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Abstract

This paper describes an approach to characterize

camera and object motions based on the analysis of

spatio-temporal image volumes. In the spatio-temporal

slices of image volumes, motion is depicted as oriented

patterns. We propose a tensor histogram computation

algorithm to represent these oriented patterns. The

motion trajectories in a histogram are tracked to de-

scribe both the camera and object motions. In addition,

we exploit the similarity of the temporal slices in a vol-

ume to reliably partition a volume into motion tractable

units.

1 Introduction

Motion characterization plays a critical role in

content-based video indexing. It is an essential step

towards creating a compact video representation auto-

matically. We can imagine a camera as a narrative eye,

it describes by showing: a camera panning imitates an

eye movement to either track an object or to examine a

wider view of scene; freeze frames give the impression

that an image should be remembered; closeups indicate

the intensity of impression. In order to capture these

impressions in a compact representation, a panning se-

quence could be represented by a mosaic image; a static

sequence is well represented by one frame; a zoom se-

quence is well described by the frames before and after

zoom, while the focus of a tracking sequence should be

the targeted objects. Thus, an e�ective way of charac-

terizing camera motion in videos will greatly facilitate

the video representation, indexing and retrieval tasks.

Related work in this area include camera annotation

[2], mosaic representation [3], and motion-layer repre-

sentations [9, 11]. Bouthemy et. al. [2] employed the

a�ne motion parameters to describe dominant camera

motions; Irani & Anandan [3] discussed various motion

models to annotate and represent videos; while Wang

& Edelson [11] and Sawhney & Ayer [9] proposed the

motion-based decomposition of videos to describe the

background and foreground scenes. Most of these ap-

proaches are based on iterative motion parameter es-

timation from two adjacent frames. Generally better

results can be acquired if more frames are taken into

account at the expense of computational time.

In this paper, we propose an approach based on

the spatio-temporal image volume processing [4], which

takes into account the larger temporal scale. An im-

age volume is formed by a set of temporal slices which

encode rich motion clues suitable for further analysis.

Work on the image volume analysis includes the spatio-

temporal energy model proposed by Adelson & Bergen

[1], video tomography for visualization [10], periodicity

analysis [6], and the video partitioning algorithm [7].

In a spatio-temporal image slice, motion is depicted

as oriented patterns. Thus, the �rst part of our work

is to compute an orientation map, which we refer to as

a tensor histogram, to model the motion distribution

existing in the volume. Based on the histogram, an im-

age sequence is temporally segmented into �ner units,

with each unit consisting of a coherent camera motion.

To further model multiple motions within a duration,

we exploit the similarity among temporal slices to spa-

tially segment a volume into better units which can

describe both camera and object motions. Perhaps the

most similar work to our proposed approach is by Joly

& Kim [5] who employed Hough transform to detect

lines in temporal slices. The orientation of lines reveal

the type of motion. Nevertheless, they only select two

orthogonal slices for analysis, which in general do not

provide su�cient clues for motion annotation. Their

work is only applied to the analysis of dominant camera

motions. In contrast, our proposed approach analyzes

motion clues in the whole image volume and as a re-

sult, is capable of temporally and spatially annotating

the camera and object motions.

2 Temporal Slice Pattern

A video can be arranged as a volume with (x; y)

representing image dimensions and t temporal dimen-

sion. We can view the volume as formed by a set of 2D



temporal slices each with dimension (x; t) or (y; t), for

example. Each spatio-temporal slice is then a collec-

tion of 1D scans in the same selected position of every

frame over time. The slice is used to extract an in-

dicator to capture the motion coherency of the video.

For convenience, we referH(x; t) as the horizontal slice

and V(y; t) as the vertical slice.

Motion type Horizontal Slice Vertical Slice

static

pan

tilt

zoom

object motion

tracking

Figure 1: Motion patterns in slices. The horizontal and

vertical slices are extracted from the center of an image

volume. The x-axis is in time dimension while the y-axis is

in image dimension.

Figure 1 shows various patterns in slices due to cam-

era and object motions. The orientation of a slice re-


ects the type of motion. A static sequence exhibits

horizontal lines across H(x; t) and V(y; t); while cam-

era panning and tilting results in one slice indicating

the speed and direction of the motion, and the other

slice explores the panoramic information [8]. For zoom-

ing, the lines in slices are either expanded in or out in

a V-shape pattern. In a multiple motion case, more

than one H(x; t) and one V(y; t) are, in general, re-

quired for analysis. For instance, a sequence with ob-

ject motion shows both static and panning patterns

in di�erent slices. A sequence which tracks an object

over time manifests two motion patterns in a horizon-

tal slice, one indicates camera panning and one shows

object motion.

3 Motion Analysis
We propose an approach based on the structure ten-

sor computation introduced in [4] to estimate the local

orientations of a slice. By investigating the distribu-

tion of orientations in all slices, we can classify motion

types as well as separate di�erent motion layers.

3.1 Structure Tensor

The tensor � of slice H can be expressed as

� =

�
Jxx Jxt

Jxt Jtt

�

=

� P
w
H
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whereHx and Ht are partial derivatives along the spa-

tial and temporal dimensions respectively. The window

of support w is set to 3�3 throughout the experiments.

The rotation angle � of � indicates the direction of a

gray level change in w. We can rewrite (1) as

� =

�
�x 0

0 �t

�
= R

�
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From (2), since we have three equations with three un-

knowns, � can be solved and expressed as
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The local orientation � of a w in slices is computed as
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It is useful to add in a certainty measure to describe

how well � approximates the local orientation of w.

The certainty c is estimated as

c =
(Jxx � Jtt)

2 + 4J2
xt

(Jxx + Jtt)2
= (

�x � �t

�x + �t

)2 (5)

and c = [0; 1]. For an ideal local orientation, c = 1

when either �x = 0 or �t = 0. For an isotropic struc-

ture i.e., �x = �t, c = 0.

3.2 Tensor Histogram

The distribution of local orientations across time in-

herently re
ects the motion trajectories in an image

volume. A 2D tensor histogram M(�; t) with the di-

mensions as a 1D orientation histogram and time re-

spectively, can be constructed to model the distribu-

tion. Mathematically, the histogram can be expressed

as

M(�; t) =
X

(�;t)

c(
) (6)

where 
(�; t) = fH(x; t)j�(x; t) = �g which means

that each pixel in slices votes for the bin (�; t) with



the certainty value c. The resulting histogram is asso-

ciated with a con�dent measure of

C =
1

T �M �N

X
�

X
t

M(�; t) (7)

where T is the temporal duration and M � N is the

image size. In principle, a histogram with lowC should

be rejected for further analysis.

Motion trajectories can be traced by tracking the

histogram peaks over time. These trajectories can cor-

respond to (i) object and/or camera motions; (ii) mo-

tion parallax with respect to di�erent depths. Figure 2

shows two examples, in (a) one trajectory indicates the

non-stationary background, and one indicates the mov-

ing objects; in (b) the trajectories correspond to par-

allax motion.
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(a) moving object
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(b) parallax panning

Figure 2: Motion Trajectories in the tensor histograms of

image sequences in Figure 1.

The tensor histogram o�ers useful information for

characterizing dominant motions. A sequence with

static or slight motion has a trajectory at � =

[��a; �a]. Ideally, �a should equal 0. The horizon-

tal slices of a panning sequence forms a trajectory at

� > �a or � < ��a. If � < ��a, the camera pans to

the right; if � > �a, the camera pans to the left. A tilt-

ing sequence is similar to a panning sequence, except

that the trajectory is traced in the tensor histogram

generated by vertical slices. Throughout the experi-

ments, the parameter �a is empirically set to
�

36
(or 5o

degree). Zoom operation, instead of being modeled as

a single trajectory, is detected by

P
�

P
t>0M(�; t)P

�

P
t<0M(�; t)

� 1 (8)

the tensor votes are approximately symmetric at � = 0.

4 Temporal Motion Segmentation
A video can be partitioned into shots, and a shot

can be further divided into �ner sub-units, with each

unit indicating a coherent motion. Figure 3 shows the

temporal slices of two shots which consist of di�er-

ent motions over time. The corresponding tensor his-

tograms are given in Figure 4. To segment the shots

into sub-units, the dominant trajectories are tracked

along the temporal dimension. A dominant trajectory

p(t) = max��

2
<�<

�

2
fM(�; t)g is de�ned to have

P
k+15
t=k p(t)P

k+15

t=k

P
�
M(�; t)

> � (9)

The dominant motion is expected to stay steady ap-

proximately for �fteen frames (0.5 seconds). The

threshold value � = 0:6 is empirically set to tolerate

camera jitter. After detecting the static, pan and tilt

sequence, (8) is employed to detect the zoom.

(a) zoom followed by static motion

(b) static, pan, and static motions

Figure 3: Camera motion changes over time in shots.

(a) zoom followed by static motion

(b) static, pan, and static motions

Figure 4: Tensor histograms of the sequences in Figure 3.



4.1 Experiments

To verify the e�ectiveness of the proposed algo-

rithm, we conduct an experiment on an MPEG-7 stan-

dard video, Nhkvideo.mpg. The video consists of 15000

frames. We employ the camera break detection algo-

rithm proposed in [7] to partition the video into 45

shots. Our proposed algorithm further divides these

shots into �ner sub-units according to their motion

types. To be computationally e�cient, the algorithm

operates directly on the DC images of the MPEG video

without decompression. Table 1 summarizes the per-

formance of the proposed approach. Throughout the

experiment, camera rotation in shot 0 and shot 44 of

Nhkvideo.mpg is falsely detected as zoom sequences.

Similarly, in shot 11 the combination of object rota-

tion and camera tilting is falsely detected as zoom. In

shots 7, 20, 31 and 40, the combination of camera pan

and zoom results in most of the zooming sequences are

falsely detected as pan sequences. In shot 43, the pan

sub-unit is undetected since the corresponding slices

are mostly occupied by homogeneous regions.

On a Pentium II platform with one processor and

128Mmain memory, the algorithm takes about 20 min-

utes to compute the tensor histograms of all shots, and

takes less than one second to analyze and classify the

camera motion of a tensor histogram. On average, the

algorithm processes 12 frames per second. The speed

can be further improved by selecting a subset of slices

for the tensor histogram computation.

5 Spatial Motion Segmentation
If no dominant motion exists, more than one

trajectory p(t) will be tracked by a simple path

tracing algorithm. The algorithm �rst looks for

�k = argmax�fM(�; k)g which is the histogram

peak at time k, and traces the path for �k+1 =

argmax�k�3����k+3fM(�; k+1)g. The resulting p(t)

should satisfy (9) with � = 0:1. Two of such examples

have been shown in Figure 2.

Intuitively, these trajectories are useful for char-

acterizing multiple motions during a particular time

frame. By projecting each trajectory back to the im-

age volume, ideally we can obtain spatially di�erent

motion layers. Nevertheless, such projection will gen-

erally leave holes in a layer. Filling these holes by extra

visual cues such as color and texture is a non-trivial

issue. In this section, instead, we propose a more e�-

cient approach by exploiting the similarity information

existing in the temporal slices. Based on this informa-

tion, an image volume is segmented into sub-volumes.

For each sub-volume, the tensor histogram is computed

to characterize the motion.

To illustrate the idea, we �rst show an image se-

quence which involves object tracking in Figure 5. The

shot static pan tilt zoom

0 F

1 C

2 C

3 C C

4 C C

5 C C

6 C C

7 F M

8 C

9 C

10 C

11 F

12 C

13 C

14 C

15 C

16 C C

17 C C

18 C C

19 C C

20 C F M

21 C

22 C C

23 C

24 C M

25 C

26 C C

27 C

28 C C

29 C C C

30 C C

31 C F M

32 C

33 C

34 C

35 C

36 C

37 C

38 C

39 C

40 M

41 C

42 C

43 C M C

44 F

45 C

Recall 1.00 0.90 1.00 0.67

Precision 1.00 0.75 1.00 0.77

Table 1: Motion annotation for the video Nhkvideo.mpg.

C denotes correct detection; F denotes false detection; M

denotes missed detection.



horizontal and vertical slices are shown in Figures 6

and 7 respectively. These slices are extracted from the

DC images of size 36� 44. The horizontal slices model

the camera and object motions, while the vertical slices

explore the background panoramic information as well

as follow the target object over time. Intuitively, we

want to cluster the horizontal and vertical slices sep-

arately so that each cluster represents a motion layer.

The clustering criteria is based on the color similarity

among slices.

(a) 0th (b) 35th (c) 77th (d) 133th

Figure 5: An object tracking image sequence.

(a) y=0 (b) y=3 (c) y=6

(d) y=12 (e) y=18 (f) y=24

(g) y=27 (h) y=30 (i) y=33

Figure 6: Horizontal slices H(x; t) of the image sequence

in Figure 5.

We employ the color histogram to group similar

slices. The hue h is quantized to 18 bins, while the sat-

uration s and brightness v components are quantized

to 3 bins respectively. The quantization provides 162

(18� 3� 3) distinct color sets. The similarity between

two temporal slices Hi and Hj is

X
h

X
s

X
v

min fDi(h; s; v); Dj(h; s; v)g (10)

(a) x=0 (b) x=8 (c) x=12

(d) x=16 (e) x=20 (f) x=24

(g) x=28 (h) x=32 (i) x=40

Figure 7: Vertical slices V(y; t) of the image sequence in

Figure 5.

based on the color histogram intersection. Di(h; s; v)

and Dj(h; s; v) are the histograms of Hi and Hj re-

spectively. Experimental results show that the horizon-

tal slices are clustered as one group, while the vertical

slices are clustered into two groups. By projecting the

clustering results into the original image volume, we

obtained two sub-volumes. After computing the ten-

sor histograms, one of the sub-volume correctly re
ects

the camera panning information.

We employ a mosaicking algorithm to illustrate the

correctness of the experimental result. The mosaic is

constructed by pasting together the DC images based

on the displacement computed from the correlation of a

few scans in the image sub-volume. Figure 8 shows the

mosaicked images; one corresponds with the tracked

object, and the other one corresponds to the pan-

ning background. The tracked player in Figure 8(a)

is blurred due to 3D head and body movements.

We carry out another experiment on a moving ob-

jects sequence, as shown in Figures 9. The original im-

age volume is divided into two sub-volumes. The tensor

histogram of the moving objects sub-volume resembles

a camera panning sequence, as indicated by the tempo-

ral slices in Figure 10(b) and (c). The mosaicked image

of the moving objects are shown in Figure 11. With the

current implementation the total time involved in clus-

tering, tensor histogram computation and mosaicking

is approximately 5 frames per second on a Pentium II

platform with one processor and 128M main memory.

6 Conclusions
We have presented our work on the motion char-

acterization of videos based on the analysis of spatio-

temporal image volumes. On one hand, we propose



(a) (b)

Figure 8: Segmented motion layers of the image sequence

in Figure 5, (a) target object; (b) mosaicked background

image.

(a) 0th (b) 26th (c) 62th (d) 98th

Figure 9: A moving objects sequence.

(a) y=0 (b) y=12 (c) y=22

(d) x=0 (e) x=15 (f) x=32

Figure 10: (a)-(c) The horizontal temporal slices; (d)-(e)

the vertical temporal slices of the image sequence in Fig-

ure 9.

Figure 11: The mosaicked image of the moving objects in

Figure 9.

methods to temporally segment a sequence into mo-

tion coherent units by tracking its motion trajectories

in the tensor histogram. On the other hand, we ex-

ploit the similarity of temporal slices to partition the

videos into motion layers, with each layer being mod-

eled by a tensor histogram. In the future, we will study

the possible ways of applying our work to video brows-

ing and scene change detection. The former applica-

tion is highly dependent on the video representation

techniques, while the later requires more research on

background/foreground detection and shot similarity

measure.
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