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Efficient Approximate Range Aggregation over
Large-scale Spatial Data Federation

Yexuan Shi, Yongxin Tong, Member, IEEE, Yuxiang Zeng, Zimu Zhou, Member, IEEE, Bolin Ding,
and Lei Chen, Fellow, IEEE

Abstract— Range aggregation is a primitive operation in spatial data applications and there is a growing demand to support such
operations over a data federation, where the entire spatial data are separately held by multiple data providers (a.k.a., data silos). Data
federations notably increase the amount of data available for data-intensive applications such as smart mobility planning and public
health emergency responses. Yet they also challenge the conventional implementation of range aggregation queries because the raw
data cannot be shared within the federation and the data partition at each data silo is fixed during query processing. These constraints
limit the design space of distributed range aggregation query processing and render existing solutions inefficient on large-scale data. In
this work, we propose the first-of-its-kind approximate algorithms for efficient range aggregation over spatial data federation. We devise
novel single-silo sampling algorithms that process queries in parallel and design a level sampling based algorithm which reduces the
time complexity of local queries at each data silo to O(log 1

ε
), where ε is the approximation ratio of the accuracy guarantee. Extensive

evaluations with real-world data show that compared with state-of-the-arts, our solutions reduce the time cost and communication cost
by up to 85.1× and 5.5× respectively, with average approximate errors of below 2.8%. In addition, our solutions yield a throughput of
over 250 queries per second, achieving real-time responses for real-world bike-sharing applications.

Index Terms—Spatial Data Federation, Range Aggregation, Sampling.

F

1 INTRODUCTION

A range aggregation query over spatial data returns sum-
marized information about the spatial objects falling within
a spatial range specified as either a circle or a rectangle [1],
[2]. Such queries are crucial for various big spatial data ap-
plications such as smart mobility planning [3], public health
emergency response [4], urban environment monitoring [5],
location-based services [6], etc.

There is a growing trend for the service provider of these
applications to operate on a data federation, where the data
from multiple data providers (a.k.a., data silos) collaborate
to improve the quality of services. Each data silo in the
federation holds part of the entire data (i.e., rows) under the
same schema, and interact with the service provider without
revealing its own raw data partition. For example, a bike
sharing service provider may frequently process queries
such as “how many shared-bikes are there within 2 kilometers of a
subway station” over data from multiple bike sharing compa-
nies. This is exactly the case for real-world applications such
as 9-Bike [7], which provides real-time bike sharing services
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over a federation of bike sharing companies including DiDi
bike [8], Hello bike [9], mobike [10], etc.

It is challenging to offer real-time response to frequent
range aggregation queries in these applications. (i) Tradi-
tional distributed range aggregation techniques [6], [11],
[12], [13] improve query processing throughput by optimiz-
ing data partitioning. However, the data partition is fixed
in the federated setting. (ii) Prior spatial query processing
schemes [2] fail to deliver real-time response in case of high-
frequency queries. For example, real-world bike sharing
applications may receive around 150 queries per second
[14], whereas existing exact range aggregation solutions can
only process 50 queries per second (see Sec. 8).

In this paper, we define the Federated Range Aggre-
gation (FRA) problem and investigate efficient solutions
to range aggregation queries over large-scale spatial data
federation. Observing that the underlying applications de-
mand real-time response of high-frequency queries while a
small error in the result is acceptable, we focus on solutions
that offer high-throughput and high-quality approximate query
results. At a high level, we optimize FRA query processing
from two aspects. (i) We avoid enumerating all data silos
to answer a single FRA query. We argue that the service
provider only needs to communicate with one data silo
to offer high-quality query result. This allows data silos
to process queries in parallel, which notably improves the
throughput. (ii) We propose a novel index to accelerate local
range aggregation queries at each data silo to further reduce
the time complexity to query on large-scale data.

Our main contributions and results are as follows.

• We devise a novel single-silo sampling scheme that
radically reduces the communications with data si-
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los to one round of interaction with a single silo,
achieving a communication cost of O(1) for IID case
and O(

√
|g0|) for Non-IID case. Such a reduction in

communication cost facilitates parallel processing of
FRA queries for high throughput.

• We propose a new level sampling based index called
LSR-Forest for each data silo to accelerate the local
range aggregation query at each data silo, which has
a time complexity of O(log 1

ε ).
• We prove that both the single-silo sampling scheme

and the level sampling based local query offer theo-
retical guarantees on query accuracy. We also show
that when the two techniques are used together, the
guarantee of query accuracy is still bounded.

• Extensive experiments on real-world data show that
compared with exact solutions, our approximate al-
gorithms reduce the time cost of a single FRA query
by up to 85.1× and communication cost by up
to 5.5× with average approximate errors of below
2.8%. In addition, our solutions yield a throughput
of over 250 queries per second, achieving real-time
responses for real-world bike-sharing applications.

In the rest of this paper, we formulate the FRA problem
in Sec. 2, present a solution overview in Sec. 3, and elaborate
on detailed techniques in Sec. 4 and Sec. 5. We prove the
accuracy guarantees of our solutions in Sec. 6 and discuss
their extensions in Sec. 7. Sec. 8 presents the evaluations,
Sec. 9 reviews the related work and we conclude in Sec. 10.

2 PROBLEM STATEMENT

This section defines the Federated Range Aggregation (FRA)
query and specifies the performance metrics.

Definition 1 (Spatial Object). A spatial object is denoted by
o = 〈lo, ao〉, where lo is the location of the spatial object and ao
is the corresponding measure attribute.

Here the location is defined in the two-dimensional Eu-
clidean space. The measure attribute is application-specific.
For example, lo can be the GPS of a taxi and ao can be its
speed. For ease of presentation, Psi = {o1, o2, · · · , onsi }
represents the set of spatial objects stored at the data silo
si, where nsi is the number of spatial objects in the set Psi .

As in previous research [15], [16], [17], we assume mul-
tiple data silos are united as a federation for querying over
a collection of spatial objects. Specifically:

• The spatial data federation (“federation” for short) S
consists of m data silos, i.e., S = {s1, · · · , sm}.

• Each data silo si follows a common schema and owns
a horizontal partition Psi of the entire collection of
spatial objects P =

⋃m
i=1{Psi}.

• A service provider makes queries over the federation
S but can only access the spatial objects in Psi via the
query interface of data silo si.

With the above setting, the Federated Range
Aggregation (FRA) query is defined as below:

Definition 2 (FRA Query). Given a federation S possessing a
collection of spatial objects P , a query rangeR and an aggregation
function F , a federated range aggregation (FRA) query Q from

TABLE 1: Summary of major notations

Notation Description
lo, ao location and measure attribute of a spatial object o
si, Psi a data silo si and its spatial objects Psi
nsi the number of spatial objects in Psi
S, P a federation S and the whole spatial objects P
m the number of data silos in the federation S
R,F a query range R and a aggregation function F

Q(S,R, F ) our proposed FRA query

(a) Locations

(b) FRA Query (c) Spatial objects in each data silo

Fig. 1: An example of the FRA query

the service provider aims to aggregate the measure attributes of
the spatial objects within R:

Q(S,R, F ) = F ({ao | o ∈ P, o is within R}), (1)

where each data silo si can only access its own data partition
Psi , i.e., si can only answer the range aggregation query of
Q(si, R, F ) = F ({ao | o ∈ Psi , o is within R}), and R can
be either circular or rectangular.

We mainly explain our solution to the aggregation func-
tion F of COUNT or SUM and discuss the extensions to
other aggregation functions in Sec. 7. Tab. 1 summarizes the
major notations that will be used throughout this paper.

Example 1. Assume a federation S of two data silos (Fig. 1a).
The first data silo has 10 spatial objects (marked in blue) and
the second data silo holds 8 spatial objects (marked in red). The
locations and measure attributes of these spatial objects are in
Fig. 1c. An FRA query is shown in Fig. 1b, which asks the SUM
of the measure attributes of those spatial objects within a circular
range (marked in green) centered at (4, 6) with a radius of 3.

As mentioned in Sec. 1, we aim to develop high-
throughput, high-quality approximate algorithms to process
frequent FRA queries over large-scale data federation. In
addition to throughput, we also use time complexity and
communication cost as efficiency metrics. The accuracy of
approximate algorithms is quantified by ε-approximation.

Definition 3 (ε-approximation). For an FRA query with an
exact result of ans, an ε-approximation solution should always
report a result ans′ such that (1− ε)ans ≤ ans′ ≤ (1 + ε)ans.
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Fig. 2: An overview of our approximate solutions

3 SOLUTION OVERVIEW

We optimize FRA query processing from two aspects.

• Avoid enumerating all data silos to answer an FRA
query. A naive solution would exchange information
with every data silo to answer a range aggregation
query, allowing only sequential processing. Proper
sampling strategies can enable parallel processing,
which improves the throughput on query streams.

• Accelerate local range aggregation queries at each data
silo. Although spatial indices such as R-trees enable
O(log nsk)-time range aggregation queries for a data
silo sk, the time to obtain a partial aggregation an-
swer is still a bottleneck. We argue that the local
range aggregation queries can be further sped up via
approximate solutions.

Fig. 2 shows an overview of our solution. Central in our
solution are two techniques:

• Single-Silo Sampling (Sec. 4). We reduce the num-
ber of silos for partial aggregation result retrieval
from m to 1 to allow parallel query processing. This
is achieved with a grid index to track the distribution
of the spatial data partitioning and the correspond-
ing query result estimation algorithms.

• Level Sampling based Local Query (Sec. 5). We de-
vise a novel level sampling based index (LSR-Forest)
for fast approximate range aggregation queries at
each silo. It reduces the average time complexity of
local range aggregation queries to O(log 1

ε ).

4 SINGLE-SILO SAMPLING

In this section, we present our strategies to avoid enumerat-
ing all data silos when processing an FRA query. We first in-
troduce the indices (Sec. 4.1), then explain our silo sampling
and result estimation methods (Sec. 4.2), and finally present
the framework to process multiple FRA queries (Sec. 4.3).

4.1 Grid Index Construction

As a prerequisite for silo sampling, the service provider con-
structs grid indices to track the distributions of the spatial

Algorithm 1: Construct grid index

Input: federation S = {s1, · · · , sm}
Output: a set of grid indices G

1 foreach data silo si ∈ S do
2 gi ← construct a grid index for the data in si;
3 si sends the grid index gi to service provider;

4 g0 ← merge the received grid indices g1, · · · , gm;
5 return G = {g0, g1, · · · , gm};

objects, where each grid aggregates the measure attributes
of its covered spatial objects.

Alg. 1 shows how to construct the grid indices. De-
note G = {g0, g1, · · · , gm} as a set of grid indices, where
g1, · · · , gm are the grid indices of the spatial objects owned
by data silos s1, · · · , sm and g0 is merged from the other m
grid indices. In lines 1-3, a request of constructing the grid
index is sent to each data silo si and each silo sends its grid
index gi back to the service provider. These grid indices are
then merged as g0 for all the spatial objects.

Example 2. Back to Example 1, we build a grid index, whose
grid length is 2.5. The two data silos can be spilt into 16 grids,
as shown in Fig. 1b. In these grid indices, we store the number
(COUNT) of the covered spatial objects and the SUM of their
measure attributes. For example, in the bottom-left corner of the
grid index, the first data silo has no spatial object while the second
data silo has one spatial object. Thus, for the first data silo, both
COUNT and SUM values of this grid are 0. For the second data
silo, the COUNT value is 1, and the SUM value is 7 since the
measure attribute of the spatial object at (2, 2) is 7. Finally, we
can build the grid index g0 by summing up the COUNT/SUM
values of the corresponding grid in grid indices g1 and g2.

Complexity Analysis. In Alg. 1, each silo si takes O(nsi)
time and O(|gi|) space to construct a grid index, and the
service provider takes O(

∑m
i=1 |gi|) time, O(|g0|) space and

O(
∑m
i=1 |gi|) communication cost to construct the grid index

g0, where |gi| is the number of grids in gi.

4.2 Silo Sampling & Result Estimation

Now we explain how to sample only one data silo for a
partial answer and estimate the result for the FRA query
based on the grid indices. Since the spatial objects can
distribute identically or non-identically, we devise different
strategies for these two cases1.

4.2.1 Identically Distributed Spatial Data
If the spatial objects are identically (and independently)
distributed (i.e., IID) across data silos, it is intuitive to only
retrieve a partial answer from one data silo and estimate
the result from its partial answer. Note that our algorithm is
applicable for any specific distribution of the IID case.

Alg. 2 illustrates single-silo sampling and query result
estimates for a given FRA query in the IID case. In line 1, a
data silo sk is picked at random from the federation S. In
lines 2-3, a request of local range aggregation query is sent
to sk and the result resk is sent back to the service provider.
In lines 4-8, the service provider estimates the approximate

1. Usually the spatial objects are independent.
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Algorithm 2: IID-est

Input: federation S = {s1, · · · , sm}, query range R,
aggregation function F and grid indices G

Output: approximate result of FRA query
1 sk ← randomly sample a data silo from S;
2 send a request of range aggregation query (R,F ) to

the data silo sk;
3 resk ← receive the query answer sent by the data

silo sk;
4 sum0 ← 0, sumk ← 0;
5 foreach grid i in the grid index g0 such that grid i

intersects with the query range R do
6 sum0 ← sum0+ aggregation of grid i in g0;
7 sumk ← sumk+ aggregation of grid i in gk;

8 ans′ ← sum0 × (resk/sumk);
9 return ans′;

result based on resk. Specifically, it first iterates each grid
i that intersects with the query range R (line 5). Then, it
accumulates the SUM/COUNT values of i in the grid index
g0 as sum0 and accumulates the SUM/COUNT values of i
in the grid index gk as sumk (lines 6-7). The approximate
result ans′ is calculated as sum0 × (resk/sumk) (line 8).

Example 3. Back to Example 1. Assume silo s2 is sampled to
process the local range aggregation query. From Fig. 1, its partial
answer resk is 4 (line 3). Next, we estimate the aggregation result
in lines 5-7. We only need to enumerate the 3×3 grids in the top-
left corner. Accordingly, we can calculate sum0 = 4+0+0 (first
row) +2+2+4 (second row) +4+1+4 (third row) = 21. and
sumk = 3 + 0 + 0 + 0 + 1 + 2 + 0 + 1 + 4 = 11. Finally, we
get the approximate result as 21× (4/11) = 7.6.

Complexity Analysis. In Alg. 2, sk is sampled uniformly at
random. Thus, line 3 takesO(avg{log nsi}) time on average.
In lines 4-7, it takes O(|g0|) time and extra O(1) space (other
than the usage of grid indices) to calculate the estimated
result. Hence Alg. 2 takes O(|g0| + avg{log nsi}) time. The
communicate cost is O(1) since the service provider only
interacts with one silo sk.

Remarks. The time complexity of Alg. 2 can be reduced to
O(avg{log nsi}) by efficiently calculating the aggregation
results of the grids which intersect with R. Specifically, we
maintain a cumulative array arrk[i][j] to store the sum of
SUM/COUNT of grids (0, 0) to (i, j), which can be pre-
calculated during the construction of gk. By the inclusion-
exclusion principle, it takes O(1) time to calculate sum0

and sumk. In Example 1, we can calculate (0, 0) in Fig. 1b
and (2, 2) in Fig. 1b among the grids intersecting with R.
Then sum0 = arr0[2][3] − arr0[2][0] = 32 − 11 = 21 and
sumk = arrk[2][3] − arrk[2][0] = 18 − 7 = 11, which takes
O(1) time. This way, lines 4-7 take O(1) time and the time
complexity of Alg. 2 is O(avg{log nsi}).

4.2.2 Non-Identically Distributed Spatial Data

If the spatial objects are not identically distributed (Non-
IID), Alg. 2 can be biased (see Theorem 1). Hence we need
a new solution to the Non-IID spatial data. The key idea
is to leverage a commonly used assumption [18], [19], [20]
that the spatial objects within a small area (e.g., a grid)

Algorithm 3: NonIID-est

Input: federation S = {s1, · · · , sm}, query range R,
aggregation function F and grid indices G

Output: approximate result of FRA query
1 sk ← randomly sample a data silo from S;
2 send a request of range aggregation query (R,F ) to

data silo sk;
3 res1k, · · · , res

|gk|
k ← receive the query results sent by

data silo sk, where resik denotes the contribution of
the spatial objects in grid i;

4 ans′ ← 0;
5 foreach grid i in the grid index g0 such that grid i

intersects with the query range R do
6 esti0 ← resik ×

aggregation of grid i in g0
aggregation of grid i in gk

;
7 ans′ ← ans′ + esti0;

8 return ans′;

often follow the same distribution. This inspires us to ask
the sampled data silo to send not only the partial answer
to the service provider, but also the contribution of the
spatial objects by each grid in the aggregation answer. Such
information will enable an unbiased estimation of the result
for a given FRA query (detailed proof in Sec. 6).

Alg. 3 illustrates the silo sampling and result estimation
algorithm for Non-IID spatial data. In lines 1-2, a data silo sk
is selected at random to process the local range aggregation
query. In line 3, sk sends back to the service provider a vec-
tor res1k, · · · , res

|gk|
k from sk, where resik is the contribution

of the spatial objects of grid i in the partial answer and
|gk| is the number of grids in the grid index of sk. In lines
4-7, the service provider estimates the approximate result
based on the received vector. Specifically, it first iterates
each grid i that intersects with the query range R (line 5).
Then, it estimates the contribution of the spatial objects of
all the data silos in grid i, which is denoted by esti0 (line 6).
Finally, it accumulates the estimated contribution esti0 into
the approximate result ans′ (line 7).

Here we assume that the coverage of data silos is
overlapping, but may not be uniform across space. This is
reasonable because for applications such as federated bike
sharing, companies provide services across the entire city,
although each company may have a different strategical
focus. Our method can also be extended to the case of non-
overlapping coverage. Specifically, in line 1, we sample sk
from silos who have data in the query range. This way, we
can filter irrelevant silos and find a representative silo sk.

Example 4. Back to Example 1 and still assume data silo s2 is
sampled to answer the local range aggregation query. According
to Alg. 3, s2 will send a vector {0, 0, 0, 0 (first row), 0, 1, 2, 0
(second row), 0, 1, 0, 0 (third row), 0, 0, 0, 0 (fourth row)} back
(line 3). To estimate the approximate result of the FRA query, we
first enumerate the 3 × 3 grids in the top-left corner. Then, for
each grid, we estimate the contribution of all the spatial objects in
the final result. For example, when the grid in the second row and
second column is iterated, we have esti0 = 1 × 2

1 = 2 and then
accumulate esti0 into the final result ans′. In the end, we get the
estimated result ans′ = 0+ 0+ 0+ 0+ 2+ 4+ 0+ 1+ 0 = 7.

Complexity Analysis. In Alg. 3, sk is sampled uniformly at
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Algorithm 4: Single-Silo Sampling Framework

Input: federation S = {s1, · · · , sm}, a set of query
Q = {q1, · · · , q|Q|} and grid indices G

Output: approximate result of FRA queries
1 foreach q ∈ Q do
2 sq ← randomly sample a data silo from S;
3 send a request of range aggregation query q to

data silo sq according to corresponding
distribution (IID or Non-IID);

4 foreach received query results of query q from silo sq do
5 estimate the final result ansq according to

corresponding distribution (IID or Non-IID);

6 return ans1, · · · , ans|Q|;

random. Thus line 3 takes O(avg{log nsi}) time. In lines 4-
7, the service provider needs O(|g0|) time and extra O(|g0|)
space (other than the usage of grid indices) to calculate the
estimated result. Thus, the total time complexity of Alg. 3 is
O(|g0|+avg{log nsi}). The communicate cost is also O(|g0|)
since it only receives a vector of |gk| (< |g0|) elements from
one data silo sk.
Remarks. As with in Sec. 4.2.1, the time complexity of Alg. 3
can also be further reduced by enumerating only the grids
which intersect with the boundary of R. For those grids
covered in R, we can apply the technique in Sec. 4.2.1 to
directly calculate their actual contributions. For instance, in
Example 1, only grid (1, 1) is covered in R. Its actual contri-
bution can be calculated by resi0 = 2. This way, line 3 only
transmits O(

√
|g0|) query results and lines 4-7 only takes

O(
√
|g0|) time. Thus, the time complexity and communica-

tion cost of Alg. 3 is reduced to O(
√
|g0|+avg{log nsi}) and

O(
√
|g0|).

4.3 Framework to Process Multiple FRA Queries

In this subsection, we explain how the single-silo sampling
algorithm in Sec. 4.2 enables parallel processing of multiple
FRA queries for high-throughput.

Alg. 4 shows the framework to process |Q| FRA queries.
In lines 1-3, the service provider sends a query to a random
sampled silo sk. sk will answer the query and return the
query results to service provider (line 4). After the service
provider receives the query results of q from silo sk, it
estimates the final result ansq in line 5. Finally, the answers
of all the |Q| queries are returned in line 6.
Complexity Analysis. In Alg. 4, sq is sampled uniformly
at random. Thus, different queries are executed on different
silos in parallel. It means that one silo only needs to execute
|Q|/m queries in expectation. As a result, the expected
time complexity of line 4 is O( |Q|m avg{log sq}). The rest
of the framework will take O(|Q|) time for IID-est and
O(|Q|

√
|g0|) for NonIID-est. The total communication cost

is also O(|Q|) for IID-est and O(|Q|
√
|g0|) for NonIID-est.

Remarks. For high-throughput parallel processing of multi-
ple queries, it is important to reduce the workload of each
silos. In our solution, each silo will only receive |Q|/m
queries for execution in expectation. Compared to the naive
solution in which each silo will process all |Q| queries, our
framework can reduce the workload by 1/m.

5 LEVEL SAMPLING BASED LOCAL QUERY

This section presents our algorithm to reduce the average
time complexity of local range aggregation query from
O(log nsk) to O(log 1

ε ). It is achieved by a novel level
sampling based index (Sec. 5.1) and the corresponding local
range aggregation query algorithm (Sec. 5.2).

5.1 LSR-Forest Index Construction

For data silo sk, the LSR-Forest index consists of multiple
R-trees T 0, T 1, · · · , T lognsk . Each R-tree T i indexes a set
of sampled spatial objects (denoted by P isk ), where i is
the identifier of R-tree and each spatial object is sampled
with probability 1/2i. In other words, the tree of a higher
identifier will have fewer spatial objects.

Alg. 5 illustrates how to construct the LSR-Forest for
data silo sk. Specifically, in lines 1-2, sk constructs an R-
tree T 0 based on all the spatial objects P 0

sk
(i.e., P 0

sk
= Psk ).

In lines 3-5, as the level i increases, fewer spatial objects
are sampled. Concretely, the spatial objects P isk in current
level are generated by sampling the spatial objects in P i−1sk
with probability 1/2. Then data silo sk constructs R-tree
T i based on the newly sampled spatial objects. Finally,
all the constructed R-trees T 0, T 1, · · · , T lognsk form the
LSR-Forest index for data silo sk.

Example 5. Back to Example 1. We now construct the
LSR-Forest index for silo s2. As shown in Fig. 1c, there are
eight spatial objects o1-o8 in the second data silo. In other words,
P 0
s2 = {o1, · · · , o8} and ns2 = 8 in line 1, and hence we can

construct an R-tree T 0 of P 0. In lines 3-5, there are log ns2 = 3
iterations and we sample a subset of P 0

s2 in each iteration. For
example, in the first iteration, we assume the first four spatial
objects in P 0

s2 are sampled, i.e., P 1
s2 = {o1, · · · , o4}, since the

sampling probability is 1/2. In the second iteration, we assume the
first two spatial objects in P 1 are sampled, i.e., P 2

s2 = {o1, o2}.
In the last iteration, we assume the first one spatial object in P 2

s2
is sampled, i.e., P 3

s2 = {o1}. Then we can construct an R-tree for
the sampled spatial objects in each iteration.

Complexity Analysis. Assume nsk is the number of spatial
objects in silo sk. In lines 2-5, the construction of R-tree
on P isk takes O( 1

2i · nsk log nsk) time and space. Thus,
the entire construction takes

∑lognsk
i=0 O( 1

2i · nsk log nsk) =
O(nsk log nsk) time and space. Note that the LSR-Forest
index construction is a one-off effort. Its time complexity is
negligible when processing large amounts of FRA queries.

5.2 Local Range Aggregation Query

With the LSR-Forest indices, we can conduct approximate
local range aggregation query at a given silo as follows: first
select a level l, then conduct the local range aggregation
query on the R-tree T l, and finally use the answer on the R-
tree T l multiplying 2l as the result from this silo. Note that
the selection of level l is determined by the required accu-
racy guarantee. Given an approximate ratio ε, a least upper
bound δ and a rough estimate of the query result sum0

(the aggregation result of grids that intersect with the query
range in our work), l is obtained by blog2− ε

2sum0

3 ln δ
2

c. De-
tailed derivation on determining l is deferred to Lemma 1.
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Algorithm 5: Construct LSR-Forest for data silo sk
Input: spatial objects Psk
Output: index LSR-Forest

1 P 0
sk
← Psk , nsk ← |Psk |;

2 T 0 ← construct an R-tree based on P 0
sk

;
3 for i← 1 to log nsk do
4 P isk ← sample each spatial object in P i−1sk

with
probability 1/2;

5 T i ← construct an R-tree based on P isk ;

6 return T 0, T 1, · · · , T lognsk ;

Algorithm 6: Local range aggregation query by
LSR-Forest

Input: query range R, aggregation function F , index
LSR-Forest, approximate ratio ε, least upper
bound δ and the aggregation result on grids
sum0

Output: approximate result of local range
aggregation query

1 Tl ← selects a proper R-tree based on Lemma 1,
where l = blog2− ε

2sum0

3 ln δ
2

c;
2 resl ← answer the range aggregation query F by

the R-tree Tl;
3 res′ ← resl × 2l;
4 return res′;

Alg. 6 presents the procedure to answer a range ag-
gregation query with our index LSR-Forest. In line 1, we
pick a proper R-tree T l from LSR-Forest based on δ using
Lemma 1. In line 2, we use the picked R-tree T l to conduct
the range aggregation query and obtain the answer resl.
Accordingly, we can estimate the answer of all the spatial
objects owned by data silo sk as resl × 2l in line 3.

Example 6. Back to Example 1. Assume silo s2 is sampled for
local range aggregation query and l is calculated as 1 in line 1
of Alg. 6. Since T 1 is an R-tree index of the spatial objects o1-
o4, only o3 and o4 are within the range R, i.e., resl = 1 +
1 = 2 in line 2. Finally, the approximate result of the local range
aggregation query is res′ = 2× 21 = 4.

Complexity Analysis. Assume nsk is the number of spatial
objects in data silo sk. The time cost of Alg. 6 is related
to the chosen level l. Since the expected number of spatial
objects in T l is nsk

2l
, the time cost for a query on T l (line 2)

is O(log
nsk
2l

). In line 1 we have 2l = O(ε2sum0) and sum0

is the number of spatial objects in the grids which intersect
with the query range. Assume sum0 varies from 0 to nsk
uniformly. Then we have 2l = O(ε2nsk). Thus, the time cost
of line 2 is O(log

nsk
ε2nsk

) = O(log 1
ε ).

Remark. With Alg. 6, the time complexity of local query
is reduced from O(log nsk) to O(log 1

ε ) in average, which
is independent of the number of spatial objects in data
silo sk. Thus, the time cost for local queries is almost the
same across data silos, which contributes to better load
balancing when combined with Alg. 2 or Alg. 3 to answer
FRA queries.

6 ACCURACY GUARANTEES

Main Theoretical Results. Our approximate solution to an
FRA query achieves ε-approximation with probability 1 −
4 exp{− ε

2ans2

2sum0
}, where ans and sum0 are the exact answer

and a rough estimate of the query result, respectively. The
guarantee holds for both the IID and Non-IID cases, whether
with or without level sampling based local query.

We prove the above claims by first showing the accuracy
bound of our level sampling based local query (Alg. 6),
followed by the IID case without / with level sampling
(Alg. 2 / Alg. 2 + Alg. 6), and finally the Non-IID case
without / with level sampling (Alg. 3 / Alg. 3 + Alg. 6).
Accuracy of Level Sampling Based Local Query. The
accuracy of our level sampling based local query is ensured
by the following lemma.

Lemma 1. Alg. 6 achieves ε-approximation with probability 1−δ.

Proof. Let Xoi indicates whether the spatial object oi locates
within R. In Alg. 6, resl is the answer of the range aggrega-
tion query by the R-tree T l. We have

E[resl] =
res

2l
.

In Alg. 6, res′ = resl × 2l. Then we have

E[res′] = 2l E[resl] = 2l ·
res

2l
= res .

Based on the Chernoff’s inequality [21], we have

P[|resl −
res

2l
| > ε

res

2l
] ≤ 2 exp{−

ε2res

3 · 2l
} .

Multiplying 2l to both sides of the inequality inside P[·],

P[|res′ − res| > ε res] ≤ 2 exp{−
ε2res

3 · 2l
} .

Since l = blog2− ε
2sum0

3 ln δ
2

c, where sum0 is a rough estimate
result of res by grids. In practice, the ratio of sum0 and
res is usually less than 2. Thus, l = blog2− ε2res

3 ln δ
2

c. Finally,
P[|res′ − res| > ε · res] ≤ δ .

Accuracy of Approximate Solutions (IID Case). Our solu-
tions in the IID case include (i) single-silo sampling (Alg. 2)
and (ii) single-silo sampling combined with level sampling
(Alg. 2 + Alg. 6). Their accuracy is guaranteed by Theorem 1
and Theorem 2.

Theorem 1. Alg. 2 achieves ε-approximation with probability
1− 4 exp{− ε

2ans2

2sum0
}.

Proof. In the IID case, the spatial objects of all data silos
follow the same distribution. Without loss of generality,
assume the probability density function (a.k.a., PDF) of the
distribution is f(o). Let Xoi indicate whether the spatial
object oi in P locates in the query range R. Then, Xoi
follows a Bernoulli distribution and the exact result is
ans =

∑
oi∈P Xoi . In Alg. 2, resk is the result of local range

aggregation on the sampled data silo sk, and sumk is the
aggregation result of all the grids on sk which intersect with
R. Let G′ be such a set of grids and denote R ⊆ G′ as grids
G′ that intersect with R. Then, we have

E[ans] = E
[ ∑
oi∈P

Xoi

]
= E

[ ∑
oi∈P,oi locates inG′

Xoi

]
= sum0 ·

∫
R
f(o)do∫

G′ f(o)do
.
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Similarly,

E[resk] = sumk ·
∫
R f(o)do∫
G′ f(o)do

.

From Alg. 2, we know

ans′ = sum0
resk
sumk

.

Thus,

E[ans′] = sum0
E[resk]
sumk

= sum0 ·
∫
R f(o)do∫
G′ f(o)do

= E[ans].

Applying Hoeffding’s inequality [21], we have

P
[
|ans′ − E[ans′]| ≥

ε

2
ans

]
≤ 2 exp{−

ε2ans2

2sum0
}.

Similarly,

P
[
|E[ans′]− ans| ≥

ε

2
ans

]
= P

[
|ans− E[ans]| ≥

ε

2
ans

]
≤ 2 exp{−

ε2ans2

2sum0
}.

Finally, the probability to achieve ε-approximation is

P[|ans′ − ans| ≥ εans]

≤ P[|ans′ − E[ans′]|+ |E[ans′]− ans| ≥ εans]

≤ P
[
|ans′ − E[ans′]| ≥

ε

2
ans

]
+ P
[
|E[ans′]− ans| ≥

ε

2
ans

]
≤ 4 exp{−

ε2ans2

2sum0
}.

Theorem 2. If local range aggregation query is performed
by Alg. 6, Alg. 2 achieves ε-approximation with probability
1− 4 exp{− ε

2ans2

2sum0
}.

Proof. Denote the query result of Alg. 6 as res′k. From Alg. 2,
we know ans′ = sum0

res′k
sumk

.
According to Lemma 1, we have

E[res′k] = resk.

Thus, based on the proof of Theorem 1, we know

E[ans′] = sum0
E[res′k]
sumk

= E[ans].

P[|ans′ − ans| ≥ εans] ≤ 4 exp{−
ε2ans2

2sum0
}.

Accuracy of Approximate Solutions (Non-IID Case). Our
solutions in the Non-IID case include (i) single-silo sampling
(Alg. 3) and (ii) single-silo sampling combined with level
sampling (Alg. 3 + Alg. 6). Their accuracy is guaranteed by
Theorem 3 and Theorem 4.

Theorem 3. Alg. 3 achieves ε-approximation with probability
1− 4 exp{− ε

2ans2

2sum0
}.

Proof. In the Non-IID case, assume the spatial objects in dif-
ferent grids follow different distributions, while the spatial
objects in the same grid follow the same distribution. Denote
fi(o) as the PDF of the distribution in the grid i. Further
denote P i as the set of spatial objects in the federation
which are located in grid i, and P ik as the set of spatial

objects in the sampled data silo sk which are located in grid
i. Assume R ∩ i is the area where grid i intersects with
query range R. Let Xoj indicates whether a spatial object is
located within R. Then, Xoj follows a Bernoulli distribution
and ans =

∑
oj∈P Xoj . Accordingly, we have

E[ans] = E
[ ∑
oj∈P

Xoj

]
.

From Alg. 3, we have

resik =
∑
oj∈P ik

Xoj ,

esti0 = resik
aggregation of grid i in g0
aggregation of grid i in gk

,

ans′ =
∑
i

esti0 .

Thus, it can be inferred that

E[esti0] = E[resik]
aggregation of grid i in g0
aggregation of grid i in gk

= E[
∑
oj∈P ik

Xoj ]
aggregation of grid i in g0
aggregation of grid i in gk

= E[
∑
oj∈P i

Xoj ].

By the linearity of expectation, we have

E[ans′] =
∑
i

E[est0i ] =
∑
i

E[
∑
oj∈P i

Xoj ] = E[
∑
oj∈P

Xoj ] = E[ans].

By applying Hoeffding’s inequality [21], we have

P
[
|ans′ − E[ans′]| ≥

εans

2

]
≤ 2 exp{−

ε2ans2

2sum0
}.

Similarly,

P
[
|ans− E[ans′]| ≥

εans

2

]
= P

[
|ans− E[ans]| ≥

εans

2

]
≤ 2 exp{−

ε2ans2

2sum0
}.

Finally, the probability to achieve ε-approximation is

P[|ans′ − ans| ≥ εans]

≤ P[|ans′ − E[ans′]|+ |ans− E[ans′]| ≥ εans]

≤ P
[
|ans′ − E[ans′]| ≥

εans

2

]
+ P
[
|ans− E[ans′]| ≥

εans

2

]
≤ 4 exp{−

ε2ans2

2sum0
}.

Theorem 4. If local range aggregation query is performed
by Alg. 6, Alg. 3 achieves ε-approximation with probability
1− 4 exp{− ε

2ans2

2sum0
}.

Proof. Denote the query result of Alg. 6 as res′
i
k. From

Alg. 3, we know

esti0 = res′
i
k

aggregation of grid i in g0
aggregation of grid i in gk

.

According to Lemma 1, we have

E[res′ik] = resik.
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Thus, based on the proof of Theorem 3, we know

E[ans′] =
∑
i

E[est0i ] =
∑
i

E[res′ik]
aggregation of grid i in g0
aggregation of grid i in gk

=
∑
i

E[
∑
oj∈P i

Xoj ] = E[
∑
oj∈P

Xoj ] = E[ans].

Similar to the proof of Theorem 3, by Hoeffding’s inequal-
ity [21], the probability to achieve ε-approximation is

P[|ans′ − ans| ≥ εans] ≤ 4 exp{−
ε2ans2

2sum0
}.

7 EXTENSIONS

We briefly discuss extensions of our proposed solutions to
other aggregation functions such as AVG and STDEV. Note
that our level sampling based local query is agnostic to the
underlying aggregation function. Hence we mainly discuss
the changes in single-silo sampling and result estimation to
support AVG and STDEV.
Extension to AVG. Since Alg. 2 and Alg. 3 support SUM
and COUNT, AVG can be implemented as the ratio between
a SUM query and a COUNT query.

Accordingly, there will be two rounds of local aggrega-
tion queries in lines 2-3 of Alg. 2 and Alg. 3 to query COUNT
and SUM. Similarly, lines 5-7 of these two algorithms are
changed to estimate the results of COUNT and SUM for the
entire federation, count and sum. Finally, the result of AVG
is estimated as sum

count .
Extension to STDEV. To support STDEV, we first im-
plement a user-defined aggregation function SUM SQR,
where SUM SQR(P ) is the sum of the squares of the
measure attributes, i.e.,

∑
o∈P a

2
o. To support SUM SQR, we

maintain an extra value a2o in each index and process it in
the same way as SUM. Then STDEV is supported because

STDEV(P ) =

√
SUM SQR
|P |

−
(
AVG(P )

)2
.

Accordingly, there will be three rounds of local aggre-
gation queries in lines 2-3 of Alg. 2 and Alg. 3. The first
round queries COUNT, the second round queries SUM and
the last round queries SUM SQR. The same process in lines
5-7 follows to estimate the results of COUNT, SUM and
SUM SQR for the entire federation, denoted as count, sum
and ssqr. Finally, the result of STDEV is estimated as

STDEV(P ) =

√
ssqr

count
−
( sum
count

)2
.

Remark. The time complexity and communication cost of the
extensions to AVG and STDEV are the same as COUNT and
SUM, but may have a larger constant factor. The extensions
also have bounded accuracy guarantees. This is because the
results of AVG and STDEV are derived from the results
of COUNT, SUM and SUM SQR, whose accuracy guar-
antees are bounded. Note that the accuracy guarantee of
SUM SQR is the same as that of SUM. We omit the proof
due to limited space.

8 EXPERIMENT STUDY

We introduce the experimental setup in Sec. 8.1 and present
the results on real-world dataset in Sec. 8.2.

TABLE 2: Parameter settings (defaults are marked in bold)

Parameters Settings
size of data federation |P | 1, 2, 3, 4, 5 (×106)

number of data silos m 3, 6, 9, 12, 15
radius of query range r (km) 1, 1.5, 2, 2.5, 3

number of queries nQ 50, 100, 150, 200, 250
approximate ratio of LSR-Forest ε 0.05, 0.10, 0.15, 0.20, 0.25
least upper bound of LSR-Forest δ 0.01, 0.02, 0.03, 0.04, 0.05

grid length L (km) 0.5, 1, 1.5, 2, 2.5

8.1 Experiment Setup

Dataset. We use the real-word data collected by three shard
mobility companies in Beijing in June 2013. The total size
of records in this dataset is over 1TB. Each record has a
collected time, the vehicle’s location and affiliated company,
and the number of carried passengers (as measure attribute).
The proportion of the records owned by the three companies
is 1 : 1 : 2. The locations of these records fall into an area
from 39.5◦N∼42.0◦N and 115.5◦E∼117.2◦E. To simulate
real-world bike sharing applications, we vary the size of
data federation |P | (i.e., the number of total spatial objects)
from 1 million to 5 million by random sampling, because
there are already 2.35 million bikes in Beijing in 2017 [22].
To vary the number of data silos (m), we equally split the
records of each company to form more data silos, which is a
common used way to evaluate the performance of multiple
participants [16], [17]. For instance, when m is 6, the records
of each company are separated into two data silos, where
each data silo has half of the dataset owned by this company.
Here we choose m = 6 as the default setting, because the
federation of real-world applications such as 9-Bike [7] often
consists of at least 5 companies. Tab. 2 summarizes the major
parameters. The default values are marked in bold.

Queries. We use COUNT and SUM as the aggregation
function F , and synthetically generate the circular range
R. Specifically, we randomly select a location from the
dataset as the center of the circle and vary the radius r
from 1km to 3km. To simulate the query frequency in real-
world applications, for each radius, we generate a set of nQ
independent range aggregation queries, where nQ varies
from 50 to 250. These queries arrive in one second. Note
that applications such as bike sharing expect over 150 range
aggregation queries per second in rush hour [14].

Compared Algorithms. We experiment with the following
algorithms: EXACT [2], an exact solution; OPTA, an opti-
mal approximate histogram-based solution with provable
guarantees [23]; IID-est (Alg. 2); IID-est+LSR (Alg. 2 with
level sampling based local query Alg. 6); NonIID-est (Alg. 3)
and NonIID-est+LSR (Alg. 3 with level sampling based local
query Alg. 6). The default ε and δ of the approximate
algorithms are set as ε = 0.1 and δ = 0.01. The grid size of
the grid indices varies from 0.5km to 2.5km. We use multi-
threading for communication between the service provider
and silos, where the number of threads equals to the number
of silos.

Environment. All the experiments are conducted on multi-
ple (4-16) machines. Each machine runs on Ubuntu 18.04LTS
with Intel(R) Xeon(R) 2.50GHz processor and 32GB memory.
We select one machine as the service provider and the rest
as silos. The algorithms are programmed by python 3.6 and
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Fig. 3: Performance of COUNT query varying radius of query range r
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Fig. 4: Performance of COUNT query varying number of data silos m
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Fig. 5: Performance of COUNT query varying grid length L
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Fig. 6: Performance of COUNT query varying ε

tested on a dedicated 1Gb/s network.

Metrics. We focus on the following performance metrics.

• Mean relative error. Relative error (RE) is a standard
metric to measure the approximation error of one
query Q, as is defined below.

RE(Q) =
|exact result− approximate result|

exact result
. (2)

To measure the average approximation error of mul-
tiple (e.g., nQ) queries, Mean relative error (MRE) is
widely applied [24], [25], [26].

MRE =

∑
QRE(Q)

nQ
. (3)

Since the MRE of any exact solution is zero, we omit
EXACT in the results on MRE.

• (Total) running time. It refers to the total time to
answer all the FRA queries (the time to construct the

static indices excluded). Since throughput is often
defined as the number of queries (nQ) divided by
the the running time [11], [27] and nQ is fixed for
each compared algorithm, a shorter running time
indicates a higher throughput.

• (Total) communication cost. It includes the commu-
nication cost of sending local query from service
provider to silos and the communication cost of
sending partial answer from silos to service provider.

• (Total) memory of indices. It includes the memory
of grid index for service provider and the memory
of R-tree/LSR-Forest for silos. The memory cost of
OPTA is tiny (less than 0.2M). Thus we omitted it in
our experiment.

8.2 Experiment Results
In this section, we show the experiment results for COUNT
query. The results for SUM query have the same trend as
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Fig. 7: Performance of COUNT query varying δ
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Fig. 8: Performance of COUNT query varying number of queries nQ
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Fig. 9: Performance of COUNT query varying size of data federation |P |

those on COUNT and we omit them due to limited space.

Impact of radius r. Fig. 3 presents the results of varying
the radius of the circular query range for COUNT query.
The MRE of all approximate algorithms decreases with the
increase of query radius (see Fig. 3a). This is because a large
radius involves more samples in the results and decreases
the bias of the proposed methods. NonIID-est achieves the
smallest MRE followed by NonIID-est+LSR. The MREs of
NonIID-est and NonIID-est+LSR are 2.77% on average, and
the MREs of IID-est and IID-est+LSR are 5.30% on average.
OPTA performs the worst with an average MRE of 8.57%.
The use of LSR-Forest does not notably increase MRE. For
example, the accuracy gap between NonIID-est and NonIID-
est+LSR is below 1%. In terms of running time, our NonIID-
est, NonIID-est+LSR, IID-est and IID-est+LSR are up to
3.2×, 5.7×, 6.7× and 85.1× faster than EXACT. The results
also show that the running time can be improved by up
to 12.7× with our level sampling based local query. As
for the communication cost, the results of NonIID-est and
NonIID-est+LSR increase slightly as the radius becomes
longer, since more grids will intersect with larger query
range. Compare with EXACT, all the approximate algo-
rithms significantly reduce the communication cost. As for
the memory of indices, IID-est+LSR and NonIID-est+LSR
consume 1× more memory because they apply an extra
index (LSR-Forest).

Impact of number of data silos m. Fig. 4 illustrates the
results of varying the number of data silos m for COUNT

query. From Fig. 4a, OPTA also performs the worst. NonIID-
est is the most accurate and NonIID-est+LSR is the runner-
up. The MREs of all approximate algorithms except OPTA
are below 4.08%. In terms of running time, all our approx-
imate algorithms take less time with the increase of m. For
instance, when m = 15, NonIID-est is 6.3× faster than
EXACT. The communication cost of EXACT and OPTA can
be up to 15.0× higher than IID-est+LSR and 8.3× higher
than NonIID-est+LSR. The memory of indices are relative
stable when m increases (Fig. 4d), since the total amount of
data is fixed.

Impact of grid length L. Fig. 5 shows the results of vary-
ing gird length L for COUNT query. As the grid length
increases, the MREs of all our algorithms increase. This
is because as the grid length increases, the area of grids
intersecting with the query range expands, which increase
approximation errors. Among the approximate algorithms,
NonIID-est has the smallest MRE, which is up to 0.23%,
3.4%, 3.8% and 5.0% lower than NonIID-est+LSR, IID-est,
IID-est+LSR and OPTA, respectively. The gap between IID-
est and IID-est+LSR is within 0.5%. In Fig. 5b, NonIID-
est+LSR is up to 2.7× faster than NonIID-est and IID-
est+LSR is up to 7.8× faster than IID-est with the help
of the LSR-Forest index. In terms of communication cost,
EXACT and OPTA needs up to 4.3× and 5.8× higher cost
than NonIID-est+LSR and IID-est+LSR, respectively. All the
algorithms need no more than 1GB memory for indices.

Impact of ε and δ. Fig. 6-7 show the results of varying ε
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and δ for COUNT. Since only local queries by LSR-Forest
are affected by ε and δ, the MREs of IID-est, OPTA and
NonIID-est are stable. Conversely, the MREs of IID-est+LSR
and NonIID-est+LSR increase with the increase of ε and δ.
In terms of running time, IID-est+LSR and NonIID-est+LSR
become faster with a larger ε. However, the changes in the
time cost are marginal with the increase of δ. The commu-
nication cost (Fig. 6c,7c) and memory of indices (Fig. 6d,7d)
of all the compared algorithms are stable.

Impact of the number of queries nQ. Fig. 8 shows the
results of varying the number of queries for COUNT query.
The MREs of all the algorithms are relatively stable, e.g., the
changes are lower than 2%. The MRE of NonIID-est+LSR
is 4.7% lower than OPTA and 0.27% higher than NonIID-
est. As for the running time, IID-est+LSR and OPTA is
the fastest. NonIID-est+LSR is 56.1× faster than EXACT.
Our IID-est+LSR and NonIID-est+LSR can process more
than 250 queries per second, achieving real-time responses
ride-hailing services. All the approximate algorithms are at
least 2.8× faster than EXACT. In terms of communication
cost, our approximate algorithms are still more efficient. For
instance, the communication cost of NonIID-est and NonIID-
est+LSR is up to 4.3× lower than the communication cost
of EXACT and OPTA. In Fig. 8d, the memory cost of our
algorithms is less than 1GB, which is relatively efficient.

Impact of size of data federation |P |. Fig. 9 presents the
results of varying the size of federation |P | for COUNT. The
performances of all the algorithms are relatively stable. In
Fig. 9a, the MREs of all our approximate algorithms are
below 5.41%. But the MRE of OPTA is 7.13% on average.
NonIID-est is still the most accurate and LSR-Forest sacri-
fices no more than 0.74% of MRE. In terms of running time
and communication cost, our approximate algorithms are
more efficient than EXACT and OPTA. For example, IID-
est+LSR and NonIID-est+LSR are up to 41.6× and 7.2×
faster than EXACT, 5.5× and 4.1× lower communication
cost than OPTA. The memory of indices show similar pat-
terns as previous experiments.

Summary of Results. (i) The MREs of our approximate
algorithms are small, e.g., the MREs of IID-est and IID-
est+LSR are no more than 9.86% and the MREs of NonIID-
est and NonIID-est+LSR are no more than 5.29%. (ii) The
running time and communication cost of our approximate
algorithms are significantly more efficient than the exact
solution. IID-est+LSR and NonIID-est+LSR can be up to
85.1× and 7.2× faster than EXACT with 5.5× and 4.1×
lower communication cost. Our solutions can process over
250 queries per second, which is fit for real-time applications
like federated ride-hailing services.(iii) Memory of indices is
acceptable for all the algorithms. (iv) Our level sampling
based local query notably improves the efficiency with only
a small increase of MRE and memory consumption. It can
reduce up to 114.7× running time, with an increase of MRE
below 1% and an increase of space below 1GB.

9 RELATED WORK

Our work is related to range aggregate queries in spatial data
and query processing in federated data.

9.1 Range Aggregate Queries in Spatial Data
Range aggregate processing is extensively studied in spatial
databases [2], [5], [28], [29], [30], [31], [32], [33]. In the past
few years, distributed systems have been developed to sup-
port efficient range aggregation queries on massive data. For
example, Hadoop-GIS [34] and SpatialHadoop [27] extend
Hadoop to support the query processing on spatial data in
the way of MapReduce. GeoSpark [12], SpatialSpark [35]
and Simba [11] extend Spark [36] for in-memory spatial
analytics. Others (e.g., DITA [37] and UlTraMan [38]) focus
on processing trajectory data. Range aggregate processing is
well supported in all these systems.

There are many approximate solutions for querying on
streaming data [39], [40], [41]. However, they cannot be
easily extended to our problem because we deal with fre-
quent but independent queries on data federation. Parallel/
distributed online aggregation is also relevant, which is
an interactive solution where a series of estimators with
improving accuracy are generated [32], [42]. In our work,
however, one-time estimation is needed.

With the growth of data analysis, many industries desire
more volumes of data than they have in order to improve
their services. As a result, some companies will join in
a federation to share their data with others. Since each
company owns a horizontal partition of the whole data in
the federation, the whole data is called as data federation [16],
[17]. Unlike distributed range aggregation [11], [12], [27],
[34], [35], range aggregation over data federation is more
challenging. Since companies are not likely to exchange their
owned data, the techniques of data partitioning in these
distributed systems cannot be applied, and new solutions
are needed to improve the efficiency or communication cost.

There are also some works on approximate range ag-
gregation queries with privacy preservation, e.g., [43], [44].
These studies usually assume some data is sensitive and
should be protected. However, we assume that data cannot
be directly accessed (e.g., based on GDPR). How to preserve
privacy on a spatial data federation is a future direction.

9.2 Querying and Analysis on Federated Data
As a type of classical data sharing technique, the concept
of federated database system was proposed since the 1980s
[45], [46]. A federated database system is virtually inte-
grated from multiple autonomous databases, which pro-
vides some collaborative querying interfaces rather than
directly sharing raw data. However, traditional federated
database systems mainly focus on relational data.

Recently, data federation has emerged as a new solution
for data sharing. Specifically, [16] and [17] study the privacy
preservation problem in the relational data federation. [16]
applies secure multiparty computation and [17] adopts dif-
ferential privacy. [47] and [48] propose good demonstrations
on query processing over data federation. However, these
methods are not suitable for query processing and optimiza-
tion on large-scale spatial data. Other papers [15], [49], [50]
focus on machine learning over data federation, which is
out of the scope of this paper.

Overall, all the aforementioned studies focus on query
processing and optimization for relational data federation
rather than spatial data federation.
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10 CONCLUSION

In this paper, we formulate the FRA problem, which aims
at range aggregation queries over large-scale spatial data
federation. To enable efficient processing of such queries
on large-scale data, we propose to solve the FRA approx-
imately. Specifically, we devise a set of novel indexing and
sampling techniques that facilitate parallel processing of
FRA queries for high throughput and decrease the average
time complexity of local range aggregation query at each
data silo to O(log 1

ε ). Furthermore, the accuracy guarantee
of FRA queries via our solutions is theoretically bounded.
We validate the efficiency and effectiveness of our solu-
tions on large-scale real-world datasets. Experiments show
that compared with the exact solution, our approximate
algorithms can reduce the time cost and communication
cost by up to 85.1× and 6.3×, respectively, with average
approximate errors below 2.8%. Our solutions can also
process more than 250 queries per second, achieving real-
time responses for real-world bike-sharing applications.
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