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Geometry-aware Similarity Learning
on SPD Manifolds for Visual Recognition
Zhiwu Huang, Member, IEEE, Ruiping Wang, Member, IEEE, Xianqiu Li, Wenxian Liu,

Shiguang Shan, Senior Member, IEEE, Luc Van Gool, Member, IEEE and Xilin Chen, Fellow, IEEE

Abstract—Symmetric Positive Definite (SPD) matrices have
been widely used for data representation in many visual recog-
nition tasks. The success mainly attributes to learning discrim-
inative SPD matrices with encoding the Riemannian geometry
of the underlying SPD manifold. In this paper, we propose a
geometry-aware SPD similarity learning (SPDSL) framework to
learn discriminative SPD features by directly pursuing manifold-
manifold transformation matrix of column full-rank. Specifically,
by exploiting the Riemannian geometry of the manifold of
fixed-rank Positive Semidefinite (PSD) matrices, we present a
new solution to reduce optimizing over the space of column
full-rank transformation matrices to optimizing on the PSD
manifold which has a well-established Riemannian structure.
Under this solution, we exploit a new supervised SPD similarity
learning technique to learn the transformation by regressing
the similarities of selected SPD data pairs to their ground-truth
similarities on the target SPD manifold. To optimize the proposed
objective function, we further derive an algorithm on the PSD
manifold. Evaluations on three visual classification tasks show
the advantages of the proposed approach over the existing SPD-
based discriminant learning methods.

Index Terms—discriminative SPD matrices, Riemannian ge-
ometry, SPD manifold, geometry-aware SPD similarity learning,
PSD manifold.

I. INTRODUCTION

Recently, Symmetric Positive Definite (SPD) matrices of
real numbers appear in many branches of computer vision.
Examples include region covariance matrices for pedestrian
detection [1], [2] and texture categorization [3], [4], [5], joint
covariance descriptor for action recognition [6], [5], diffusion
tensors for DT image segmentation [7], [8], [4] and image set
based covariance matrix for video face recognition [9], [10],
[11]. Due to the effectiveness of measuring data variations,
such SPD features have been shown to provide powerful
representations for images and videos.

However, such advantages of the SPD matrices often accom-
pany with the challenge of their non-Euclidean data structure
which underlies a specific Riemannian manifold [7], [8]. Ap-
plying the Euclidean geometry directly to SPD matrices often
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Fig. 1. Three different learning schemes for SPD features. The first one
(a)→(b) is to firstly flatten the original manifold Symn

+ by tangent space
approximation and then learn a map g to a discriminative Euclidean space
Rd. The second one (a)→(c)→(b) is to firstly embed Symn

+ with an implicit
map ϕ into an RKHS H and then learn a mapping h to a more discriminative
Euclidean space Rd. The last one (a)→(d) aims to learn a map f from
the original SPD manifold Symn

+ to a more discriminative SPD manifold
Symm

+ . Here, X ∈ Symn
+ and f(X) ∈ Symm

+ are the SPD matrices,
TXSym

n
+ and Tf(X)Sym

m
+ are the tangent spaces.

results in poor performances and undesirable effects, such as
the swelling of diffusion tensors in the case of SPD matrices
[12], [13]. To overcome the drawbacks of the Euclidean
representation, recent works [13], [8], [14] have introduced
Riemannian metrics, e.g., Affine-Invariant metric [7], Log-
Euclidean metric [8], to encode the Riemannian geometry of
SPD manifold properly.

By applying these classical Riemannian metrics, a couple
of works attempt to extend Euclidean algorithms to work on
manifolds of SPD matrices for learning more discriminative
SPD matrices or their vector-forms. To this end, several studies
exploit effective methods on one SPD manifold by either
flattening it via tangent space approximation [2], [15], [16],
[17] (See Fig.1 (a)→(b)) or mapping it into a high dimensional
Reproducing Kernel Hilbert Space (RKHS) [3], [9], [4], [18],
[19], [20], [21] (See Fig.1 (a)→(c)→(b)). Obviously, both of
the two families of methods inevitably distort the geometrical
structure of the original SPD manifold due to the procedure of
mapping the manifold into a flat Euclidean space or a high di-
mensional RKHS. Therefore, the two learning schemes would
lead to sub-optimal solutions for the problem of discriminative
SPD matrix learning.

To more faithfully respect the original Riemannian geome-
try, another kind of SPD-based discriminant learning methods1

1Several related ideas were introduced in [22], [23], [24] for the dimension-
ality reduction or optimization on different types of Riemannian manifolds.
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[5], [25] aims to pursue a column full-rank transformation
matrix mapping the original SPD manifold to a more discrim-
inative SPD manifold, as shown in Fig.1 (a)→(d). However, as
directly learning the manifold-manifold transformation matrix
is hard, the work [5] alternatively decomposes it to the product
of an orthonormal matrix with a matrix in GL(n), and requires
the employed Riemannian metrics to be affine invariant. By
doing so, optimizing the manifold-manifold transformations
is equivalent to optimizing over orthonormal projections. Al-
though the additional requirement simplifies the optimization
of the transformation, this has not only reduced the original
solution space but also inevitably excluded all non-affine
invariant Riemannian metrics such as the well-known Log-
Euclidean metric, which has proved to be much more efficient
than Affine-Invariant metric [8]. While the work [25] exploited
the Log-Euclidean metric under the same scheme, it actually
attempts to learn a tangent map, which implicitly approximate
the tangent space and hence introduces some distortions of the
true geometry of SPD manifolds.

In this paper, also under the last scheme (see Fig.1 (a)→(d)),
we propose a new geometry-aware SPD similarity learning
(SPDSL) framework to open a broader problem domain of
learning discriminative SPD features by exploiting either affine
invariant or non-affine invariant Riemannian metrics on SPD
manifolds. To realize the SPDSL framework, there are three
main contributions in this work:
• By exploiting the Riemannian geometry of the manifold

of fixed-rank Positive Semidefinite (PSD) matrices, our
SPDSL framework provides a new solution to directly
learn the manifold-manifold transformation matrix. As
no additional constraint is required, the optimal trans-
formation will be pursued in a favorable solution space,
enabling a wide range of well-established Riemannian
metrics to work as well.

• To fulfill the solution, a new supervised SPD similarity
learning technique is proposed to learn the transformation
by regressing the similarities of selected SPD pairs to the
target similarities on the resulting SPD manifold.

• We derive an optimization approach which exploits the
classical Riemannian Conjugate Gradient (RCG) algo-
rithm on the PSD manifold to optimize the proposed
objective function.

II. BACKGROUND

Let Symn = {H : HT = H} be a set of real, symmetric
matrices of size n×n and Sym+

n = {X ∈ Symn : ωTXω �
0,∀ω ∈ Rn,ω 6= 0} be a set of SPD matrices. The mapping
space Symn is endowed with usual Euclidean metric (i.e.,
inner product) 〈H1,H2〉 = Tr(HT

2 H1). As noted in [7], [8],
the set of SPD matrices Sym+

n is an open convex subset of
Symn. Thus, the tangent space to Sym+

n at any SPD matrix
in it can be identified with the set Symn. A smoothly-varying
family of inner products on each tangent space is known
as Riemannian metric, endowing which the space of SPD
matrices Sym+

n would yield a Riemannian manifold. With
such Riemannian metric, the geodesic distance between two
elements X1,X2 on the SPD manifold is generally measured

by 〈logX1
(X2), logX1

(X2)〉X1 . Several Riemannian metrics
and divergences have been proposed to equip SPD manifolds.
For example, Affine-Invariant metric [7], Stein divergence
[26], Jeffereys divergence [18] are designed to be invariant to
affine transformation. That is, for any M ∈ GL(n) (i.e., the
group of real invertible n×n matrices), the metric function δA
has the property δ2A(X1,X2) = δ2A(MX1M

T ,MX2M
T ).

In contrast, Log-Euclidean metric[8], Cholesky distance [27]
and Power-Euclidean metric [27] are not affine invariant.
Among these metrics, only Affine-Invariant metric [7] and
Log-Euclidean metric [8] define a true geodesic distance on
the SPD manifold [4]. In addition, the Stein divergence are
also widely used due to its favorable properties and high
performances in visual recognition tasks [26]. Therefore, this
paper focuses on studying such three representative Rieman-
nian metrics.

Definition 1. By defining the inner product in the tangent
space at the SPD point X1 on the SPD manifold as
〈H1,H2〉X1

= 〈X−1/21 H1X
−1/2
1 ,X

−1/2
1 H2X

−1/2
1 〉

and the logarithmic maps as logX1
(X2) =

X
1/2
1 log(X

−1/2
1 X2X

−1/2
1 )X

1/2
1 , the geodesic distance

between two SPD matrices X1,X2 on the SPD manifold is
induced by Affine-Invariant metric (AIM) as

δ2a(X1,X2) = ‖ log(X−1/21 X2X
−1/2
1 )‖2F . (1)

Definition 2. The approximated geodesic distance between two
SPD matricesX1,X2 on the SPD manifold is defined by using
Stein divergence as

δ2a(X1,X2) = ln det

(
X1 +X2

2

)
− 1

2
ln det(X1X2).

(2)
Definition 3. By defining the inner product in the
tangent space at the SPD point X1 on the SPD mani-
fold as 〈H1,H2〉X1

= 〈D log(X1)[H1],D log(X1)[H2]〉
(D log(X1)[H] denotes the directional derivative) and the
logarithmic maps as logX1

(X2) = D−1 log(X1)[log(X2) −
log(X1)], the geodesic distance between two SPD matrices
X1,X2 is derived by Log-Euclidean metric (LEM) as

δ2l (X1,X2) = ‖ log(X1)− log(X2)‖2F . (3)

III. PROPOSED APPROACH

In this section, we first propose a new solution of Rie-
mannian geometry-aware dimensionality reduction for SPD
matrices, and then present our supervised SPD similarity
learning method under the solution. Finally, we give a detailed
description of our developed optimization algorithm.

A. Riemannian Geometry-aware Dimensionality Reduction on
SPD manifolds

Given a set of SPD matrices X = {X1, . . . ,XN}, where
each matrix Xi ∈ Sym+

n , and a transformation W ∈ Rn×m
(m < n) is pursued for mapping the original SPD manifold
Sym+

n to a lower-dimensional SPD manifold Sym+
m. For-

mally, this procedure attempts to learn the parameter W , of a
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mapping in the form f : Sym+
n ×Rn×m → Sym+

m, which is
defined as:

f(Xi,W ) =W TXiW . (4)

To ensure the resulting mapping yields a valid SPD manifold
Sym+

m 3W TXiW � 0, the manifold-manifold transforma-
tion W is basically required to be a column full-rank matrix
W ∈ Rn×m∗ .

Since the solution space is a non-compact Stiefel manifold
Rn×m∗ where the distance function has no upper bound,
directly optimizing on the manifold is infeasible. Fortunately,
the conjugates (taking the form of WW T ) of column full-
rank matrices span a compact manifold Sym+

n (m) of Positive
Semidefinite (PSD) matrices, which is a quotient space of
Rn×m∗ and owns a well-established Riemannian structure. In
contrast, by additionally assuming the transformation W to be
orthogonal as done in [5], Eqn.4 could be optimized on com-
pact Stiefel manifold, which is a subset of the non-compact
Stiefel manifold Rn×m∗ . Further, for the affine invariant metrics
(e.g., AIM), optimizing on Stiefel manifold can be reduced to
optimizing over Grassmannian [5]. However, such orthogonal
solution space is smaller than the original solution space
Rn×m∗ , making the optimization theoretically yield suboptimal
solution of W . Thus, we choose to optimization on the PSD
manifold to search the optimal solution of W in a more
faithful way. Now, we need to study the geometry of the PSD
manifold Sym+

n (m).
For all orthogonal matrices O of size m × m, the map

W → WO leaves WW T unchanged. This property of W
results in the equivalence class of the form [W ] = {WO|O ∈
Rm×m,OTO = Im}, and yields a one-to-one correspondence
with the rank-m PSD matrix Q = WW T ∈ Sym+

n (m). By
quotienting this equivalence relation out, the set of rank-m
PSD matrices Sym+

n (m) is reduced to the quotient of the
manifold Rn×m∗ by the orthogonal group O(m) = {O ∈
Rm×m|OTO = Im}, i.e., Sym+

n (m) = Rn×m∗ /O(m). With
the studied relationship between Sym+

n (m) and Rn×m∗ , the
function φ : Sym+

n (m) → R : Q 7→ φ(Q) is able to derive
the function g : Rn×m∗ → R : W 7→ g(W ) defined as
g(W ) = φ(WW T ). Here, g is defined in the total space
Rn×m∗ and descends as a well-defined function in the quotient
manifold Sym+

n (m). Therefore, optimizing over the total
space Rn×m∗ is reduced to optimizing on the PSD manifold
Sym+

n (m), which is well-studied in several works [28], [29],
[30], [31]. Note that, as each element Q = WW T on the
PSD manifold is simply parameterized by W , optimizing on
the manifold actually deals directly with W . To more easily
understand this point, one can take the well-known Grassmann
manifold as an analogy, where each element can be similarly
represented by the equivalence class [W ] or the projection
matrix WW T (here, W TW = I), and the optimization on
it directly seeks the solution of W .

It can be further proven that the quotient Sym+
n (m) presents

the structure of a Riemannian manifold [28]. As a result,
endowing the total space Rn×m∗ with the usual Rieman-
nian structure of a Euclidean space (i.e., the inner product
〈H1,H2〉 = Tr(HT

2 H1)), a Riemannian structure for the
quotient space Sym+

n (m) follows. The inner product occurs

on the tangent space TW of the manifold Rn×m∗ . In the case
of the manifold Sym+

n (m), the corresponding tangent space is
decomposed into two orthogonal subspaces, the vertical space
VW = {WΩ|Ω ∈ Rn×m,ΩT = −Ω} and the horizontal
space HW = {H ∈ TW |HTW = W TH}, to achieve the
inner product 〈H1,H2〉. This Riemannian metric facilitates
several classical optimization techniques such as Riemannian
Conjugate Gradient (RCG) algorithm [28] working on the PSD
manifold Sym+

n (m). As for more detailed background on the
Riemannian geometry of the PSD manifold, please refer to the
works [28], [30].

By exploiting the Riemannian geometry of the fixed-rank
PSD manifold Sym+

n (m), we here open up the possibility
of directly pursuing an optimal column full-rank manifold-
manifold transformation matrix to solve the problem of di-
mensionality reduction on SPD features.

B. Supervised SPD similarity learning

As studied before, under the proposed framework of dimen-
sionality reduction on SPD features, a target SPD manifold
Sym+

m of lower dimensionality can be derived. On the new
SPD manifold Sym+

m, the geodesic distance between the two
original SPD points Xi,Xj is achieved by:

δ̂2(Xi,Xj) = δ2(f(Xi,W ), f(Xj ,W )), (5)

where f(Xi,W ) is the manifold-manifold transformation
computed by Eqn.4, δ can be the geodesic distance induced by
the commonly-used affine or non-affine invariant Riemannian
metrics Eqn.1, Eqn.2 and Eqn.3.

In this paper, we are focusing on the problem of supervised
SPD similarity learning for more robust visual classification
tasks where SPD features have shown great power. Formally,
for each SPD matrixXi ∈ Sym+

n , we define its class indicator
vector: yi = [0, . . . , 1, . . . , 0] ∈ Rc, where the k-th entry
being 1 and other entries being 0 indicates that Xi belongs to
the k-th class of c classes in total. As discriminant learning
techniques developed in Euclidean space, we assume that prior
knowledge is known regarding the distances between pairs of
SPD points on the new SPD manifold Sym+

m. Let’s take the
similarity or dissimilarity between pairs of SPD points into
account: two SPD points are similar if the similarity based on
the geodesic distance between them on the new manifold is
larger, while two SPD points are dissimilar if their similarity
is smaller.

Given a set of the similarity constraints, our goal is to
learn the manifold-manifold transformation matrix W that
parameterizes the similarities of SPD points on the target
SPD manifold Sym+

m. To this end, we exploit the supervised
criterion of centered kernel target alignment [32], [33], [34]
to learn discriminative features on the SPD manifold by
regressing the similarities of selected sample pairs to the target
similarities. Formally, our supervised SPD similarity learning
(SPDSL) approach is to maximize the following objective
function:

J (W ) =
〈UG ◦ k(W )U ,G ◦ (Y Y T )〉F

‖UG ◦ k(W )U‖F
, s.t.W ∈ Rn×m∗ ,

(6)
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where 〈·〉F and ‖ · ‖F are Frobenius inner product and
norm respectively. The elements of matrix k(W ) encodes
the similarities of SPD data while the elements of Y Y T

presents the ground-truth similarities of the involved SPD
points. The matrix G is used to select the pairs of SPD
points when the corresponding elements are 1. The matrix
U = IN − 1N1T

N

N is employed for centering the data similarity
matrix k(W ) and the similarity matrix Y Y T on labels. N
is the number of samples, IN is the identity matrix of size
N × N , 1N is the vector of size N with all entries being
ones, Y = [y1, . . . ,yN ]T is here supposed to be centered,
i.e., U(Y Y T )U → Y Y T , for simplicity. In the following,
we will give the formulations of the two matrices k(W ) and
G in more details.

More specifically, the employed matrix k(W ) in Eqn.6
encodes the similarity between each pair of SPD points
(Xi,Xj) on the SPD manifold Sym+

n , which takes a form
as:

kij(W ) = exp(−βδ̂2(Xi,Xj)), (7)

where δ̂2(Xi,Xj) is computed by Eqn.5, β is typically
set as β = 1

σ2 , σ is empirically set to mean of distances
of the original training sample pairs. Actually, the function
Eqn.7 takes a form of Gaussian kernel function. However,
as the objective function Eqn.6 can be expressed as sum of
the similarity regression results of selected sample pairs, the
function Eqn.7 just serves as a tool to encode the similarities
and is thus not necessarily positive definite (PD).

In practical application, the computational burden of han-
dling the full kernel matrix k(W ) on the SPD manifold
scales quadratically with the size of training SPD data. To
address this problem, we exploit the idea of Graph Embedding
technique [35] to select a limited number of data pairs to
construct a sparse kernel matrix (non PD) with a large number
of elements being zero. With this idea in mind, the matrix G
is defined to select the pairs of SPD points for SPD similarity
learning. By employing it, G ◦ k(W ) can be regarded as the
sparse kernel matrix, where the operation ◦ denotes Hadamard
product and the matrix G = Gw+Gb. Here, Gw and Gb are
defined as:

Gw(i, j) =

{
1, if Xi ∈ Nw(Xj) or Xj ∈ Nw(Xi)

0, otherwise,
(8)

Gb(i, j) =

{
1, if Xi ∈ Nb(Xj) or Xj ∈ Nb(Xi)

0, otherwise,
(9)

where Nw(Xi) is the set of vw nearest neighbors of Xi that
share the same class label as yi, and Nb(Xi) is the set of vb
nearest neighbors of Xi with different class labels from yi.
According to the theory of Graph Embedding [35], the within-
class similarity graph Gw and the between-class dissimilarity
graph Gb respectively defined in Eqn.8 and Eqn.9 can encode
the local geometrical structure of the space of the processing
data. Thus, in addition to speeding up the discriminant learning
on the SPD features, exploiting the Graph Embedding tech-
nique can not only learn the discriminative information of SPD
data but also characterize the local Riemannian geometry of
the underlying SPD manifold. The efficiency and effectiveness

Algorithm 1 Optimization algorithm
Input: The initial matrix W0

1. H0 ← 0,W ←W0.
2. Repeat
3. Hk ← −∇W J(Wk) + ητ(Hk−1,Wk−1,Wk).
4. Line search along the geodesic γ with the direction Hk

from Wk−1 = γ(k − 1) to find Wk = argminW J (W ).
5. Hk−1 ←Hk, Wk−1 ←Wk.
8. Until convergence
Output: The optimized matrix W

of the proposed discriminant learning approach working on
SPD manifolds will be further studied in the experimental part.

C. Riemannian Conjugate Gradient Optimization

As discussed before, optimizing in the solution space Rn×m∗
of the column full-rank transformation matrices in our objec-
tive function can be reduced to optimizing on the Riemannian
manifold of rank-m PSD matrices, Sym+

n (m). Therefore, in
this section, we exploit the Riemannian Conjugate Gradient
(RCG) algorithm [28] to optimize our objective function
J (W ) in Eqn.6 by deriving its corresponding gradient on
the PSD manifold Sym+

n (m).
As the Conjugate Gradient algorithm developed in Eu-

clidean space, the RCG algorithm on Riemannian manifolds
is an iterative procedure. As given in Algorithm1, an outline
for the iterative part of the algorithm goes as follows: at
the k-th iteration, find Wk by searching the minimum of
J along the geodesic in the direction Hk−1 from Wk−1,
compute the Riemannian gradient ∇WJ (Wk) at this point,
choose the new search direction by Hk = −∇WJ (Wk) +
ητ(Hk−1,Wk−1,Wk) and iterate until convergence. In the
procedure, the Riemannian gradient ∇WJ (Wk) can be eas-
ily approximately from its corresponding Euclidean gradient
DWJ (Wk) by the computation∇WJ (Wk) = DWJ (Wk)−
WkW

T
k DWJ (Wk), and the operation τ(Hk−1,Wk−1,Wk)

is the parallel transport of tangent vector Hk−1 from Wk−1
to Wk. For more details, we refer readers to [28], [5].

As for now, we just need to compute the Euclidean gradient
for our objective function J (W ) in Eqn.6. As the Euclidean
gradient DWJ (W ) and its corresponding directional deriva-
tives are related with the following equality:

DWJ (W )[Ẇ ] = 〈DWJ (W ), Ẇ 〉. (10)

By employing the basic rule and standard properties of the
directional derivatives, DWJ (W )[Ẇ ] can be derived by:

DWJ (W )[Ẇ ]

=
〈UG ◦DW k(W )[Ẇ ]U ,G ◦ (Y Y T )〉F‖L‖F

‖L‖2F

−
〈L,G ◦ (Y Y T )〉F 〈 L‖L‖F ,UG ◦DW k(W )[Ẇ ]U〉F

‖L‖2F

= 〈DW k(W )[Ẇ ],U

(
G ◦ (Y Y T )

‖L‖F
− J (W )L
‖L‖2F

)
U〉F ,

(11)
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where L = UG ◦ k(W )U , 〈·〉F indicates Frobenius inner
product, ‖ · ‖F denotes Frobenius norm.

Accordingly, the key issue in Eqn.11 is to estimate
DW k(W ), where k(W ) is formulated by Eqn.7. When δ in
Eqn.5 is the geodesic distance of AIM defined in Eqn.1, the
Euclidean gradient of k(W ) can be derived as:

DW kij(W )

= −4βkij(W )(BiX̂
−1
i −BjX̂

−1
j ) log(X̂

− 1
2

j X̂iX̂
− 1

2
j ),

(12)
where Bi =XiW , X̂i =W

TXiW ∈ Sym+
m.

For other affine invariant metrics such as Stein divergence
[26], the corresponding Euclidean gradient of k(W ) with the
geodesic distance function δ being defined in Eqn.2 can be
computed by:

DW kij(W )

= −βkij(W )((Bi +Bj)A
−1
ij −BiX̂

−1
i −BjX̂

−1
j ),

(13)
where Aij = W T Xi+Xj

2 W , and hence be able to work in
our new proposed framework.

When endowing the SPD manifold with the non-affine
invariant metric LEM, it seems not easy to calculate the
Euclidean gradient of DW k(W ) due to the matrix logarithms
in it. Thus, we need to study the problem of the computation
of the Euclidean gradient for the LEM case in the following.

First, we decompose the derivative of LEM w.r.t. W into
three derivatives with the trace form Tr(·):

DW (‖ log(W TXiW )− log(W TXjW )‖2F ) =
DW (Tr(log2(W TXiW )) +DW (Tr(log2(W TXjW ))

− 2DW (Tr(log(W TXiW ) log(W TXjW ))).
(14)

Proposition 1. The derivatives of the three trace forms Tr(·)
in Eqn.14 can be respectively computed by (Here, Bi =
XiW , X̂i =W

TXiW ):
DW (Tr(log2(X̂i)) = 4BiD log(X̂i)[log(X̂i)]. (15)
DW (Tr(log2(X̂j)) = 4BjD log(X̂j)[log(X̂j)]. (16)

DW (Tr(log(X̂i) log(X̂j))

= 2BiD log(X̂i)[log(X̂j)] + 2BjD log(X̂j)[log(X̂i)].
(17)

Proof. The three formulas for the gradients with the matrix
logarithm correspond to the three ones with rotation matrices
in [36] (section 5.3), where a detailed proof is given.

By using Proposition 1. (i.e. Eqn.15, Eqn.16, Eqn.17)
and the sum rule of the directional derivatives, we derive
DW k(W ) with δ being the geodesic distance of LEM in Eqn.5
as:

DW kij(W ) = −4(BiD log(X̂i)[log(X̂i)− log(X̂j)]

+BjD log(X̂j)[log(X̂j)− log(X̂i)])βkij(W ).
(18)

To calculate the formula Eqn.18, we then apply a function of
block triangular matrix developed in [37] to compute the form

of D log(X̂)[H], which is the directional (Fréchet) derivative
of log at X̂ ∈ Sym+

m along H ∈ Symn. The following
theorem shows that the directional derivative appears as the
(1, 2) block of the resulting big matrix when f : X̂ 7→ log(X̂)
is evaluated at a certain block triangular matrix.

Theorem 1. Let f : X̂ 7→ log(X̂) be 2n−1 times continuously
differentiable on G and let the spectrum of X̂ lie in G, where
G is an open subset of R. Then

f

([
X̂ H

0 X̂

])
=

[
f(X̂) D log(X̂)[H]

0 f(X̂)

]
. (19)

Proof. The result is proved by Najfeld and Havel [38] (Theo-
rem 4.11) under the assumption that f is analytic.

By using Theorem 1, the directional derivative of the matrix
logarithm can be easily computed. The pseudo matlab code of
computing D log(X̂)[H] is simply listed as: n = size(X, 1);
Z = zeros(n); A = log([X, H ; Z, X]); D = A(1:n, (n+1):end),
where D = D log(X̂)[H].

With the derived gradient formulas in Eqn.12, Eqn.13
and Eqn.18, the Euclidean gradient Eqn.11 of the objective
function Eqn.6 for these cases can be computed to feed into
the exploited RCG algorithm working on the PSD manifold.
Since the global convergence of the RCG algorithm has been
well-studied in the survey [39], we do not investigate it any
further here. The main time complexity of the algorithm is
computing the gradient Eqn.11, being O(lk0n

2m + lk1nm
2)

(l is the iteration number, k0/k1 is the number of selected
samples/pairs, n/m is the dimension of the original/target
manifold) in the LEM case. In the experiment, we will also
study the running time of each iteration of the algorithm by
varying the number of selected between-class pairs for each
SPD sample.

IV. EXPERIMENTS

In this section, we study the effectiveness of the proposed
geometry-aware SPD similarity learning (SPDSL) approach by
conducting experimental evaluations for three visual classifi-
cation tasks including face recognition, material categorization
and action recognition.

In these three tasks, the SPD features have been shown
to provide powerful representations for images and videos
via set-based covariances[9], [10], [11], region covariances
[1], [2] and joint covariance descriptors [6], [5]. Therefore,
they are natural choices to evaluate the proposed SPDSL
exploiting Affine-Invariant metric (AIM), Stein divergence and
Log-Euclidean metric (LEM).

To evaluate the effectiveness of the proposed SPDSL ap-
proach, we compare three categories of SPD-based learning
methods, including basic Riemannian metric baseline methods,
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Fig. 2. Video frames from the YTC video dataset [41].

kernel learning based SPD discriminant learning methods
and dimensionality reduction based SPD discriminant learning
methods:

1) Basic Riemannian metrics on SPD manifold:
Affine-Invariant Metric (AIM) [13], Stein divergence
[26], Log-Euclidean Metric (LEM) [8]

2) Kernel learning based SPD matrix learning methods:
PLS-based Covariance Discriminative Learning (CDL)
[9], Riemannian Sparse Representation (RSR) [3] and
Log-Euclidean Kernels (LEK) [40]

3) Dimensionality reduction based SPD matrix learning
methods:
Log-Euclidean Metric Learning (LEML) [25] and SPD
Manifold Learning (SPDML-AIM and SPDML-Stein)
[5] with AIM and Stein divergence

Note that, the proposed SPDSL belongs to the last category
of SPD discriminant learning methods. As this paper focuses
on studying the problem of supervised SPD discriminant
learning, we here only report the performances of the original
discriminant learning methods such as SPDML rather than
those of further coupling them with other classifiers as done
in the work [5]. In addition, in order to study the discriminant
learning power of our proposed framework, we replace its
supervised learning scheme with that of SPDML but still
perform optimization on the exploited solution space. The
adaption of the proposed SPDSL is denoted with SPDSL-
AIM∗, SPDSL-Stein∗ and SPDSL-LEM∗.

For RSR, the parameter β was densely sampled around the
order of the mean distance and the parameter λ is sampled in
the range of [0.0001, 0.001, 0.01, 0.1]. For LEK, there are three
implements based on polynomial, exponential and radial basis
kernels, which are respectively denoted as LEK-κpn , LEK-κen
and LEK-κg . For LEK-κpn and LEK-κen , we densely sampled
the n from 1 to 50. The parameters β in LEK-κg and the λ
in the three LEK versions were all tuned in the same way
as RSR. For LEML, the parameter η is tuned in the range
of [0.1, 1, 10], and ζ is tuned from 0.1 to 0.5. For SPDML
and our method SPDSL, the maximum iteration number of
the optimization algorithm is set to 50, the parameters vw
is fixed as the minimum number of samples in one class, the
dimensionality of the lower-dimensional SPD manifold and vb
were tuned by cross-validation. The parameter β in our method
is set to β = 1

σ2 , where σ is equal to the mean distance of all
pairs of training data.

A. Face Recognition

As the first experiment, we use YouTube Celebrities (YTC)
video face database [41] to perform the task of video face
recognition. The dataset is a quite challenging and widely used
in the study of video face recognition. It has 1,910 video clips
of 47 subjects collected from YouTube. Most clips contains
hundreds of frames, which are often low resolution and highly
compressed with noise and low quality.

For the testing protocol, following [9], [10], [25], this
dataset is randomly split into the gallery and the probe, which
have 3 image sets and 6 image sets respectively for each
subject. The process of random testing was repeated 10 times
for the evaluation on video face recognition.

In our experiment, each face image in videos is cropped
into 20 × 20 intensity image and then histogram equalized
to eliminate lighting effects. Following the works [9], [25],
we extract the set-based covariance matrix for each video
sequence of frames on this dataset. To avoid matrix singularity,
we add a small ridge δI to each covariance matrix Σ, where
δ = 10−3 × trace(Σ) and I is the identity matrix. In the
literature, the mean face in each video has been proved to
benefit video face recognition. Therefore, we improve the
set-based covariance matrix feature by concatenating it with
the mean to yield a (d + 1)-dimensional SPD matrix as[
Σ + µµT µ
µT 1

]
, where µ ∈ Rd and Σ ∈ Sd+ represents the

mean and the covariance matrix of one image set. Note that the
dimensions of target manifolds for dimensionality reduction
methods are all set as 40 for the YTC database.

As can be seen from Table I, the baseline method LEM
outperforms the other two baselines AIM and Stein in most of
cases, which demonstrates that the LEM is more effective than
the other two Riemannian metrics in the evaluation. The results
in Table I also show that most of the kernel learning based
(Category2) and dimensionality reduction based (Category3)
methods boost the accuracies of the baselines AIM, Stein and
LEM. This also concludes that learning discriminative SPD
features in these methods can help the visual recognition tasks.

Compared with the state-of-the-art kernel learning based
methods CDL and RSR, the dimensionality reduction based
methods LEML and SPDML perform worse in the task. In
contrast, our SPDSL improves LEML and SPDML by around
2% and 7% respectively, and achieve comparable performance
with CDL and RSR. In the comparison with SPDML, the
performances of the adaption of our new SPD similarity
learning framework SPDML-AIM∗ and SPDML-Stein∗ are
close to those of SPDML-AIM and SPDML-Stein. This shows
the former solution can be approximated by the latter solution
when the involved Riemannian metric is affine invariant.
Nevertheless, after using the proposed supervised learning
technique, SPDSL-AIM and SPDSL-Stein clearly outperform
SPDML method. In addition, our SPDSL can handle the
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TABLE I
AVERAGE RANK-1 FACE RECOGNITION RATES (%) WITH STANDARD DEVIATION OF THREE CATEGORIES OF COMPETING METHODS INCLUDING THE

PROPOSED SPDSL ON THE YTC DATABASE.

Category1 AIM Stein LEM
Accuracy 62.85 ± 3.46 61.46 ± 3.52 63.91 ± 3.25
Category2 CDL [9] RSR [3] LEK-κpn [40] LEK-κen [40] LEK-κg [40]
Accuracy 72.67 ± 2.47 72.77 ± 2.69 61.85 ± 3.24 62.17 ± 3.52 56.30 ± 3.62
Category3 LEML [25] SPDML-AIM [5] SPDML-Stein [5]
Accuracy 70.53 ± 2.95 64.66 ± 2.92 61.57 ± 3.43

The proposed SPDML-AIM∗ SPDML-Stein∗ SPDML-LEM∗ SPDSL-AIM SPDSL-Stein SPDSL-LEM
Accuracy 64.27 ± 2.84 62.31 ± 3.48 69.32 ± 2.04 71.60 ± 2.45 71.03 ± 2.39 72.29 ± 1.58

20 100 

20 100 

Fig. 3. Recognition accuracy of the proposed SPDSL-LEM on the YTC
dataset for varying values of vb (i.e., different sparse degrees of the involved
kernel matrix k(W )).

case when the SPD manifold is equipped with the non-affine
Riemannian metric LEM, and we see that SPDML-LEM∗ and
SPDSL-LEM achieve higher accuracies in most cases.

Besides, we study the effectiveness of the proposed SPDSL
technique when varying its key parameter vb. As shown in
Fig.3, we present the behavior of the sparse (non PD) kernel
cases on the YTC database for different values of vb in the
interval [1, 8] and the values of 20 and 100 while fixing the
parameter vw = 3. When k(W ) achieves a full kernel matrix,
the performance gets to 72.57%, which is close to the highest
performance (72.29%) reached by the sparse kernel matrix
cases (see Fig.3).

The efficiency of the proposed SPDSL technique is studied
as well. As shown in Fig.4, the running time is average training
time of each iteration of the optimization algorithm, which
typically iterates 50 times. Specifically, we perform the testing
on the YTC dataset, and employ an Intel(R) Core(TM) i5-2400
(3.10GHz) PC. As the value of vb increases, the running time
turns to be much higher especially when k(W ) is full, whose
running time is around 13,975 seconds (i.e., about 30 times of
the case of vb = 2 at each iteration, and extremely expensive
when the algorithm iterates 50 times) running on YTC. Hence,
when huge datasets are involved, the sparse kernel case scales
much better than the full (PD) kernel case with very slight

20 100 

20 100 

Fig. 4. Running time of the proposed SPDSL-LEM on the YTC dataset
for varying values of vb (i.e., different sparse degrees of the involved kernel
matrix k(W )).

Fig. 5. Convergence behavior of the exploited RCG algorithm for SPDSL-
LEM in 10 random testings of the YTC dataset with the parameter vb = 2.

gain/loss of accuracy.

In the end, we also investigate the convergence behavior
of the exploited RCG algorithm for our SPDSL approach. As
seen from the results in Fig.5, the optimization algorithm on
the PSD manifold is able to converge to a favorable solution
after several tens of iterations.
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TABLE II
AVERAGE RECOGNITION ACCURACIES (%) WITH STANDARD DEVIATION OF THREE CATEGORIES OF COMPETING METHODS INCLUDING THE PROPOSED

SPDSL ON THE UIUC DATABASE.

Category1 AIM Stein LEM
Accuracy 46.30 ± 2.90 42.87 ± 2.27 46.30 ± 2.86
Category2 CDL [9] RSR [3] LEK-κpn [40] LEK-κen [40] LEK-κg [40]
Accuracy 54.91 ± 4.72 52.41 ± 4.03 48.89 ± 3.29 49.54 ± 3.67 49.63 ± 3.03
Category3 LEML [25] SPDML-AIM [5] SPDML-Stein [5]
Accuracy 52.53 ± 2.13 48.09 ± 1.82 49.17 ± 2.37

The proposed SPDML-AIM∗ SPDML-Stein∗ SPDML-LEM∗ SPDSL-AIM SPDSL-Stein SPDSL-LEM
Accuracy 50.00 ± 3.60 49.35 ± 2.47 50.28 ± 3.78 52.31 ± 3.55 51.57 ± 4.16 52.13 ± 3.49
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Fig. 6. Samples from the UIUC material dataset [42].

B. Material Categorization

For the task of material categorization, we conduct experi-
ments on the UIUC material dataset [42]. This dataset includes
18 subcategories of materials taken in the wild from four
general categories: bark, fabric, construction materials, and
outer coat of animals. Each subcategory contains 12 images
taken at different scales. Several samples from this database
are shown in Fig.6.

Both Region Covariance Matrices (RCMs) [1] and SIFT
features [43] have been shown to be robust and discriminative
for material categorization [42]. As done in [5], we extract
RCMs of size 128×128 using 128 dimensional SIFT features
from gray scale images. Specifically, we resize each image
to 400 × 400 and compute the dense SIFT descriptors on
a grid with 4 pixels spacing (each patch size is 16x16, the
number of angles is 8, the number of Bins is 4). In each grid
point, one 128-dimensional SIFT feature is thus yielded. For
dimensionality reduction methods, the dimensions of target
manifolds are all set as 40 in the evaluation.

Following the work [5], on the UIUC dataset, we randomly
select half of the images from each subcategory as training
data, and the remaining images as testing data. This process
of evaluation is conducted 10 times in our experiment.

In Table I, for the competing methods, we report their aver-
age accuracies with standard deviations of 10 random testings
on the UIUC dataset. As concluded in the last evaluation, the
proposed dimensionality reduction technique SPDSL improves
the most related method SPDML method by 2%-4%, and
achieves comparable performances with the state-of-the-art
methods.
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Fig. 7. Hopping action from the HDM05 Motion Capture database [44].

C. Action Recognition

We then employ the HDM05 database [44] to handle with
the problem of human action recognition from motion capture
sequences. As shown in Fig.7, this dataset contains 2,337
sequences of 130 motion classes, e.g., ‘clap above head’,‘lie
down floor’,‘rotate arms’, ‘throw basket ball’, in 10 to 50
realizations executed by various actors.

The 3D locations of 31 joints of the subjects are provided
over time acquired at the speed of 120 frames per second.
Following the previous works [6], [5], we represent an action
of a K joints skeleton observed over m frames by its joint
covariance descriptor. This descriptor is an form of SPD
matrix of size 3K × 3K, which is computed by the second
order statistics of 93-dimensional vectors concatenating the 3D
coordinates of the 31 joints in each frame.

As the evaluation protocol on UIUC, on this dataset, we
also conduct 10 times random evaluations, in which half of
sequences (around 1,100 sequences) are randomly selected
for training data, and the rest are used for testing. On the
HDM05 database, the work [5] only used 14 motion classes
for evaluation while we tested these methods for identifying
130 action classes.

Table.III summarizes the performances of the comparative
algorithms on the UIUC dataset. In the evaluation, the di-
mensions of resulting manifolds achieved by dimensionality
reduction methods are all set as 30. Different from the last
two evaluations, CDL and RSR performance worse than other
competing methods. The proposed SPDSL again improves the
existing dimensionality reduction based methods LEML and
SPDML with 1%-3%, and achieve state-of-the-art performance
on the HDM05 database.
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TABLE III
AVERAGE RECOGNITION ACCURACIES (%) WITH STANDARD DEVIATION OF THREE CATEGORIES OF COMPETING METHODS INCLUDING THE PROPOSED

SPDSL ON THE HDM05 DATABASE.

Category1 AIM Stein LEM
Accuracy 42.70 ± 1.74 42.13 ± 2.63 43.98 ± 2.13
Category2 CDL [9] RSR [3] LEK-κpn [40] LEK-κen [40] LEK-κg [40]
Accuracy 41.74 ± 1.92 41.12 ± 2.53 47.22 ± 1.62 46.87 ± 1.72 48.72 ± 3.00
Category3 LEML [25] SPDML-AIM [5] SPDML-Stein [5]
Accuracy 46.87 ± 2.19 47.25 ± 2.78 46.21 ± 2.65

The proposed SPDML-AIM∗ SPDML-Stein∗ SPDML-LEM∗ SPDSL-AIM SPDSL-Stein SPDSL-LEM
Accuracy 47.93 ± 2.62 46.35 ± 2.45 48.88 ± 3.18 48.09 ± 2.49 49.02 ± 2.93 49.13 ± 2.74

D. Discussion

Since our method SPDSL and the two methods SPDML,
LEML adopt the same SPD matrix learning scheme, we here
mainly make two pieces of discussions between them.

First, compared with the related manifold learning method
SPDML, our SPDSL framework proposes a more general
solution and a more favorable objective function. This point
has been validated by the three evaluations. As can be seen
from Table I, Table II and Table III, there are two key
conclusions observed from the three visual recognition tasks:

a) As for the new solution, its main benefits lie in enlarging
the search domain and opening up the possibility of using non-
affine invariant metrics (e.g. LEM). While SPDML* for affine
invariant metrics AIM and Stein improves SPDML mildly (this
may depend on the data), the gains of SPDML*-LEM over the
AIM and Stein cases are relatively obvious, i.e. 1.65%, 2.15%,
6.21% on average, respectively for the three datasets.

b) The new objective function (for similarity regression)
is quite different from that (for graph embedding) used in
[5]. While it’s hard to theoretically prove the gains, we
have empirically studied its priority. By comparing SPDSL
with SPDML*, the improvements for the three datasets are
2.13%, 1.03%, 6.34% on average for the three used databases,
respectively.

Second, in contrast to LEML which focuses on metric
learning, our SPDSL learns discriminative similarities on SPD
manifolds. Besides, while LEML performs metric learning on
the tangent space of SPD manifolds, the proposed SPDSL
learns similarity directly on the SPD manifolds. Intuitively, our
learning scheme would more faithfully respect the Riemannian
geometry of the data space, and thus could lead to more
favorable SPD features for classification tasks. From the above
three evaluations, we can see some improvements of SPDSL
over LEML.

V. CONCLUSIONS

We have proposed a geometry-aware SPD similarity learn-
ing (SPDSL) framework for more robust visual classification

tasks. Under this framework, by exploiting the Riemannian
geometry of PSD manifolds, we open the possibility of di-
rectly learning the manifold-manifold transformation matrix.
To achieve the discriminant learning on the SPD features,
this work devises a new SPDSL technique working on SPD
manifolds. With the objective of the proposed SPDSL, we
derive an optimization algorithm on PSD manifolds to pursue
the transformation matrix. Extensive evaluations have studied
both the effectiveness of efficiency of our SPDSL on three
challenging datasets.

For future work, the study on the relationship between
the selected Riemannian metrics of PSD manifolds and SPD
manifolds would be interesting for the problem of supervised
SPD similarity learning. Besides, if neglecting the designed
discriminant function on SPD features, learning the transfor-
mation on SPD features for object sets is equal to learning the
projection on single object features. Thus, this work can be
extended to learn hierarchical representations on object feature
by leveraging the current powerful deep learning techniques.
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matrix exponential, with an application to condition number estimation,”
SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 4, pp.
1639–1657, 2009.

[38] I. Najfeld and T. F. Havel, “Derivatives of the matrix exponential and
their computation,” Advances in Applied Mathematics, vol. 16, no. 3,
pp. 321–375, 1995.

[39] W. W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient
methods,” Pacific journal of Optimization, vol. 2, no. 1, pp. 35–58, 2006.

[40] P. Li, Q. Wang, W. Zuo, and L. Zhang, “Log-Euclidean kernels for sparse
representation and dictionary learning,” in Proc. Int. Conf. Comput.
Vision, 2013.

[41] M. Kim, S. Kumar, V. Pavlovic, and H. Rowley, “Face tracking and
recognition with visual constraints in real-world videos,” in Proc.
Comput. Vision Pattern Recog., 2008.

[42] Z. Liao, J. Rock, Y. Wang, and D. Forsyth, “Non-parametric filtering for
geometric detail extractionand material representation,” in Proc. Comput.
Vision Pattern Recog., 2013.

[43] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, 2004.
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