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Abstract

We present a newly developed scheme for automat-

ically partitioning videos into scenes. A scene is gen-

erally referred to as a group of shots taken place in the

same site. In this paper, we �rst propose a motion

annotation algorithm based on the analysis of spatio-

temporal image volumes. The algorithm characterizes

the motions within shots by extracting and analyzing

the motion trajectories encoded in the temporal slices

of image volumes. A motion-based keyframe comput-

ing and selection strategy is thus proposed to com-

pactly represent the content of shots. With these tech-

niques, we further present a scene change detection al-

gorithm by measuring the similarity of the representa-

tive keyframes in shots.

1. Introduction

A video usually consists of scenes, and each scene
includes one or more shots. A shot is an uninterrupted
segment of video frame sequence with static or con-
tinuous camera motion, while a scene is a group of
shots taken place in the same site. By decomposing a
video into scenes, we can facilitate content-based video
browsing and summary.

Previous work on scene change detection includes
[2, 3, 4]. Basically there are two major approaches:
one adopts the time-constraint clustering algorithm to

group shots which are visually similar and temporally
closed as a scene; the other employs audiovisual char-
acteristics to detect scene breaks. In general, the suc-
cess of these approaches relies on the video representa-
tion scheme and shot similarity measure. The former
targets at representing a video in a compact yet se-
mantically meaningful way, while the later attempts to
mimic human perception capability. In most systems,
shots are represented by a set of selected keyframes,
and the similarities among shots are dependent on the
color similarity of these keyframes.

In this paper, we propose a motion-based video rep-
resentation approach with application for scene change

detection. The idea is to represent shots adaptively and
compactly through motion annotation. For instance,
a static sequence is well represented by one frame, a
zoom sequence is well described by the frames before
and after zoom, while a panning sequence could be
summarized by a mosaic image. These computed and
selected representative frames are used for shot simi-
larity measure to detect scene breaks.

2. Motion Annotation

Our proposed scheme is based on the motion analy-
sis of spatio-temporal image volumes. We �rst show the
emergence of motion patterns in spatio-temporal slices,
and then propose a tensor histogram computation al-
gorithm to describe the motion in a volume. Motion
trajectories which are tracked from the histograms, in-
herently provide clues for temporally segmenting and

characterizing both the camera and object motions.

2.1. Temporal Slice Pattern

A video can be arranged as a volume with (x; y)
representing image dimensions and t temporal dimen-
sion. We can view the volume as formed by a set of 2D
temporal slices each with dimension (x; t) or (y; t), for
example. Each spatio-temporal slice is then a collec-
tion of 1D scans in the same selected position of every
frame over time.

Figure 1 shows various patterns in slices due to cam-
era and object motions. The orientation of the pattern
re
ects the type of motion. A static sequence exhibits
horizontal lines across the horizontal and vertical slices;
while camera panning or tilting results in one slice in-
dicating the speed and direction of the motion, and
the other slice exploring the panoramic information.
For zooming, the lines in slices are either expanded
in or out like a V-shape pattern. In addition, a se-
quence with moving objects generates irregular pat-
terns in di�erent slices. A sequence which tracks an
object over time manifests two motion patterns in a
horizontal slice, one indicates camera panning and one
shows object motion.



Motion type Horizontal Slice Vertical Slice

static

pan

tilt

zoom

object motion

tracking

Figure 1: Motion patterns in slices. The horizontal and

vertical slices are extracted from the center of an image
volume. The x-axis is in time dimension while the y-axis is

in image dimension.

2.2. Structure Tensor

The tensor � of a slice H can be expressed as
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where Hx and Ht are partial derivatives along the spa-
tial and temporal dimensions respectively, w is the win-
dow of support which is set to 3 � 3 throughout the
experiments. The rotation angle � of � indicates the
direction of gray level change in w. Rotating the prin-
ciple axes of � by �, we have
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It is useful to include a certainty measure to describe
how well a � approximates the local orientation of w.
The certainty c is estimated as

c =
(Jxx � Jtt)

2 + 4J2
xt
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= (

�x � �t

�x + �t

)2 (5)

and c = [0; 1]. For an ideal local orientation, c = 1
when either �x = 0 or �t = 0. For an isotropic struc-
ture i.e., �x = �t, c = 0.

2.3. Tensor Histogram

A 2D tensor histogramM(�; t) is composed of a set
of 1D orientation histograms along the time dimension.
It is constructed to model the orientation distribution.
Mathematically, the histogram can be expressed as

M(�; t) =
X

(�;t)

c(
) (6)

where 
(�; t) = fH(x; t)j�(x; t) = �g, which means
that each pixel in slices votes for the bin (�; t) with a
certainty value c. The resulting histogram is associated
with a con�dent measure of

C =
1

T �M �N

X
�

X
t

M(�; t) (7)

where T is the temporal duration and M � N is the
image size. In principle, a histogramwith lowC should
be rejected for further analysis.

2.4. Motion Characterization

Motion trajectories are traced by tracking the peaks

of 1D orientation histograms in M(�; t) over time. A
dominant trajectory p(t) = max��

2
<�<

�

2
fM(�; t)g is

de�ned to have
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The dominant motion is expected to stay steady ap-
proximately for �fteen frames (0.5 second). The thresh-
old value � = 0:6 is set empirically to tolerate cam-
era jitter. If there is no dominant motion exists, more

than one trajectory p(t) will be tracked by a simple
path tracing algorithm. The algorithm �rst looks for
�k = argmax�fM(�; k)g at time k, and traces the path
for �k+1 = argmax�k�3����k+3fM(�; k+1)g. The re-
sulting p(t) should satisfy (8) with � = 0:1.

These trajectories can correspond to (i) object
and/or camera motions; (ii) motion parallax with re-
spect to di�erent depth. Figure 2 shows two examples,
in (a) the trajectories correspond to parallax motion, in
(b) the trajectory corresponds to static, pan, and static
motions over time. Out task is to segment a sequence
into smaller units, with each unit being characterized
by a motion type.

A sequence with static or slight motion has a tra-
jectory at � = [��a; �a]. Ideally, �a should equal to
0. The horizontal slices of a panning sequence forms a
trajectory at � > �a or � < ��a. If � < ��a, the cam-
era pans to right; if � > �a, the camera pans to left. A
tilting sequence is similar to panning sequence, except
that the trajectory is tracked in the tensor histogram
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(a) parallax panning
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(b) static, pan, static

Figure 2: Motion trajectories of tensor histograms.

Motion Type select or compute

static one frame

pan or tilt panoramic image

zoom �rst and last image

object tracking targeted object

Table 1: Motion-driven keyframe selection and computing

generated by vertical slices. Zoom operation, instead
of being modeled as a single trajectory, is detected byP

�

P
t>0M(�; t)P

�

P
t<0M(�; t)

� 1 (9)

the tensor votes is approximately symmetric at � = 0.

During the implementation, �a is empirically set to �

36

(or 5o degree) to distinguish static motions from pan
and tilt motions. After detecting the dominant static,
pan and tilt sub-units, (9) is employed to detect zoom
operation.

2.5. Video Representation

A motion-driven keyframe computing and selection
scheme, as summarized in Table 1, is proposed to rep-
resent the content of shots. Figure 3 shows several
examples on the computed representative frames. The
panoramic images are constructed by warping together
the DC images of MPEG videos according to the dis-
placement of the center scans in an image volume. For
the object tracking sequence in Figure 3(d), the scans
are on the targeted object, as a result, the background
is blurred while the object is captured correctly. For
multiple motions case as in Figures 3(e)-(g), more than
one representative frames are computed.

3. Scene Change Detection

A group of adjacent shots fsm; sm+1; : : : ; sn�1; sng

is clustered as a scene Sk if the following conditions are
ful�lled

(a) (b) (c)

(d) (e) (f) (g)

Figure 3: Computed representative frames. (a) panoramic

tilt; (b) panoramic pan; (c) parallax pan; (d) object track-

ing; (e)-(g) multiple motions - panning and tracking.

� Condition 1: 9t such that t = argfmaxr=f1;2;:::;cg
Sim(sm; sm+r)g, Sim(sm ; sm+t) � Ts, and
8r=f1;2;:::;cg Sim(sm�r ; sm) < Ts.

� Condition 2: 9t such that t = argfmaxr=f1;2;:::;cg
Sim(sn�r ; sn)g, Sim(sn�t; sn) � Ts, and
8r=f1;2;:::;cg Sim(sn; sn+r) < Ts.

� Condition 3: 9t1; t2 such that ft1; t2g =
argfmaxr=f0;1;2;:::;cg;s=f0;1;2;:::;cg Sim(si�r ; si+s)g,
Sim(si�t1 ; si+t2) � Ts, m < i < n and 0 <

jt1 � t2j � c.

where Sim(si; sj) is the similarity measure between the
shots i and j and Ts is the similarity threshold. The
parameter c is a constraint which is used as follows:
suppose sj � si � c, i < j and Sim(si; sj) � Ts, then
8i�k�j sk are clustered in one scene.

Condition 1 states that the �rst shot of a scene must
have at least one similar shot succeeding it within the
distance c. Similarly, condition 2 states that the last
shot of a scene must have at least one similar shot
preceding it within c. Condition 3 states that si, m <

i < n, is either similar to a shot preceding or succeeding
si, or at least one shot preceding si is similar to a shot
succeeding si within c.

Let the representative frames of a shot si be
fri1; ri2; : : : ; rikg. The similarity between two shots si
and sj is de�ned as

Sim(si; sj) = max
p=f1;2;:::g

max
q=f1;2;:::g

fIntersect(rip; rjqg)



Scene Scene Description Shots C F M

0 kids learning 0-1 1 0 0
roller-skater

1 kids playing in gym 2-13 1 1 0

2 kid playing water 14-24 1 1 0

3 hot balloon even 25-42 1 0 0

4 kids playing on lawn 43-51 1 0 0

Table 2: Experimental results on lgeraca lisa 1.mpg. C:

correct detection, F: false detection, M: missed detection.

Intersect(ri; rj), which is the color histogram intersec-
tion of the frames ri and rj, is expressed as

Intersect(ri; rj) =
X
h

X
s

X
v

minfHi(h; s; v);Hj(h; s; v)g

where Hi(h; s; v) and Hj(h; s; v) are the normalized
HSV color histograms of ri and rj respectively. The

degree of similarity is proportional to the region of in-
tersection.

The proposed algorithm is similar to [2, 4], except
that they did not address the issue of compact video
representation for shot similarity measure. Their ap-
proaches select image frames as keyframes for similar-
ity measure. Under their scheme, the similarity of two
shots is simply computed to be the color similarity of
two image frames, which may consequently lead to the
occurrence of missed detections.

4. Experiments

We conduct experiments on two MPEG-7 standard
test videos: lgerca lisa 1.mpg and lgerca lisa 2.mpg.
Both are home videos and each video has approxi-
mately 32000 frames. We �rst employ the video par-

titioning algorithm proposed in [1] to decompose the
videos into shots. Tensor histograms and representa-
tive frames are then computed for each shot. These
shots are temporally clustered to form scenes by set-
ting c = 4 and Ts = 0:70. Tables 2-3 show the
ground truth data and the experimental results. In
lgeraca lisa 1.mpg, the two false alarms are due to il-

lumination e�ect. In lgeraca lisa 2.mpg, the results of
missing �ve scenes are arguable since these scene are
composed of shots in the same places (scenes 4-6 are
taken place during gymnastic, scenes 9-11 are taken
place on stage, scenes 13-14 are taken place in a swim-
ming pool).

5. Conclusion

We have presented a motion-based video representa-
tion scheme for scene change detection. The proposed

Scene Scene Description Shots C F M

0 kid at home with cat 0-1 1 0 0

1 kids in gym 2-8 1 0 0

2 kids playing high-bar 9-12 1 0 0

3 kids + teacher 13-14 1 0 0
with high-bar

4 kids jumping 15-15 1 0 0

5 kids in gym 16-17 0 0 1

6 kids in gym 18-28 0 0 1
(over-illuminated)

7 kids playing at home 29-31 1 0 0

8 kid driving outdoor 32-36 1 0 0

9 kids dancing (I) 37-39 1 0 0

10 kids dancing (II) 40-40 0 0 1

11 kids dancing (III) 41-42 0 0 1

12 after play 43-51 1 0 0

13 swimming pool 52-53 1 0 0

14 crowded in 54-55 0 0 1
swimming pool

Table 3: Experimental results on lgeraca lisa 2.mpg. C:

correct detection, F: false detection, M: missed detection.

motion annotation scheme provides compact represen-
tation for characterizing shots in videos and measuring
similarity in scene change detection. Encouraging re-
sults have been obtained through experiments. In fu-
ture we will develop a more sophisticated scene change
detection algorithm based on the identi�cation of back-
ground objects.
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