB,
the best identification rates for V2S/S2V scenarios are
around 40%∼60%, while those for V2V scenario are around
75%∼ 85%, which indicates that the new dataset is appropriate
as a new benchmark dataset for video-based face recognition.

As a comparative study paper, we also reviewed existing
set-based methods recently proposed for video-based face
recognition in terms of their representation for face image
set and their point-to-set or set-to-set metrics. Most of these
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methods are evaluated based on the COX Face DB with the
accompanying evaluation protocols.

To advance the relatively under-studied V2S/S2V tasks, we
additionally proposed a novel baseline method named Point-
to-Set Correlation Learning (PSCL). In consideration of the
heterogeneity between still image (i.e., Euclidean point) and
video sequence (i.e., Riemannian elements), PSCL exploits
the well-know KCCA to learn the maximum correlations
between these heterogeneous data. On COX Face DB, our
PSCL impressively outperforms most of the existing methods
for V2S/S2V face recognition tasks. In addition, this method
can be also adapted to the V2V task and finally achieves
promising performances for this task.

Overall speaking, the studies in this paper show that, video-
based face recognition is far from mature especially compared
with face recognition from still images. We suggest more
efforts should be made to advance the real-world video-based
face recognition applications.
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