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Cross Euclidean-to-Riemannian Metric Learning
with Application to Face Recognition from Video

Zhiwu Huang ,Member, IEEE, Ruiping Wang ,Member, IEEE, Shiguang Shan , Senior Member, IEEE,

Luc Van Gool,Member, IEEE, and Xilin Chen, Fellow, IEEE

Abstract—Riemannian manifolds have been widely employed for video representations in visual classification tasks including

video-based face recognition. The success mainly derives from learning a discriminant Riemannian metric which encodes the

non-linear geometry of the underlying Riemannian manifolds. In this paper, we propose a novel metric learning framework to learn

a distance metric across a Euclidean space and a Riemannian manifold to fuse average appearance and pattern variation of

faces within one video. The proposed metric learning framework can handle three typical tasks of video-based face recognition:

Video-to-Still, Still-to-Video and Video-to-Video settings. To accomplish this new framework, by exploiting typical Riemannian

geometries for kernel embedding, we map the source Euclidean space and Riemannian manifold into a common Euclidean subspace,

each through a corresponding high-dimensional Reproducing Kernel Hilbert Space (RKHS). With this mapping, the problem of learning

a cross-view metric between the two source heterogeneous spaces can be converted to learning a single-view Euclidean distance

metric in the target common Euclidean space. By learning information on heterogeneous data with the shared label, the discriminant

metric in the common space improves face recognition from videos. Extensive experiments on four challenging video face databases

demonstrate that the proposed framework has a clear advantage over the state-of-the-art methods in the three classical video-based

face recognition scenarios.

Index Terms—Riemannian manifold, video-based face recognition, cross Euclidean-to-Riemannian metric learning

Ç

1 INTRODUCTION

DUE to robustness against varying imaging conditions,
Riemannian manifolds have proven powerful repre-

sentations for video sequences in many branches of com-
puter vision. Two of the most popular Riemannian
structures are the manifold of linear subspaces (i.e., Grass-
mann manifold) and the manifold of Symmetric Positive
Definite (SPD) matrices. From a different perspective, these
Riemannian representations can be related to modeling a
video with a multivariate Gaussian distribution, character-
ized by its mean and covariance matrix. In the case of the
Grassmann manifold, the distances between subspaces can
be reduced to distances between multivariate Gaussian dis-
tributions by treating linear subspaces as the flattened limit
of a zero-mean, homogeneous factor analyzer distribution
[1]. In the case of the SPD manifold, a sequence of video

frames is represented as the covariance matrix of the image
features of frames [2], [3], which therefore essentially enco-
des a zero-mean Gaussian distribution of the image fea-
tures. In [4], [5], each video is modeled as a Gaussian
distribution with non-zero mean and covariance matrix,
which can be combined to construct an SPD matrix, and
thus also resides on a specific SPD manifold [6], [7].

The success of Riemannian representations in visual
recognition is mainly due to the learning of more discrim-
inant metrics, which encode Riemannian geometry of the
underlying manifolds. For example, by exploiting the
geometry of the Grassmann manifolds, [8] proposed
Grassmann kernel functions to extend the existing Kernel
Linear Discriminant Analysis [9] to learn a metric for
Grassmannian representations. In [10], a new method is
presented to learn a Riemannian metric on a Grassmann
manifold by performing Riemannian geometry-aware
dimensionality reduction from the original Grassmann
manifold to a lower-dimensional, more discriminative
Grassmann manifold where more favorable classification
can be achieved. To learn a discriminant metric for SPD
representations, [2] derived a kernel function that explic-
itly maps the SPD representations from the SPD manifold
to a Euclidean space where a traditional metric learning
method such as Partial Least Squares [11] can be applied.
In [12], an approach is proposed to search for a projection
that yields a low-dimensional SPD manifold with maxi-
mum discriminative power, encoded via an affinity-
weighted similarity measure based on Riemannian met-
rics on the SPD manifold.
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In this paper, we focus on studying the application of
Riemannian metric learning to the problem of video-based
face recognition, which identifies a subject with his/her face
video sequences. Generally speaking, there exist three typi-
cal tasks of video-based face recognition, i.e., Video-to-Still
(V2S), Still-to-Video (S2V) and Video-to-Video (V2V) face
identification/verification. Specifically, the task of V2S face
recognition matches a query video sequence against still
face images, which are typically taken in a controlled set-
ting. This task commonly occurs in watch list screening sys-
tems. In contrast, in the task of S2V face recognition, a still
face image is queried against a database of video sequences,
which can be applied to locate a person of interest by
searching his/her identity in the stored surveillance videos.
The third task, i.e., V2V face recognition, looks for the same
face in input video sequences among a set of target video
sequences. For example, one could track a person by match-
ing his/her video sequences recorded somewhere against
the surveillance videos taken elsewhere.

To handle the tasks of video-based face recognition,
state-of-the-art deep feature learning methods [13], [14],
[15], [16], [17] typically adopt mean pooling strategy to fuse
deep features from single frames within one face video.
However, in addition to the first-order mean pooling, as
studied in many works such as [1], [4], [5], [18], [19], the pat-
tern variation (i.e., second-order pooling) of videos provides
yet an important complementary cue for video-based face
recognition. With this motivation in mind, we propose a
new metric learning scheme across a Euclidean space and a
Riemannian manifold to match/fuse appearance mean and
patter variation (i.e., first- and second-order poolings) for
still images and video sequences. In particular, the learning
scheme employs either raw or even deeply learned feature
vectors (i.e., Euclidean data) from still facial images, while
representing the faces within one video sequence with both
their appearance mean (i.e., Euclidean data) and pattern
variation models that are typically treated as Riemannian
data. Benefited from the new architecture, the three typical
video-based face recognition tasks can be uniformly tackled.
Compared with the previous version [20] that can only han-
dle V2S/S2V face recognition with pattern variation model-
ing on videos, this paper mainly makes two technical
improvements:

� To improve the V2S/S2V face recognition task, the
new framework represents each video simulta-
neously with appearance mean and pattern variation
models, and derives a more generalized cross
Euclidean and Riemannian metric learning scheme
to match still images and video sequences.

� The original framework is also extended to handle
the task of V2V face recognition. To this end, the
objective function of the framework is adapted to
fuse Euclidean data (i.e., appearance mean) and Rie-
mannian data (i.e., pattern variation) of videos in a
unified framework.

The key challenge of learning Euclidean-to-Riemannian
metric learning is the essentially heterogeneous properties
of the processed underlying data spaces, i.e., Euclidean
spaces and Riemannian manifolds, which respect totally dif-
ferent geometrical structures and thus are equipped with

different metrics, i.e., Euclidean distance and Riemannian
metric respectively. As a result, applying most of traditional
metric learning methods in Figs. 1a, 1b, 1c and 1d will totally
break down in the context of learning a metric across a
Euclidean space and a Riemannian manifold. For example,
Euclidean-to-Euclideanmetric learning Fig. 1bmerely learns a
discriminative distance metric between two Euclidean spaces
with different data domain settings, while Riemannian-to-
Riemannian metric learning Fig. 1d only explores a discrimi-
native function across two homogeneous Riemannian mani-
folds. Hence, in the metric learning theory, this work mainly
brings the following three innovations:

� As depicted in Fig. 1e, a novel heterogeneous metric
learning framework is developed to match/fuse
Euclidean and Riemannian representations by
designing a new objective function well performing
across Euclidean-Riemannian spaces. To the best of
our knowledge, it is one of the first attempts to learn
the metric across Euclidean and Riemannian spaces.

� The proposed metric learning scheme can accommo-
date a group of typical non-Euclidean (Riemannian)
representations widely used in vision problems, e.g.,
linear subspaces, affine subspaces and SPD matrices.
Thus, it is a general metric learning framework to
study the problem of fusing/matching hybrid
Euclidean and Riemannian data.

2 RELATED WORK

In this section we review relevant Euclidean metric learning
and Riemannian metric learning methods. In addition, we
also introduce existing applications of Riemannian metric
learning to the problem of video-based face recognition.

2.1 Euclidean Metric Learning

In conventional techniques to learn a metric in a Euclidean
space, the learned distance metric is usually defined as a
Mahalanobis distance, which is the squared Euclidean dis-
tance after applying the learned linear transformation(s) to
the original Euclidean space(s). According to the number of
the source Euclidean spaces, traditional metric learning

Fig. 1. Conceptual illustration of traditional Euclidean metric learning (a),
Euclidean-to-Euclidean metric learning (b), Riemannian metric learning
(c), Riemannian-to-Riemannian metric learning (d) and the proposed
cross Euclidean-to-Riemannian metric learning (e). RD1=RD2 , M=M1=
M2 and Rd indicate a Euclidean space, a Riemannian manifold and a
common subspace, respectively. f=g; ’=c denote linear and non-linear
transformations, and different shapes (i.e., circles and rectangles) repre-
sent classes.
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methods can be categorized into Euclidean metric learning
and Euclidean-to-Euclidean metric learning.

As shown in Fig. 1a, the Euclidean metric learning meth-
ods [21], [22], [23], [24], [25] intend to learn a metric or a
transformation f of object features from a source Euclidean
space RD to a target Euclidean space Rd. For example, [22]
introduced an information-theoretic formulation to learn a
metric in one source Euclidean space. In [24], a metric learn-
ing method was proposed to learn a transformation from
one Euclidean space to a new one for the K-nearest neighbor
algorithm by pulling neighboring objects of the same class
closer together and pushing others further apart. In [25], an
approach was presented to learn a distance metric between
(realistic and virtual) data in a single Euclidean space for
the definition of a more appropriate point-to-set distance in
the application of point-to-set classification.

In contrast, as depicted in Fig. 1b, the Euclidean-to-
Euclidean metric learning methods [26], [27], [28], [29], [30],
[31], [32] are designed to learn a cross-view metric or multi-
ple transformations f; g mapping object features from multi-
ple source Euclidean spaces, say RD1 , RD2 , to a target
common subspace Rd. For instance, [29] proposed a metric
learning method to seek multiple projections under a neigh-
borhood preserving constraint for multi-view data in multi-
ple Euclidean spaces. In [30], a multiple kernel/metric
learning technique was applied to integrate different object
features from multiple Euclidean spaces into a unified
Euclidean space. In [32], ametric learningmethodwas devel-
oped to learn two projections from two different Euclidean
spaces to a common subspace by integrating the structure of
cross-view data into a joint graph regularization.

2.2 Riemannian Metric Learning

Riemannian metric learning pursues discriminant functions
on Riemannian manifold(s) in order to classify the Rieman-
nian representations more effectively. In general, existing
Riemannian metric learning Fig. 1c and Riemannian-to-
Riemannian metric learning Fig. 1d adopt one of the follow-
ing three typical schemes to achieve a more desirable
Riemannian metric on/across Riemannian manifold(s).

The first Riemannian metric learning scheme [33], [34],
[35], [36], [37], [38] typically first flattens the underlying
Riemannian manifold via tangent space approximation, and
then learns a discriminant metric in the resulting tangent
(Euclidean) space by employing traditional metric learning
methods. However, the map between the manifold and the
tangent space is locally diffeomorphic, which inevitably dis-
torts the original Riemannian geometry. To address this
problem, LogitBoost on SPD manifolds [33] was introduced,
by pooling the resulting classifiers in multiple approxi-
mated tangent spaces on the calculated Karcher mean on
Riemannian manifolds. Similarly, a weighted Riemannian
locality preserving projection is exploited by [37] during
boosting for classification on Riemannian manifolds.

Another family of Riemannian metric learning methods
[1], [2], [3], [4], [8], [39], [40], [41], [42] derives Riemannian
metric based kernel functions to embed the Riemannian
manifolds into a high-dimensional Reproducing Kernel Hil-
bert space (RKHS). As an RKHS respects Euclidean geome-
try, this learning scheme enables the traditional kernel-
based metric learning methods to work in the resulting

RKHS. For example, in [1], [3], [8], [39], the projection metric
based kernel and its extensions were introduced to map the
underlying Grassmann manifold to an RKHS, where kernel
learning algorithms developed in vector spaces can be
extended to their counterparts. To learn discriminant data
on the SPD manifolds, [2], [3], [4], [40], [41], [42] exploited
some well-studied Riemannian metrics such as the Log-
Euclidean metric [43], to derive positive definite kernels on
manifolds that permit to embed a given manifold with a
corresponding metric into a high-dimensional RKHS.

The last kind of Riemannian metric learning [10], [12],
[44], [45] learns the metric by mapping the original Rieman-
nian manifold to another one equipped with the same Rie-
mannian geometry. For instance, in [12], a metric learning
algorithm was introduced to map a high-dimensional SPD
manifold into a lower-dimensional, more discriminant one.
This work proposed a graph embedding formalism with an
affinity matrix that encodes intra-class and inter-class dis-
tances based on affine-invariant Riemannian metrics [46],
[47] on the SPD manifold. Analogously, on the Grassmann
manifold, [10] proposed a new Riemannian metric learning
to learn a Mahalanobis-like matrix that can be decomposed
into a manifold-to-manifold transformation for geometry-
aware dimensionality reduction.

In contrast to Riemannian metric learning performed on
a single Riemannian manifold, Riemannian-to-Riemannian
metric learning [19], [48] typically learns multiple Rieman-
nian metrics across different types of Riemannian manifolds
by employing the second Riemannian metric learning
scheme mentioned above. For example, in [48], multiple
Riemannian manifolds were first mapped into multiple
RKHSs, and a feature combining and selection method
based on a traditional Multiple Kernel Learning technique
was then introduced to optimally combine the multiple
transformed data lying in the resulting RKHSs. Similarly,
[19] adopted multiple traditional metric learning methods
to fuse the classification scores on multiple Riemannian rep-
resentations by employing Riemannian metric based ker-
nels on their underlying Riemannian manifolds.

2.3 Riemannian Metric Learning Applied to
Video-Based Face Recognition

State-of-the-art methods [1], [2], [4], [5], [8], [12], [18], [35],
[45], [49] typically model each video sequence of faces with
a variation model (e.g., linear subspace, affine subspace and
SPD matrices) and learn a discriminant Riemannian metric
on the underlying Riemannian manifold for robust video-
based face recognition. For example, [8] represented each
set of video frames by a linear subspace of their image fea-
tures. By exploiting the geometry of the underlying Grass-
mann manifold of linear subspaces, they extended the
Kernel Linear Discriminant Analysis method to learn dis-
criminative linear subspaces. As studied in [1], image sets
are more robustly modeled by affine subspaces, each of
which is obtained by adding an offset (i.e, the data mean) to
one linear subspace. Analogously to [8], an affine Grass-
mann manifold and its Riemannian geometry were
exploited by [1] for affine subspace discriminant learning.
In [2], each video is modeled as a covariance matrix, which
is then treated as an SPD matrix residing on the SPD mani-
fold. To learn discriminative SPD matrices, they applied
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traditional discriminant analysis methods such as Partial
Least Squares on the manifold of SPD matrices. Accord-
ingly, the success of these methods mainly derives from the
effective video modeling with Riemannian representations
and discriminant metric learning on such Riemannian data.

3 CROSS EUCLIDEAN-TO-RIEMANNIAN

METRIC LEARNING

In this section, we first formulate the new problem of Cross
Euclidean-to-Riemannian Metric Learning (CERML), and
then present its objective function. In the end, we develop
an optimization algorithm to solve the objective function.

3.1 Problem Formulation

Let XX ¼ fxx1; xx2; . . . ; xxmg; xxi 2 RD be a set of Euclidean data
with class labels flx1 ; lx2 ; . . . ; lxmg and YY ¼ fyy1; yy2; . . . ; yyng; yyj 2
M be a set of Riemannian representations with class labels
fly1; ly2; . . . ; lyng, where yyj come as a certain type of Rieman-
nian representations such as linear subspaces, affine sub-
spaces, or SPD matrices.

Given one pair of a Euclidean point xxi and a Riemannian
point yyj, we use dðxxi; yyjÞ to represent their distance. To
achieve an appropriate distance metric between them for
better discrimination, we propose to learn two transforma-
tion functions cx and cy, which respectively map the
Euclidean points and Riemannian points to a common
Euclidean subspace. In the common subspace, the learned
distance metric between the involved pair of heterogeneous
data can be reduced to the classical Euclidean distance as

dðxxi; yyjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcxðxxiÞ � cyðyyjÞÞT ðcxðxxiÞ � cyðyyjÞÞ

q
: (1)

However, as the source Euclidean space RD and Rieman-
nian manifold M differ too much in terms of geometrical
data structure, it is difficult to employ linear transformations
to map them into the common target Euclidean subspaceRd.
Thismotivates us to first transform the Riemannianmanifold
to a flat Euclidean space so that the heterogeneity between
this flattened space and the source Euclidean space reduces.
To this end, there exist two strategies: one is tangent space
embedding, and the other is Reproducing Kernel Hilbert

Space (RKHS) embedding. The first strategy pursues an
appropriate tangent space to approximate the local geometry
of the Riemannian manifold. In contrast, the second strategy
exploits typical Riemannian metrics based kernel functions
to encode Riemannian geometry of the underlyingmanifold.
As evidenced by the theory of kernel methods in Euclidean
spaces, compared with the tangent space embedding
scheme, the RKHS embedding yields much richer high-
dimensional representations of the original data, making
visual classification tasks easier.

With this idea in mind, and as shown in Fig. 2, the pro-
posed framework of Cross Euclidean-to-Riemannian Metric
Learning first derives the kernel functions based on typical
Euclidean and Riemannian metrics to define the inner prod-
uct of the implicit non-linear transformations ’x and ’y,
which respectively map the Euclidean space RD and the
Riemannian manifold M into two RKHSs Hx, Hy. After the
kernel space embedding, two mappings fx; fy are learned
from the two RKHSs to the target common subspace. Thus,
the final goal of this new framework is to employ the two
mappings cx and cy to transform the original Euclidean
data and Riemannian data into the common subspace Rd,
where the distance metric between each pair of Euclidean
data point and Riemannian data point is reduced to the clas-
sical Euclidean distance defined in Eq. (1). In particular, the
two linear projections can be represented as fxðxxiÞ ¼ VV T

x xxi,
fyðyyjÞ ¼ VV T

y yyj, where VV T
x ; VV

T
y are two linear projection

matrices. Inspired by the classical kernel techniques, we
employ the corresponding kernel functions to derive the
inner products of these two non-linear transformations as
h’xðxxiÞ;’xðxxjÞi ¼ KKxðxxi; xxjÞ; h’yðyyiÞ;’yðyyjÞi ¼ KKyðyyi; yyjÞ, where
KKx;KKy are the kernel matrices involved. By parameterizing
the inner products in the two RKHSs, the formulations of
the two final mapping functions cx and cy can be achieved

by cxðxxiÞ ¼ WWT
xKKx:i , cyðyyjÞ ¼ WWT

y KKy:j , where KKx:i ;KKy:i are

respectively the ith columns of the kernel matrices KKx;KKy.
Accordingly, the distance metric Eq. (1) between a pair of a
Euclidean point xx and a Riemannian representation yy can
be further formulated as

dðxxi; yyjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWT

xKKx:i �WWT
y KKy:jÞT ðWWT

xKKx:i �WWT
y KKy:jÞ

q
: (2)

Additionally, according to the above mapping mode, the
distance metric between each pair of transformed homoge-
neous data points in the common Euclidean subspace can
also be achieved as

dxðxxi; xxjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWT

xKKx:i �WWT
xKKx:jÞT ðWWT

xKKx:i �WWT
xKKx:jÞ

q
;

(3)

dyðyyi; yyjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWT

y KKy:i �WWT
y KKy:jÞT ðWWT

y KKy:i �WWT
y KKy:jÞ

q
;

(4)

where the specific forms of KKx and KKy will be presented in
the following.

Now, we need to define the kernel functions KKxðxxi; xxjÞ;
KKyðyyi; yyjÞ for Euclidean data and Riemannian representa-
tions. For the Euclidean data, without loss of generality, we
exploit the Radial Basis Function (RBF) kernel, which is one
of the most popular positive definite kernels. Formally,

Fig. 2. Overview of the proposed Cross Euclidean-to-Riemannian Metric
Learning (CERML) framework. RD, M, Hx=Hy, R

d represent a Euclid-
ean space, a Riemannian manifold, a Hilbert space and a common
subspace respectively. fx=fy, cx=cy denote linear and nonlinear trans-
formation functions, and different shapes represent classes.
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given a pair of data point xxi; xxj in Euclidean space, the ker-
nel function is defined as

KKxðxxi; xxjÞ ¼ expð�kxxi � xxjk2=2s2
xÞ; (5)

which actually employs the Euclidean distance between two
Euclidean points xxi and xxj.

As for the Riemannian representations, since they are
commonly defined on a specific type of Riemannian mani-
fold that respects a non-Euclidean geometry [1], [2], [8], the
above kernel function formulation will fail. So, it has to be
generalized to Riemannian manifolds. For this purpose,
given two elements yyi; yyj on a Riemannian manifold, we for-
mally define a generalized kernel function for them as

KKyðyyi; yyjÞ ¼ expð�d2ðyyi; yyjÞ=2s2
yÞ: (6)

The kernel function performed on Riemannian representa-
tions actually takes the form of a Gaussian function (note that
we also study the linear kernel case in the supplementary
material, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2017.2776154). The most important component in
such a kernel function is dðyyi; yyjÞ, which defines the distance
between one pair of Riemannian points on the underlying Rie-
mannian manifold. Next, this distance is discussed for three
typical Riemannian representations, i.e., Grassmannian data,
affineGrassmannian data and SPDdata.

3.1.1 For Grassmannian Representations

As studied in [1], [3], [8], [39], [50], each Riemannian repre-
sentation on a Grassmann manifold Gðd;DÞ refers to a
d-dimensional linear subspace of RD. The linear subspace
can be represented by its orthonormal basis matrix UU that is
formed by the d leading eigenvectors corresponding to the d
largest eigenvalues of the covariance matrix of one Euclid-
ean data set. On a Grassmann manifold, one of the most
popular Riemannian metrics is the projection metric [50].
Formally, for one pair of data yyi; yyj on the Grassmannian,
their distance is measured by the projection metric

dðyyi; yyjÞ ¼ 2�1=2kUUiUU
T
i � UUjUU

T
j kF ; (7)

where k � kF denotes the matrix Frobenius norm.

3.1.2 For Affine Grassmannian Representations

In contrast to the Grassmannian representation, each affine
Grassmannian point is an element on an affine Grassmann
manifold, which is the space of d-dimensional affine subspa-
ces named affine Grassmann manifold AGðd;DÞ. Therefore,
each Riemannian representation onAGðd;DÞ is an affine sub-
space spanned by an orthonormal matrix UU adding the offset
mm (i.e., the mean) from the origin. On the affine Grassmann
manifold, [1] defined a similarity function as trðUUiUU

T
i UUjUU

T
i Þ þ

mmT
i ðII � UUiUU

T
i ÞðII � UUjUU

T
j Þmmj between pairs of data points.

Alternatively, we extend the similarity function to a distance
metric between twoRiemanniandata yyi; yyj on the affinemani-
fold as

dðyyi; yyjÞ ¼ 2�1=2ðkUUiUU
T
i � UUjUU

T
j kF

þ kðII � UUiUU
T
i Þmmi � ðII � UUjUU

T
j ÞmmjkF Þ;

(8)

where II 2 RD�D is the identity matrix.

3.1.3 For SPD Representations

Each SPD representation is an element of the manifold of
Symmetric Positive Definite matrices CC of size D�D. As
studied in [2], [42], [43], [46], the set of SPD matrices yields
a Riemannian manifold SDþ when endowing a specific
Riemannian metric. One of the most commonly used SPD
Riemannian metrics is the Log-Euclidean metric [43] due to
its effectiveness in encoding the true Riemannian geometry
by reducing the manifold to a flat tangent space at the iden-
tity matrix. Formally, on the Riemannian SPD manifold, the
Log-Euclidean distance metric between two elements yyi; yyj
is given by classical Euclidean computations in the domain
of SPD matrix logarithms as

dðyyi; yyjÞ ¼ klog ðCCiÞ � log ðCCjÞkF ; (9)

where log ðCCÞ ¼ UUlog ðSSÞUUT with CC ¼ USUUSUT being the
eigen-decomposition of the SPD matrix CC.

Similar to our prior work [20], we denote the proposed
CERML working in the three studied settings by CERML-
EG, CERML-EA and CERML-ES, respectively. By studying
the Riemannian metrics defined in Eqs. (7), (8) and (9), the
kernel function corresponding to the specific type of Rieman-
nian manifold can be derived by employing Eq. (6). How-
ever, according to Mercer’s theorem, only positive definite
kernels yield valid RKHS. To achieve this, by employing the
approach developed in [42], we can easily prove the positive
definiteness of these Gaussian kernels defined on the result-
ing Riemannian manifolds. As for the details to prove their
positive definiteness, readers are referred to [42].

3.2 Objective Function

From Eqs. (2), (3), and (4), we find that the CERML contains
two parameter transformation matrices WWx;WWy. In order to
learn a discriminant metric between heterogeneous data,
we formulate the objective function of this new framework
to optimize the two matricesWWx;WWy in the following:

min
WWx;WWy

JðWWx;WWyÞ

¼ min
WWx;WWy

DðWWx;WWyÞ þ �1GðWWx;WWyÞ þ �2T ðWWx;WWyÞg;
�

(10)

where DðWWx;WWyÞ is the distance constraint defined on the
collections of similarity and dissimilarity constraints.
GðWWx;WWyÞ and T ðWWx;WWyÞ are, respectively, a geometry
constraint and a transformation constraint, both of which
are regularizations defined on the target transformation
matricesWWx;WWy. �1 > 0; �2 > 0 are balancing parameters.

Distance Constraint DðWWx;WWyÞ. This constraint is defined
so that the distances between the Euclidean data and the
Riemannian data—with the similarity (/dissimilarity) con-
straints—are minimized (/maximized). In this paper, we
adopt a classical expression of the sum of squared distances
to define this constraint as
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DðWWx;WWyÞ ¼ 1

2

Xm
i¼1

Xn
j¼1

AAði; jÞd2ðxxi; yyjÞ;

AAði; jÞ ¼ 1; if lxi ¼ lyj ;

�1; if lxi 6¼ lyj ;

( (11)

where AAði; jÞ indicates if the heterogeneous data xxi and yyj
are relevant or irrelevant, as inferred from the class label. To
balance the effect of similarity and dissimilarity constraints,
we normalize the elements of AA by averaging them over the
total number of similar/dissimilar pairs respectively.

Geometry Constraint GðWWx;WWyÞ. This constraint aims to
preserve Euclidean geometry and Riemannian geometry for
the Euclidean and Riemannian points, respectively. Thus, it
can be defined as: GðWWx;WWyÞ ¼ GxðWWxÞ þGyðWWyÞ, which
are Euclidean and Riemannian geometry preserving items
formulated as

GxðWWxÞ ¼ 1

2

Xm
i¼1

Xm
j¼1

AAxði; jÞd2xðxxi; xxjÞ;

AAxði; jÞ ¼
aij; if lxi ¼ lxj and k1ði; jÞ;
�aij; if lxi 6¼ lxj and k2ði; jÞ;
0; else;

8><
>:

(12)

GyðWWyÞ ¼ 1

2

Xn
i¼1

Xn
j¼1

AAyði; jÞd2yðyyi; yyjÞ;

AAyði; jÞ ¼
aij; if lyi ¼ lyj and k1ði; jÞ;
�aij; if lyi 6¼ lyj and k2ði; jÞ;
0; else;

8><
>:

(13)

where aij ¼ expðkx̂xi � x̂xjk2=s2Þ, x̂x indicates Euclidean data xx
or Riemannian data yy. k1ði; jÞ (k2ði; jÞ) means data zi is in the
k1 (k2) neighborhood of data zj or data zj is in the k1 (k2)
neighborhood of data zi.

Transformation Constraint T ðWWx;WWyÞ. Since Euclidean
distance will be used in the target common subspace where
all dimensions are treated uniformly, it is reasonable to
require the feature vectors satisfy an isotropic distribution.
Thus, this constraint can be expressed in terms of unit
covariance

T ðWWx;WWyÞ ¼ 1

2
ðkWWT

xKKxk2F þ kWWT
y KKyk2F Þ; (14)

where k � kF is the Frobenius norm.

3.3 Optimization Algorithm

To optimize the objective function Eq. (10), we develop an
iterative optimization algorithm, which first applies the
Fisher criterion of Fisher Discriminant Analysis (FDA) [51]
to initialize the two transformation matrices WWx;WWy, and
then employs a strategy of alternately updating their values.

Before introducing the optimization algorithm, we first
rewrite Eqs. (11), (12) and (13) in matrix formulation as

DðWWx;WWyÞ ¼ 1

2
ðWWT

xKKxBB
0
xKK

T
xWWx þWWT

y KKyBB
0
yKK

T
y WWy

� 2WWT
xKKxAAKK

T
yWWyÞ;

(15)

GxðWWxÞ ¼ WWT
xKKxBBxKK

T
xWWx �WWT

xKKxAAxKK
T
xWWx

¼ WWT
xKKxLLxKK

T
xWWx;

(16)

GyðWWyÞ ¼ WWT
y KKyBByKK

T
yWWy �WWT

y KKyAAyKK
T
yWWy

¼ WWT
y KKyLLyKK

T
yWWy;

(17)

where BB
0
x, BB

0
y, BBx and BBy are diagonal matrices with

BB
0
xði; iÞ ¼

Pn
j¼1 AAði; jÞ, BB

0
yðj; jÞ ¼

Pm
i¼1 AAði; jÞ, BBxði; iÞ ¼

Pm
j¼1

AAxði; jÞ, BByði; iÞ ¼
Pn

j¼1 AAyði; jÞ.
Initialization. We define the within-class template AAw and

between-class template AAb for AA in Eq. (11) as

AAwði; jÞ ¼ 1; if lxi ¼ lyj ;

0; if lxi 6¼ lyj ;

�
AAbði; jÞ ¼ 0; if lxi ¼ lyj ;

1; if lxi 6¼ lyj :

�
(18)

By substituting Eq. (18) into Eq. (15), the within-class
template DwðWWx;WWyÞ and between-class template DbðWWx;
WWyÞ forDðWWx;WWyÞ in Eq. (11) can be computed as

DwðWWx;WWyÞ ¼ 1

2
ðWWT

xKKxBB
0w
x KKT

xWWx þWWT
y KKyBB

0w
y KKT

yWWy

� 2WWT
xKKxZZ

wKKyWW
T
y Þ;

(19)

DbðWWx;WWyÞ ¼ 1

2
ðWWT

xKKxBB
0b
xKK

T
xWWx þWWT

y KKyBB
0b
y KK

T
yWWy

� 2WWT
xKKxZZ

bKKyWW
T
y Þ:

(20)

Likewise, we achieve the within-class and between-class
templates for Gx and Gy in Eqs. (12) and (13) respectively
denoted by Gw

x , G
b
x, G

w
y , G

b
y. For the sake of clarity, more

details are given in the supplementary material, available
online.

Then we can initialize WWx and WWy by maximizing the
sum of between-class templates while minimizing the sum
of within-class templates with the Fisher criterion of the tra-
ditional Fisher Discriminant Analysis [51]

max
WWx;WWy

fDDbðWWx;WWyÞ þ �1G
bðWWx;WWyÞg;

s:t: DDwðWWx;WWyÞ þ �1G
wðWWx;WWyÞ ¼ 1;

(21)

where GbðWWx;WWyÞ ¼ Gb
xðWWx;WWyÞ þGb

yðWWx;WWyÞ, GwðWWx;WWyÞ ¼
Gw

x ðWWx;WWyÞ þGw
y ðWWx;WWyÞ. By transforming Eq. (21) into

matrix formulation, the function for initialization can be fur-
ther simplified as

max WWTMMbWW; s:t: WWTMMwWW ¼ 1;

) MMbWW ¼ �MMwWW;
(22)

where

MMb ¼
�
KKxRR

b
xKK

T
x �KKxZZ

bKKT
y

�KKyðZZbÞTKKT
x yRyRb

yKK
T
y

�
;

MMw ¼
�
KKxRR

w
xKK

T
x �KKxZZ

wKKT
y

�KKyðZZwÞTKKT
x yRyRw

y KK
T
y

�
;

WWT ¼ ½WWT
x ;WW

T
y �. Obviously, Eq. (22) is a standard general-

ized eigenvalue problem that can be solved using any
eigensolvers.

Alternately Updating. We substitute Eqs. (15), (16), and
(17) into the objective function JðWWx;WWyÞ in Eq. (10) to
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derive its matrix form. By differentiating JðWWx;WWyÞ w.r.t.
WWx and setting it to zero, we have the following equation:

@QðWWx;WWyÞ
@WWx

¼ KKxBB
0
xKK

T
xWWx �KKxZZKK

T
yWWy

þ 2�1KKxLLxKK
T
xWWx þ 2�2KKxKK

T
xWWx ¼ 0:

(23)

Then by fixingWWy, the solution ofWWx can be achieved as

WWx ¼ ðKKxðBB0
x þ 2�1LLx þ 2�2IIÞKKT

x Þ�1KKxAAKK
T
yWWy: (24)

Likewise, the solution of WWy when WWx is fixed, can be
obtained as

WWy ¼ ðKKyðBB0
y þ 2�1LLy þ 2�2IIÞKKT

y Þ�1KKyAAKK
T
xWWx: (25)

We alternate the above updates of WWx and WWy for sev-
eral iterations to search an optimal solution. While it is
hard to provide a theoretical proof of uniqueness or con-
vergence of the proposed iterative optimization, we
empirically found our objective function Eq. (10) can con-
verge to a desirable solution after only a few tens of itera-
tions. The convergence characteristics are studied in more
detail in the experiments.

4 APPLICATION TO VIDEO-BASED FACE
RECOGNITION

In this section we present the application of the proposed
Cross Euclidean-to-Riemannian Metric Learning to the
three typical tasks of video-based face recognition, i.e., V2S,
S2V and V2V settings.

4.1 V2S/S2V Face Recognition

As done in several state-of-the-art techniques [2], [4], [5], [8],
[12], [18], [35], we represent a set of facial frames within one
video with their appearance mean and variation model
aforementioned (e.g., linear subspace) simultaneously.
Therefore, the task of V2S/S2V face recognition can be for-
mulated as the problem of matching Euclidean representa-
tions (i.e., feature vectors) of face images with the Euclidean
data (i.e., feature mean) and Riemannian representation (i.e.,
feature variation) of faces from videos. Formally, the Euclid-
ean data of a face image is written as XX ¼ fxx1; xx2; . . . ; xxmg;
xxi 2 RD1 with labels flx1 ; lx2 ; . . . ; lxmg. The Euclidean data of
videos are represented by YY ¼ fyy1; yy2; . . . ; yyng; yyj 2 RD2 ,
with labels fly1; ly2; . . . ; lyng, while their Riemannian data are
ZZ ¼ fzz1; zz2; . . . ; zzng; zzj 2 M sharing the labels with their
Euclidean data. In the following, we describe the compo-
nents of the proposed CERML framework for this task.

Distance Metric. The distance metric Eq. (2) in Section 3.1
is instantiated for V2S/S2V face recognition as

dðxxi; yyjÞ þ dðxxi; zzjÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWT

xKKx:i �WWT
y KKy:jÞT ðWWT

xKKx:i �WWT
y KKy:jÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWT

xKKx:i �WWT
z KKz:jÞT ðWWT

xKKx:i �WWT
z KKz:jÞ

q
:

(26)

Objective Function. The objective function Eq. (10) in
Section 3.2 takes the form

min
WWx;WWy;WWz

JðWWx;WWy;WWzÞ

¼ min
WWx;WWy;WWz

fDðWWx;WWy;WWzÞ þ �1GðWWx;WWy;WWzÞ

þ �2T ðWWx;WWy;WWzÞg;

(27)

where the distance constraintDðWWx;WWy;WWzÞ ¼ DðWWx;WWyÞ þ
DðWWx;WWzÞ, the geometry constraint GðWWx;WWy;WWzÞ ¼
GxðWWxÞ þGyðWWyÞ þGzðWWzÞ, the transformation constraint
T ðWWx;WWy;WWzÞ ¼ 1

2 ðkWWT
xKKXXk2F þ kWWT

y KKYY k2F þ kWWT
z KKZZk2F Þ.

Initialization. In the initialization function Eq. (22), the
optimization algorithm in Section 3.3 is instantiated with
the matrixMMb;MMw as

MMb ¼
KKxRR

b
xKK

T
x �KKxAA

b
xyKK

T
y �KKxAA

b
xzKK

T
z

�KKyðAAb
xyÞTKKT

x KKyRR
b
yKK

T
y 0

�KKzðAAb
xzÞTKKT

x 0 KKzRR
b
zKK

T
z

2
64

3
75; (28)

MMw ¼
KKxRR

w
xKK

T
x �KKxAA

w
xyKK

T
y �KKxAA

w
xzKK

T
z

�KKyðAAw
xyÞTKKT

x KKyRR
w
y KK

T
y 0

�KKzðAAw
xzÞTKKT

x 0 KKzRR
w
z KK

T
z

2
64

3
75: (29)

Alternately Updating. The analytical solutions Eqs. (24)
and (25) in the Section 3.3 can be rewritten as

WWx ¼ ðKKxð2BB0
x þ 2�1LLx þ 2�2IIÞKKT

x Þ�1

ðKKxAAxyKK
T
yWWy þKKxAAxzKK

T
z WWzÞ;

WWy ¼ ðKKyðBB0
y þ 2�1LLy þ 2�2IIÞKKT

y Þ�1KKyAAxyKK
T
xWWx;

WWz ¼ ðKKzðBB0
z þ 2�1LLz þ 2�2IIÞKKT

z Þ�1KKzAAxzKK
T
xWWx:

(30)

4.2 V2V Face Recognition

Similar to the case of V2S/S2V face recognition, each facial
video sequence is commonly represented by the appearance
mean of its frames and their pattern variation. Therefore,
the task of V2V face recognition can be expressed as the
problem of fusing the Euclidean data (i.e., feature mean)
and the Riemannian representation (i.e., feature variation
such as linear subspace) of video sequences of faces. For-
mally, the Euclidean data of videos are represented by
YY ¼ fyy1; yy2; . . . ; yyng; yyj 2 RD2 , with labels fly1; ly2; . . . ; lyng,
while the Riemannian representations of such videos are
ZZ ¼ fzz1; zz2; . . . ; zzng; zzj 2 M sharing the labels with the
Euclidean data. To adapt the proposed CERML framework
to this task, we now define its components.

Distance Metric. The distance metrics Eqs. (3) and (4) in
Section 3.1 are implemented for V2V face recognition as

dðyyi; yyjÞ þ dðzzi; zzjÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWT

y KKy:i �WWT
y KKy:jÞT ðWWT

y KKy:i �WWT
y KKy:jÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWWT

z KKz:i �WWT
z KKz:jÞT ðWWT

z KKz:i �WWT
z KKz:jÞ

q
:

(31)

Objective Function. The objective function Eq. (10) in
Section 3.2 is instantiated as

min
WWy;WWz

JðWWy;WWzÞ

¼ min
WWy;WWz

fDðWWy;WWzÞ þ �1GðWWy;WWzÞ þ �2T ðWWy;WWzÞg;
(32)
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where the distance constraint DðWWy;WWzÞ ¼ DðWWyÞþ DðWWzÞ,
the geometry constraint GðWWy;WWzÞ ¼ GyðWWyÞþ GzðWWzÞ,
the transformation constraint T ðWWy;WWzÞ ¼ 1

2 ðkWWT
y KKYY k2F þ

kWWT
z KKZZk2F Þ.
Initialization. The initialized objective function Eq. (22) in

the optimization algorithm in Section 3.3 is instantiated by
defining the matrixMMb;MMw as

MMb ¼ KKyRR
b
yKK

T
y �KKyAA

bKKT
z

�KKzðAAbÞTKKT
y KKzRR

b
zKK

T
z

" #
; (33)

MMw ¼ KKyRR
w
y KK

T
y �KKyAA

wKKT
z

�KKzðAAwÞTKKT
y KKzRR

w
z KK

T
z

" #
: (34)

Alternately Updating. The analytical solutions Eqs. (24)
and (25) in Section 3.3 can be derived as

WWy ¼ ðKKyðBB0
y þ 2�1LLy þ 2�2IIÞKKT

y Þ�1KKyAAKK
T
z WWz;

WWz ¼ ðKKzðBB0
z þ 2�1LLz þ 2�2IIÞKKT

z Þ�1KKzAAKK
T
yWWy:

(35)

5 EXPERIMENTAL EVALUATION

We conduct evaluations for three video-based face recogni-
tion tasks being—Video-to-Still, Still-to-Video and Video-
to-Video face recognition—on four challenging video face
databases. These databases are YouTube Celebrities (YTC)
[52], YouTube Face DB (YTF) [53], Point-and-Shoot Chal-
lenge (PaSC) [54] and COX face [55].

The YTC [52] and YTF [53] are both popular internet
video face datasets collecting from YouTube. The YTC con-
tains 1,910 video clips of 47 celebrities. The video frames
often exhibit a large variation of pose and illumination, as
well as degradations such as compression effects (see
Fig. 3a). The YTF, contains 3,425 videos of 1,595 persons. As
shown in Fig. 3b, there are again large variations in pose,
illumination, and expression. Thus, the YTF is very chal-
lenging for verifying faces from these internet videos.

The PaSC [54] and COX [55] are designed to simulate
more of a video surveillance system. The PaSC [54] was col-
lected for face recognition from stills and videos captured
by point-and-shoot cameras. It includes 9,376 still images
and 2,802 videos of 293 people in total. The data has large
variation in terms of distance to the camera, alternative sen-
sors, frontal versus not-frontal views, and varying location
(see Fig. 3c) The COX captures 3,000 videos and 1,000 still
images of 1,000 different persons with 3 different camcor-
ders located in different positions. As shown in Fig. 3d,
most of the video frames are of low resolution and low qual-
ity, with blur, and captured under poor lighting.

5.1 V2S/S2V Face Recognition

V2S and S2V face recognition matches still face images
against video sequences of faces. To evaluate our proposed
method in such two face recognition scenarios, we employ
two standard video face databases: PaSC [54] and COX [55].

5.1.1 Dataset Setting

On the PaSC, the facial region is cropped by using the eye
coordinates from [54]. Then the cropped facial region is
aligned and scaled to a size of 224� 224 pixels. Following
[4], [10], [56], we use the approach of [15] to extract deep face

features from the normalized face images. For V2S face veri-
fication, the target set includes 9,376 images of 293 people
while the query set contains 2,802 videos of 265 people. Since
the videos are grouped into the sets of control and handheld
videos respectively, the V2S evaluation on the PaSC consists
of two tests: Video (control)-Still and Video (handheld)-Still.

For the COX database, we use the face detection and the
positions of the eyes provided by the work in [55]. In the
scenario of V2S/S2V face recognition, we implement two
types of feature extractions. In the first setting, we first nor-
malize face images with a size of 48� 60, and then use
resulting gray-scale pixel values as gray feature vectors. In
the other setting, as done on the PaSC, we also extract deep
face features by the approach of [15]. In the V2S evaluation,
the target set contains still images of the persons with
known identities, while the query samples are video clips of
faces to be recognized. In contrast, the target set of the S2V
scenario conversely contains videos of faces while the
queries are still face images. There are 3 testing sets of vid-
eos, each of which contains 700 videos from 700 subjects.
Therefore, in total 6 tests (i.e., V1-S, V2-S, V3-S, S-V1, S-V2,
S-V3, where Vi is the ith video testing set) are conducted.

5.1.2 Method Setting

In the evaluation of V2S/S2V face recognition, besides to the
deep learning method VGGDeepFace [15] that reported the
state of the art on YTF, we also compare two groups of exist-
ing metric learning methods as listed below. The homoge-
neous (Euclidean) metric learning approaches learn the
single-view metric between Euclidean features of video
frames/still images, and adopt the maximal pooling on the
matching between images and frames within one video. The
heterogeneous metric learning methods learn the cross-view
metric among the Riemannian representations1 of videos,
their Euclidean features and the Euclidean features of still
images. As KPLS, KCCA and KGMA are all both designed to
analyze heterogeneous data, we feed themwith our proposed
Euclidean-to-Grassmannian (EG), Euclidean-to-AffineGrass-
mannian (EA) and Euclidean-to-SPD (ES) heterogeneous
data, which are also the inputs of our CERML.

Fig. 3. Example still images and video frames from internet face datasets
YTC (a), YTF (b) and surveillance-like face datasets PaSC (c), COX (d).

1. For the SPD matrix representation, we compute a covariance
matrix for each set of face features that belong to the same video clip.
Regarding linear subspace, we applied eigen-decomposition on each
resulting covariance matrix to obtain an orthonormal basis matrix as
the representation. Further, we combine mean vector and linear sub-
space together to represent affine subspace.
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(1) Homogeneous (Euclidean) metric learning methods:
Neighborhood Components Analysis (NCA) [21],
Information-Theoretic Metric Learning (ITML) [22],
Local Fisher Discriminant Analysis (LFDA) [23],
Large Margin Nearest Neighbor (LMNN) [24] and
Point-to-Set Distance Metric Learning (PSDML) [25];

(2) Heterogeneous metric learning methods: Kernel
Partial Least Squares (KPLS) [28], Kernel Canonical
Correlation Analysis (KCCA) [26] and Kernel Gener-
alized Multiview Linear Discriminant Analysis
(KGMA) [31].

For fair comparison, we tune the key parameters of the
comparative methods according to the suggestions from the
original works. For NCA, the maximum number of line
searches is set to 5. For ITML, the lower/upper bound dis-
tance is set to the mean distance minus/plus standard vari-
ance, and its other parameters are set to the default values
designed in its released code. In LFDA, the neighborhood
number k is set to 7. For LMNN, the number of neighborhood
is set to 5, themaximum iteration number is set to 500, the por-
tion of training samples in validation is 30 percent. For
PSDML, we set the regularization parameter as k ¼ 0:8, the
number of negative pairs per sample k ¼ 6. For KPLS and
KGMA, the numbers of the factors are set with the class num-
ber of training data. For the proposedmethod CERML,we set
the parameters �1 ¼ 0:01; �2 ¼ 0:1, the neighborhood number
k1 ¼ 1; k2 ¼ 20, the kernel widths ss are all specified from the
mean distances respectively on the training multi-view data,
and the number of iterations is set to 20. As studied in our pre-
vious work [20], we find that adding the cross-view kernels
(see the supplementarymaterial for their definitions, available
online) into the original single-view kernels does improve the
V2S/S2V face recognition. Thus, we use the proposed cross-
view kernels in [20] to concatenate the EG/EA/ES kernels for
CERML. For the comparisons between single-view and cross-
view kernel cases, readers are referred to the supplementary
material, available online.

5.1.3 Results and Analysis

We summarize the V2S/S2V face recognition results on the
PaSC and COX databases in Table 1, where each reported
result on COX is the mean rank-1 identification rate over ten
random runs of testing, while the presented results on PaSC
are rank-1 verification rates at a false acceptance rate (FAR) =
0.01. In addition, we present comparisons in terms of run-
ning time in the supplementarymaterial, available online.

As shown in Table 1, we can achieve some observations.
On PaSC, the homogeneous (Euclidean) metric learning
methods generally outperform the existing heterogeneous
metric learning methods. This is because the facial videos in
the PaSC dataset are typically taken under very large varia-
tions in head pose, lighting, and locations. Hence, it is diffi-
cult for them to use a single type of representation to encode
the video features. Moreover, it is also non-trivial to learn a
correlationmodel between such highly heterogeneous image
features and video features. In contrast, by exploiting multi-
ple features for video representations and designing a more
sophisticated heterogeneous metric learning scheme, our
proposed CERML can achieve comparable results with the
state-of-the-art. On COX, in most of tests, the exiting hetero-
geneous metric learning methods KCCA and KGMA cou-
pled with our proposed heterogeneous data model are
comparable with state-of-the-art homogeneous metric learn-
ing. In contrast, in the two tests of V3-S and S-V3, since the
videos typically record more frontal face images with little
variations, KCCA and KGMA cannot take advantage of the
variation modeling on videos and thus are outperformed by
the Euclidean metric learning methods. In spite of this chal-
lenge, the proposed CERML achieves state-of-the-art results
on all the COX tests. Especially, coupling with deep features,
the improvements of CERML over the existing state-of-the-
art methods LMNN and KGMA are around 9 and 7 percent,
respectively, on average. By comparing the deep learning
method VGGDeepFace on COX and PaSC, we find that the

TABLE 1
V2S/S2V Face Recognition Results (%) on PaSC and COX Using Gray/Deep Features

Methods PaSC (deep) COX (gray/deep)

V(con)-S V(han)-S V1-S V2-S V3-S S-V1 S-V2 S-V3

VGGDeepFace [15] 68.62 65.29 –/79.10 –/77.53 –/79.03 –/59.31 –/65.21 –/74.29

NCA [21] 68.91 67.48 39.14/79.83 31.57/74.21 57.57/80.69 37.71/72.01 32.14/69.39 58.86/79.51
ITML [22] 67.25 65.33 19.83/82.43 18.20/73.49 36.63/86.53 26.66/73.03 25.21/61.57 47.57/82.29
LFDA [23] 72.44 69.86 21.41/66.58 22.17/55.29 43.99/72.86 40.54/78.25 33.90/68.14 61.40/84.15
LMNN [24] 71.12 67.12 34.44/83.25 30.03/72.19 58.06/83.25 37.84/76.12 35.77/70.26 63.33/80.92
PSDML [25] 66.15 63.61 12.14/65.09 9.43/58.16 25.43/80.05 7.04/54.15 4.14/49.16 29.86/78.57

KPLS [28]-EG 42.29 41.21 21.83/46.19 18.50/44.90 30.89/44.67 15.01/49.77 12.41/50.31 25.63/55.07
KPLS [28]-EA 44.42 42.30 21.54/47.31 19.19/46.94 29.41/37.96 15.73/45.97 12.51/47.10 24.54/41.41
KPLS [28]-ES 44.27 42.08 20.21/46.26 16.21/45.16 27.23/42.16 14.83/46.21 11.61/46.21 23.99/43.63
KCCA [26]-EG 58.08 55.71 32.51/73.53 28.87/70.94 48.43/78.79 30.16/73.03 27.34/70.60 44.91/78.59
KCCA [26]-EA 61.87 60.58 30.33/75.03 28.39/72.34 47.74/75.94 28.49/74.63 26.49/72.26 45.21/74.79
KCCA [26]-ES 61.36 60.11 38.60/80.87 33.20/76.63 53.26/81.94 36.39/80.00 30.87/76.76 50.96/81.40
KGMA [31]-EG 60.05 58.18 32.41/75.24 28.96/72.91 48.37/79.93 30.06/75.19 27.57/72.57 44.99/80.06
KGMA [31]-EA 64.87 63.58 30.60/79.33 28.34/76.19 47.74/79.94 28.54/78.63 26.20/76.06 45.27/78.54
KGMA [31]-ES 63.76 62.32 41.89/80.91 38.29/76.53 52.87/81.90 38.03/80.00 33.29/76.69 50.06/81.41

CERML-EG 63.34 60.92 32.63/85.71 33.89/82.51 49.33/87.23 43.29/88.80 41.19/85.69 58.71/90.99
CERML-EA 67.95 66.16 38.77/86.40 37.57/83.13 53.93/86.76 43.93/88.97 41.56/85.84 57.34/90.26
CERML-ES 70.64 68.91 51.41/86.21 49.81/82.66 64.01/86.64 52.39/88.93 49.39/85.37 65.19/89.64

Here EG, EA and ES represent Euclidean-to-Grassmannian, Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matching cases, respectively. Con and
han mean the control and handheld settings.
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CERML consistentlymakes big improvements (about 10 per-
cent on average) when using deep features. This verifies the
proposed first- and second-order pooling scheme can
improve V2S/S2V face recognition.

Besides, we also present the performances of our CERML
with different video models working on PaSC (deep feature)
and COX (gray feature) in Fig. 4. We find that jointly exploit-
ing the first-order pooling (i.e., mean) and the second-order
pooling (i.e., linear subspace, affine subspace, covariance
matrix) often significantly beats their separate exploitation,
which was studied in our prior work [20]. This further vali-
dates the effectiveness of the extended CERMLmethod.

In Fig. 5 we also report the convergence characteristics of
the optimization algorithm of the proposed CERML-ES for
V2S/S2V face recognition on COX. As shown in Fig. 5, the
objective function Eq. (27) of the proposed CERML is able to
converge to a stable and desirable solution after about 20
iterations. In general, the objective function values will
decrease mildly when we add more iterations to run the
proposed optimization algorithm. Empirically, in most of
evaluations, we found the resulting accuracies of running
about 20 iterations are generally a bit higher than those of
performing more iterations. Besides, its also worth mention-
ing that fixing the iteration number in all evaluations can
also show our methods insensitivity to the parameter set-
ting to some extent. The good convergence mainly attributes
to the well-designed initialization strategy (i.e., an initializa-
tion with the well-studied Fisher criterion) and the alternate
updating on the parameter transformation matrices. In
other words, adopting a good initialization strategy and
regularizing the change in the transformation matrices will
help to avoid the failure of convergence.

5.2 V2V Face Recognition

V2V face recognition queries a video against a set of target
videos. To evaluate the proposed method, we use four face
datasets, i.e., YTC [52], YTF [53], PaSC [54] and COX [55].

5.2.1 Dataset Setting

For the YTC dataset, we resized each face image to a 20� 20
image as was also done in [2], [18], and pre-processed the
resulting image with histogram equalization to eliminate
lighting effects. As done in the last evaluation, we extract
both gray features (pixel values) and deeply learned fea-
tures with VGGDeepFace [15] from each face image. Fol-
lowing the prior works [2], [18], [57], [58], we conduct ten-
fold cross validation experiments, i.e., 10 randomly selected
gallery/probe combinations. In each fold, one person has 3
randomly chosen videos for the gallery and 6 for probes.

By employing the provided data of the YTF, we directly
crop and normalize the face images from videos, and extract
both pixel-valued gray features and deep features from the
normalized face images. For this database, we follow the
standard evaluation protocol [53] to perform standard, ten-
fold, cross validation, V2V face identification tests. Specifi-
cally, we utilize the officially provided 5,000 video pairs,
which are equally divided into 10 folds. Each fold contains
250 intra-personal pairs and 250 inter-personal pairs.

For the PaSC, according to the metadata from [54], we crop
each facial image to a color one of size 224� 224. Similar to
the V2S evaluation on PaSC, we employ [15] to extract deep
face features on the normalized faces. For the V2V evaluation,
there are two video face verification tests: control-to-control
and handheld-to-handheld. In both of them, the target and
query sigsets contain the same set of videos. Since the same
1,401 control/handheld videos serve as both the target and
query sets, the ‘same video’ comparisons are excluded.

For V2V identification, the COX has 3 videos per subject
respectively from 3 camcorders, which generates 6 testings.
The 10 random partitions of the 300/700 subjects are
designed for training and testing. In the V2V face recogni-
tion testing, each video face frame is normalized to a gray-
scale image. Similar to its V2S/S2V evaluation, we not only
extract pixel-valued gray features, but also use deep fea-
tures with the deep learning method of VGGDeepFace [15].

5.2.2 Method Setting

In this evaluation, we compare the proposed CERML with
three state-the-art deep learning methods being DeepFace
[13], FaceNet [14], VGGDeepFace [15] and DisDeepFace [17].
Besides, we also study three groups of state-of-the-art Rie-
mannian metric learning methods. The first category of
methods first model videos with linear subspaces lying on a

Fig. 4. V2S/S2V face recognition results (%) of the proposed CEMRL
dealing with different representations of videos for PaSC (deep feature)
and COX (gray feature). Here, CERML-E, CERML-G, CERML-A,
CERML-S, CERML-EG, CERML-EA, CERML-ES respectively indicate
videos are represented by mean, subspace, affine subspace, SPD
matrix, mean+subspace, mean+affine subspace, mean+SPD matrix.
Note that CERML-G/A/S is the proposed method in our prior work [21].

Fig. 5. Convergence characteristics of the optimization algorithm of the
proposed CERML-ES in the task of V2S face recognition on COX. Here,
the 10 lines indicate the results of the 10 random V1-S testings on COX.
The value ‘1’ in x-axis is the case of the initialization.
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Grassmann manifold and then learn a Grassmannian metric
for comparing linear subspaces. The second group of meth-
ods first represents videos with affine subspaces residing on
an Affine Grassmann manifold and then compute/learn the
Riemannian metric for matching affine subspaces. The third
kind ofmethods first employs SPDmatrices to represent vid-
eos and learns a Riemannian metric on the SPD manifold for
comparing SPD data.

(1) Grassmannian metric learning methods: Discrimina-
tive Canonical Correlations (DCC) [59], Grassmann
Discriminant Analysis (GDA) [8], Grassmannian
Graph-Embedding Discriminant Analysis (GGDA)
[39], Projection Metric Learning (PML) [10];

(2) Affine Grassmannian computing/metric learning
methods: Affine Hull based Image Set Distance
(AHISD) [60], Convex Hull based Image Set Distance
(CHISD) [60], Set-to-Set Distance Metric Learning
(SSDML) [25];

(3) SPD Riemannian metric learning methods: Localized
Multi-Kernel Metric Learning (LMKML) [18], Covari-
anceDiscriminative Learning (CDL) [2].

In order to achieve a fair comparison, the key parameters of
each method are empirically tuned according to the recom-
mendations in the original works. For MSM/AHISD, the first
canonical correlation or leading component is exploitedwhen
comparing two subspaces. For the first group of methods
DCC/GDA/GGDA, the dimensionality of the resulting dis-
criminant subspace is tuned from 1 to 10. For GDA/GGDA,
the final dimensionality is set to c� 1 (c is the number of face
classes in training). For AHISD, the leading component is
exploited when comparing affine subspaces. For SSDML,
its key parameters are tuned and empirically set as:
�1 ¼ 0:001; �2 ¼ 0:5, the numbers of positive and negative
pairs per sample are 10 and 20 respectively. In GGDA, the
combination parameter b is tuned around the value of 100.
For LMKML, the widths of Gaussian kernels are tuned
around the mean distance. For our CERML, similar to the
V2S/S2V evaluation, the regularization parameters are set
as �1 ¼ 0:01; �2 ¼ 0:1, the neighborhood number k1 ¼ 1;
k2 ¼ 20, the kernel widths ss are equal to the mean distances
on the training multi-view data, and the number of iterations
is set to 20.

5.2.3 Results and Analysis

The V2V face recognition tests on the four video face data-
bases are summarized in Tables 2 and 3, where each accu-
racy on YTC and COX is the mean rank-1 identification rate
over ten random runs of testing, while the results on YTF
and PaSC are mean verification rates and rank-1 verification
rates at FAR = 0.01, respectively. Besides, the running time
of the competing methods are also presented in the supple-
mentary material, available online.

From the results on the internet video face databases YTC
and YTF in Table 2, it can be observed that the three existing
types of Riemannian metric learning achieve comparable
V2V face recognition accuracies. This demonstrates that the
Riemannian representations, i.e., linear subspace and SPD
matrix, employed by such Riemannian metric learning

TABLE 2
V2V Face Recognition Results (%) on YTC and

YTF Using Gray/Deep Features

Methods YTC (gray/deep) YTF (gray/deep)

DeepFace [13] –/– –/91.4
FaceNet [14] –/– –/95.1
VGGDeepFace [15] –/83.74 –/91.78
DisDeepFace [17] –/– –/94.9

DCC [59] 68.85/86.15 68.28/92.52
GDA [8] 65.02/86.44 67.00/89.20
GGDA [39] 66.56/86.54 66.56/91.60
PML [10] 66.69/86.98 67.30/92.58

AHISD [60] 66.37/81.49 64.80/90.74
CHISD [60] 66.62/74.88 66.30/90.00
SSDML [25] 68.85/85.59 65.38/88.26

CDL [2] 69.72/85.98 64.94/90.65
LMKML [18] 68.13/85.16 64.39/89.53

CERML-EG 68.08/87.62 69.42/93.36
CERML-EA 69.57/88.01 68.89/94.06
CERML-ES 72.38/88.51 68.36/93.44

Here EG, EA and ES are the Euclidean-to-Grassmannian, Euclidean-to-
AffineGrassmannian and Euclidean-to-SPD matchings.

TABLE 3
V2V Face Recognition Results (%) on PaSC and COX Using Gray/Deep Features

Methods PaSC (deep) COX (gray/deep)

V(con)-
V(con)

V(han)-
V(han)

V2-V1 V3-V1 V3-V2 V1-V2 V1-V3 V2-V3

VGGDeepFace[15] 78.82 68.24 –/92.24 –/87.54 –/91.63 –/92.34 –/92.47 –/95.96

DCC [59] 75.83 67.04 62.53/95.86 66.10/95.57 50.56/93.00 56.09/94.29 53.84/96.86 45.19/96.29
GDA [8] 71.38 67.49 68.61/95.11 77.70/95.87 71.59/95.16 65.93/94.41 76.11/96.10 74.83/96.26
GGDA [39] 66.71 68.41 70.80/95.81 76.23/96.30 71.99/95.61 69.17/95.34 76.77/96.66 77.43/96.61
PML [10] 73.45 68.32 71.27/95.57 78.91/95.43 73.24/93.29 64.62/95.86 78.26/97.13 78.15/97.00

AHISD [60] 53.93 45.11 53.03/92.85 36.13/95.57 17.50/95.43 43.51/93.57 34.99/92.43 18.80/94.71
CHISD [60] 60.54 47.00 56.90/92.43 30.13/94.57 15.03/93.43 44.36/91.57 26.40/94.06 13.69/94.57
SSDML [25] 65.32 56.23 60.13/77.43 53.14/90.71 28.73/89.57 47.91/70.43 44.42/85.43 27.34/87.57

CDL [2] 72.69 65.44 78.43/95.53 85.31/97.61 79.71/96.40 75.56/95.96 85.84/97.33 81.87/96.51
LMKML [18] 70.41 66.15 56.14/94.73 44.26/95.16 33.14/96.37 55.37/93.81 39.83/96.12 29.54/96.28

CERML-EG 80.11 77.37 87.59/97.77 92.41/98.07 88.54/97.39 83.21/97.66 92.09/98.59 91.16/97.77
CERML-EA 77.71 75.03 87.14/98.26 91.94/98.33 88.30/97.60 82.81/97.97 92.03/98.49 91.16/97.66
CERML-ES 79.92 76.92 90.31/98.17 94.83/98.27 91.51/97.46 87.06/97.71 95.13/98.31 93.89/97.64

Here EG, EA and ES indicate Euclidean-to-Grassmannian, Euclidean-to-AffineGrassmannian and Euclidean-to-SPD matching, respectively. Con and han
represent the control and handheld settings.
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methods typically encode approximately the same informa-
tion in terms of variations of videos for video-based face
recognition. In contrast, the proposed CERML simulta-
neously exploits the mean and the variation, resulting in
more robust face recognition. Hence, CERML generally out-
perform all the competing methods on the two databases. In
addition, by studying the behavior of the state-of-the deep
learning methods, we observe that our CERML can be com-
parable with or even surpass them.

The evaluations on the two surveillance-like video face
databases PaSC and COX are reported in Table 3. Approxi-
mately the same conclusions can be drawn from the results on
the two datasets. On PaSC, the three affine Grassmannian
learning methods are generally outperformed by the other
two kinds of Riemannian metric learning methods. This may
be because AHISD and CHISD exploit the appropriate dis-
tance metric between Riemannian representations without
employing the label information of the training data. Besides,
SSDML just treats each video with an affine combination of
frames without considering its Riemannian structure, and
thus yields worse performances on PaSC. By fusing the mean
and the variation information on videos, our CERML-EG per-
forms the best with improvements of about 4 and 10 percent
over the state-of-the-art method DCC in the two tests on
PaSC, respectively. On COX, lower performances are also
achieved by the three affine Grassmannian metric learning
methods for the same reasons mentioned above. Compared
with the existing Riemannian metric learning methods, the
proposed CERML can achieve the state-of-the-art in all the
V2V face recognition tests on COX. Specifically, whenever

using gray features or deep features, CERML always reaches
some improvements over the existing state-of-the-art metric
learning methods. Furthermore, we find that the proposed
CERML with deep features has an average gain of 5 percent
over the state-of-the-art deep learningmethod VGGDeepFace
on the PaSC andCOXdatabases.

In addition, we also report the performances of our
CERML with different video models working on YTC, YTF,
PaSC and COX in Fig. 6. As can be seen, simultaneously
exploiting the mean appearance and pattern variance typi-
cally performs better than exploiting them separately. This
further demonstrates the effectiveness of fusing Euclidean
and Riemannian representations in the proposed metric
learning scheme in our CERML.

In the end, we present the convergence behavior of the
optimization algorithm of the proposed CERML-ES in the
scenario of V2V face recognition on COX (see Fig. 7). As
seen, the objective function Eq. (32) of the algorithm can
converge to a desirable value after tens of iterations.

6 CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel heterogeneous
metric learning framework that works across a Euclidean
space and a Riemannian manifold to match/fuse Euclidean
and Riemannian representations of videos. The proposed
method offers a unified framework for three typical tasks of
video-based face recognition. Our extensive experimental
evaluations have clearly shown that the new technique can
achieve the state-of-the-art on four challenging video face
datasets in the three video-based face recognition tasks.

Our work contributes to learn a cross-view metric from a
Euclidean space to a Riemannian manifold, by exploiting
the Riemannian metric learning scheme of kernel embed-
ding which introduces several intrinsic drawbacks (e.g.,
undesirable scalability) of traditional kernel learning meth-
ods as well. For future work, studying how to improve the
proposed framework with other more effective Riemannian
metric learning schemes such as manifold-to-manifold
embedding would be very interesting.
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