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Detection of Gradual Transitions through Temporal Slice AnalysisC. W. Ngo, T. C. Pong & R. T. ChinDepartment of Computer ScienceThe Hong Kong University of Science & TechnologyClear Water Bay, Kowloon, Hong KongEmail: fcwngo, tcpong, rolandg@cs.ust.hkAbstractIn this paper, we present approaches for detectingcamera cuts, wipes and dissolves based on the analysisof spatio-temporal slices obtained from videos. Theseslices are composed of spatially and temporally coher-ent regions which can be perceived as shots. In the pro-posed methods, camera breaks are located by perform-ing color-texture segmentation and statistical analysison these video slices. In addition to detecting camerabreaks, our methods can classify the detected breaks ascamera cuts, wipes and dissolves in an e�cient man-ner.1 IntroductionA video is physically formed by shots; a shot isan uninterrupted segment of screen time, space andgraphical con�gurations. The boundary between twoshots is called camera break. There are three majortypes of camera breaks: cut, wipe and dissolve. Acamera cut is an instantaneous change from one shotto another; a wipe is a moving boundary line cross-ing the screen such that one shot gradually replacesanother; a dissolve superimposes two shots where oneshot gradually lighten while the other fade out slowly.Wipe and dissolve are normally referred to as gradualtransitions.In the current literature, there are various algo-rithms for detecting camera breaks [7, 10], in general,we can categorize them as statistic-based, histogram-based, feature-based, transformed-based, and motion-based. Most existing algorithms can segment a videosequence into shots correctly if the sequence hassmooth frame transitions within a shot and abruptspatial changes between shots. These algorithms areinsensitive to gradual transitions since the change be-tween two consecutive frames is small. Furthermore,methods based on the frame-to-frame di�erence met-rics and feature analysis are computationally expen-sive. Although spatial and temporal sub-sampling ofvideo frames are suggested to improve processing e�-

ciency [8], the success still depends on the choice of thespatial window size and the temporal sampling step.Smaller window size is sensitive to object and cam-era motions while larger sampling step can easily skipfragmented shots.Recently, we have presented works on detectingcamera cut and wipe based on the analysis of two or-thogonal slices [6]. The proposed video slicing is equiv-alent to the conventional spatial sampling of videoframes, however, with the capabilities of revealing in-teresting visual cues when these slices are cascadedover times to form spatio-temporal images. These cuesinclude the di�erent patterns of region boundaries cre-ated by cuts and gradual transitions. By exploitingthe patterns, we can bridge the dichotomy betweendetection and classi�cation of camera breaks. In thispaper, we improve the previous results by using threeslices to correct the de�ciency of missed detection. Inaddition, we reformulate the existing dissolve detec-tor [1] and propose a slice voting scheme for dissolvedetection.2 The Concept of Video SlicesA slice is a 1D image taken from a frame; a spatio-temporal image is a collection of slices in the sequenceat the same positions. Figure 1 shows three spatio-temporal images that are taken for analysis. To savecomputations, the images are extracted from DC im-ages of I-frames, and the estimated DC images of P-frames and B-frames [9].Denote fdc as a M �N DC image, mathematically,our approach projects fdc vertically, horizontally anddiagonally to three 1D slices v, h and d,v(i) = k1+jXp=k1�j�pfdc(p; i), where k1 = M2 (1)h(i) = k2+jXp=k2�j�pfdc(i; p), where k2 = N2 (2)



d(i) = i+jXp=i�j�pfdc(p; i) (3)where 0 � p < M or N , and P�p = 1. When j = 0,the middle row and column of fdc are taken to formthe slices. To ensure the smoothness of slices withina shot, we set j = 1 and perform Gaussian smoothingon the slices, where � = [0:2236; 0:5477; 0:2336]. Bycascading these slices over time, we acquire a 2D imageV formed by vertical slices, a 2D image H formedby horizontal slices, and a 2D image D formed bydiagonal slices. Denote t as the time coordinate and(x; y) as the image coordinate, then H, V and D arein x� t, y � t and z � t space respectively.Figure 2 shows the projected DC spatio-temporalimages from MPEG videos. As seen in the �gure,each image contains several spatially uniform textureregions, where each region is formed by the slices takenfrom frames that belong to a same shot. The type ofcamera breaks will a�ect the boundary shape of twoconnected regions. Figure 3 illustrates various pat-terns of spatio-temporal images. In general, a cameracut results in vertical boundary lines; a wipe results inslanted boundary lines; while a dissolve connects tworegions slowly and does not have a clear boundary.Based on this observation, we claim that the taskof detecting camera breaks is equivalent to the task ofsegmenting image into regions; and therefore, we canreduce video segmentation problems to image segmen-tation problems. Furthermore, by investigating theorientation of boundary lines, we can classify cuts andwipes. Although dissolves do not create clear bound-ary lines, we can still apply statistical analysis to de-tect the breaks.Previously proposed wipe detectors [2, 11] and dis-solve detectors [1, 4] are based on statistical analysis,these approaches normally fail in detecting the exactbegin and end frames of gradual transitions, in addi-tion, su�ers from di�culties in distinguishing wipes,dissolves and motions. In contrast, our wipe detectorcan identify the exact durations of wipe sequences aslong as the two end points of slanted boundary linesare detected. A robust region segmentation algorithmcan release the incapabilities in distinguishing wipes,dissolves and motions. Nevertheless, our dissolve de-tector also encounters problem on detecting the exactdissolve boundaries.3 Camera Cut and Wipe DetectionIn this section, we propose a Markov energy modelto locate cuts and wipes based on the color and texturediscontinuities happen at the boundaries of regions.

Figure 1: Three video slices taken from an image volumealong the temporal dimension.
(a) Three shots connected by two cuts(b) Two shots connected by a wipe(c) Two shots connected by a dissolveFigure 2: Samples of horizontal spatio-temporal images.



Camera Break H V Dcut ��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������wipe (l-to-r) ����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������wipe (r-to-l) ����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������wipe (t-to-b) ��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������wipe (b-to-t) ��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������dissolveFigure 3: The image patterns created by camera breaks.Various wiping directions: l-to-r (left-to-right); r-to-l(right-to-left); t-to-b (top to bottom); b-to-top (bottom-to-top).3.1 Feature ComputingDenote H = [Hr;Hg;Hb;Hy], V = [Vr; Vg; Vb; Vy]and D = [Dr; Dg; Db; Dy] as the spatio-temporal im-ages in (r; g; b) color space1 to and y luminance space.The approach computes edge information byEHi�;� = �GD�;� �Hi (4)where � is a convolution operator and i 2 fr; g; bg.�GD�;� is the �rst derivative Gaussian along the x-axisgiven by �GD�;�(x; y) = � x�2 �G�;�(x; y) (5)�G�;�(x; y) = �G�(x0 ; y0 )where x0 = x cos �+ y sin � and y0 = �x sin �+ y cos �;�G�(x; y) = expf�x2+y22�2 g is a Gaussian �lter con-trolled by a smoothing parameter �.The texture feature is computed based on Gabordecomposition [5]. The idea is to decompose imagesinto multiple spatial-frequency channels, and use thereal components of channel envelopes to form a featurevector. The complex Gabor images are,T�x ;�y ;� = Ĝ�x;�y;� �Hy (6)The Gabor �lter Ĝ�x;�y;�(x; y) = Ĝ�x;�y (x0 ; y0) is ex-pressed as,Ĝ�x;�y (x; y) = ( 12��x�y ) expf�12(x2�2x+ y2�2y )g expf2�jWxg(7)where j = p�1, W = pu2 + v2 and (u; v) is the cen-ter of the desired frequency.1Note that MPEG uses YCrCb color space; our methodconverts the YCrCb to RGB components

Since a wipe normally lasts for one to two sec-onds (about 45 frames), we empirically set � =f0o; 45o; 135og. In addition, we set u = v = 0:4 and�x the values of �, �x and �y, as a result, the color-texture feature is a twelve dimensional feature vector.3.2 Image SegmentationWe employ Markov energy model to describe thecontextual dependency of spatio-temporal images forsegmentation purpose. The probability that a pixeltriple � = (�h; �v; �d) at H(k; t), V(k; t) and D(k; t) ison the region boundary � of two connected regions isp(� 2 �jH;V;D) = p(� 2 �jHN ;VN ;DN ) (8)where HN , VN and DN are a 3 � 3 neighborhoodsystem shown in Figure 4. Based on the neighborhoodsystem, we de�ne eight connected components C =fC1; C2; : : : ; C8g (see Figure 5) to characterize �.
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Markov-Gibbs equivalence, we havep(�i) = 1Z exp f�U (�i)g (10)where Z is a normalizing constant, i 2 fh; vg, andU (�i) is a energy function. The energyU (�i) =Xc2C �c�c(�i) (11)is the weighted sum of potential energy �c(�i) over allconnected components, where Pc2C �c = 1.For classi�cation and segmentation purpose, we fur-ther de�ne three types of energy: Ucut(�i), Uwipe�(�i),Uwipe+(�i). For simplicity, we focus on imageHr �rst.Let �rh as a pixel locates at the (k; t) of Hr image, wehave24 U rcut(�rh)U rwipe� (�rh)U rwipe+(�rh) 35 = 324 �rC1(�rh)�rc0 (�rh)�rc00 (�rh) 35� 24 0 1 11 0 11 1 0 3524 �rC1(�rh)�rC2(�rh)�rC3(�rh) 35� 24 �rC4(�rh)�rC4(�rh)�rC4(�rh) 35 (12)where �rc0 (�rh) = minc2fC2;C5;C6g�rc(�rh)�rc00 (�rh) = minc2fC3;C7;C8g�rc(�rh)U rcut will give low energy if �rh is located at the re-gion boundary as a result of a camera cut. Similarly,U rwipe� and U rwipe+ will give low energy if �rh is locatedat the region boundary as a result of a camera wipe.The values of U rwipe� and U rwipe+ depend on whethera boundary has negative or positive gradient.Let �1 = (k�1 ; t�1) and �2 = (k�2 ; t�2) be the neigh-bors of �rh such that f�1; �rh; �2g forms a connectedcomponent Ci. The potential energy is�rCi(�rh) = X� fjEHr�;�(k; t)�EHr�;�(k�1 ; t�1)j+jEHr�;�(k; t)�EHr�;�(k�2 ; t�2)jg (13)�gCi and �bCi are computed in a similar way; and �yCiis computed by�yCi(�yh) = X� fjT�x;�y;�(k; t)� T�x ;�y;�(k�2 ; t�2)j+jT�x;�y ;�(k; t)� T�x ;�y;�(k�1 ; t�1)jg (14)where �yh locates at the (k; t) of Hy and f�1; �yh; �2gforms a connected component Ci. Subsequently, wede�neUcut(�h) = �c maxj2fr;g;bgU jcut(�jh) + �tUycut(�yh) (15)

where �c and �t are two parameters for weightingcolor and texture features. Similar approach is useto compute Uwipe+ and Uwipe� . Figure 6 shows thesegmentation results with �c = �t = 0:5, the whitelines which indicate the presence of low energy runacross the boundaries of connected regions.(a) Ucut of horizontal slices(b) Uwipe� of horizontal slicesFigure 6: Segmentation results for images shown in Fig-ure 2.4 Dissolve DetectionA dissolve connects the boundaries of two shotssmoothly; as a result, the connected shots share asmooth boundary region in the spatio-temporal im-age. Globally the image is composed of two regionswith di�erent visual surface; locally they exhibit asmooth transition from one region to another. Ourgoal is to segment the image into three portions: tworegions representing successive shots and one narrowregion representing the dissolve duration.Denote D(x; y; t) as the intensity function of framessuperimposed by two shots having intensity func-tions S1(x; y; t) and S2(x; y; t) respectively. SupposeD(x; y; t) starts at t1 and ends at t2, then8<: S1(x; y; t) t < t1(1� �(t))S1(x; y; t) + �(t)S2(x; y; t) t1 � t � t2S2(x; y; t) t > t2 (16)where �(t) = t�t1t2�t1 varys linearly with t in the range[0; 1]. Denote �i(t) be the mean intensity of a sliceduring the interval t1 < t < t2 in a spatio-temporalimage i, then�i(t) = �S1i + (�S2i (t) � �S1i (t))�(t) (17)where �Sji is the mean intensity of a slice that belongsto shot j and i 2 fH;V;Dg. Taking the �rst deriva-



tive �0i(t) = d�i(t)dt , we have�0i(t) = �S2i (t) � �S1i (t)t2 � t1 (18)Assuming �S1i (t) and �S2i (t) remain unchanged duringdissolves, �0i(t) is a constant value.Similarly, let �i(t) be the variance of a slice duringa dissolve in a spatial temporal image i, then�i(t) (19)= (�S1i (t) + �S2i (t))�2(t)� 2�S1i (t)�(t) + �S2i (t)where �Sji (t) is the variance of a slice that belongs toshot j and i 2 fH;V;Dg. If �S1i (t) and �S2i (t) remainconstant, �i(t) is a concave upward parabola duringt1 � t � t2.The proposed dissolve detection algorithm com-putes (18) and (19) of a spatio-temporal image, andthen records the periods that have approximatelyconstant mean values and concave upward parabolacurves for 15 � t2 � t1 � 45. The assumptions in (18)and (19) will be seriously violated if there are vigor-ous motions during dissolves; however, in most casesdissolves involve only still to moderate motions. Un-der this scenario, we employ a voting scheme where aframe f(t) 2 D(x; y; t) ifXi2fH;V;DgG(�i(t); �0i(t)) � 2 (20)where G : IR� IR! f0; 1g is a logical operator.5 Experimental ResultsWe conduct experiments to evaluate the perfor-mance of the proposed methods. The tested videosconsist of slow to fast camera motions, fast and largemoving objects. A wipe spans about 40 frames; whilea dissolve crosses about 30 frames.Tested Cut Wipe DissolveVideo D M F D M F D M Fsyn.mpg 5 0 0 7 1 0 5 0 0ba.mpg 45 1 0 2 0 1 4 2 2gf2.mpg 44 3 0 0 0 4 8 9 3gf3.mpg 51 3 0 0 0 0 4 0 2recall 0.95 0.90 0.54precision 1.00 0.62 0.71Table 1: Camera break detection results. D: correct de-tections; M missed detections; F : false alarms.

Table 1 shows the experimental results of the pro-posed detection methods. For all correctly detectedwipes and dissolves, at least 10 frames of the actualsequences are covered. To investigate the toleranceand accuracy of gradual transitions detection, we fur-ther perform recall-precision to evaluate the results.Denote Ai as the number of frames due to action i; Bias the number of detected frames in class i; Ci as thenumber of correctly detected frames in class i, thenrecalli = CiAi (21)precisioni = CiBi (22)where i 2 fcut; wipe; dissolveg, recalli and precisioniare in the interval of [0; 1]. Low recall values indicatethe frequent occurrence of missed detections, while lowprecision show the frequent occurrence of false alarms.Through the experiments, our cut detector2.achieves approximately 0:95 and 1:00 for recall andprecision measures respectively. The missed cuts aredue to low texture contrast between two adjacentshots. The wipe detector can locate most of the wipesequences, however, su�ers from false detection if aparticular region in the spatio-temporal image resem-bles a wipe pattern. The false alarms may be furtherpruned by examining the existence of a moving linethrough the �rst and second AC coe�cients of sus-pected wipe frames. Figure 7 further shows the spatio-temporal images of the detected and missed camerawipes. The miss detection is due to the unclear ver-tical region boundary in the vertical slices. The dis-solve detector is sensitive to the underlying motionsof a sequence; the detector can robustly detect dis-solve sequences of slight or no motions (see Figure 8for an illustration), however, will result in missed de-tections if the motions violate the distribution shapesof equations (18) and (19).6 ConclusionWe have proposed methods on detecting and clas-sifying camera cuts, wipes and dissolves based on theanalysis of video slices. Our methods reduce the videosegmentation problems to image segmentation prob-lems, in additions, process frames directly in MPEGdomain, resulting in signi�cant speed up. In contrastto most of the previous empirical studies which detectany arbitrary frame in a wipe or dissolve as a breakpoint, we detect a shot sequence as a break point; and2The cut detector will also perform pruning by investigatingthe DCT coe�cients and motion vectors of suspected cut frames(about 5% of total frames). The detail is presented in [6].
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