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Abstract

In this paper, we present a novel segmentation-
insensitive approach for mining common patterns from 2
images. We develop an algorithm using the Earth Movers
Distance (EMD) framework, unary and adaptive neighbor-
hood color similarity. We then propose a novel local flow
maximization approach to provide the best estimation of lo-
cation and scale of the common pattern. This is achieved by
performing an iterative optimization in search of the most
stable flows’ centroid. Common pattern discovery is diffi-
cult owing to the huge search space and problem domain.
We intend to solve this problem by reducing the search
space through identifying the location and a reduced spatial
space for common pattern discovery. Experimental results
justify the effectiveness and the potential of the approach.

1. Introduction

Huge amount of visual information in the form digital
images and video database are generated everyday. Ex-
tracting common patterns from the images are becoming
increasingly important for various applications. First, they
can serve as entry points for classification and browsing of
various data in a database. Secondly, they form the basic
elements for video indexing, clustering and summarizing.

However, mining common pattern discovery is a difficult
problem because the search scale and problem domains are
huge. To perform a common pattern discovery, the com-
mon problems of rotation, scaling, translation, occlusion,
shot angle and segmentation have to addressed. Existing
approach often ignores some of the problems, hence limit-
ing the target image categories. The problem can be signifi-
cantly reduced if we can reduce the search domain by iden-
tifying the location of the common pattern and a reduced
spatial space for the search to be further refined.

In this paper, we propose a novel approach for automatic
discovery of common patterns between two images. We use
Earth Mover’s Distance (EMD) as our framework. Flows
with small distances are extracted and decomposed into
components. We encourage the mass flow between the com-
mon patterns by using adaptive neighborhood color similar-
ity. The components are then analyzed using a novel Local
Flow Maximization (LFM) approach to locate the common
patterns. Our approach is especially robust to segmentation,
rotation, shot angle and translation.

1.1. Common Pattern Discovery

Until recently, there is only a small amount of previ-
ous works on the common pattern discovery. There is also
no widely accepted definition for the problem. [4] pro-
vides a good general definition of common pattern discov-
ery. Given two images I and J , common pattern discovery
is defined as finding the best transformation T , subimage
I∗ of I and subimage J∗ of J which satisfy the following
equation

T, I∗, J∗ = argmax
T,I∗,J∗

H(T (I∗), J∗) (1)

where H is the similarity function of the features and size
of the common pattern, and T is any similar transformation
set.

Common Pattern Discovery can be regarded as a super-
set of pattern registration and common pattern detection. In
common pattern detection, a known common pattern is used
as an input to detect if the same pattern exist in the other
image. For pattern registration, the geometrical transforma-
tion between the common patterns are discovered. Com-
mon pattern discovery is a harder problem because it mines
for unknown common patterns from a set of images without
any prior information and in the process, geometrical trans-
formations are often retrieved. Even the fact if any common
patterns exist in the images is also unknown.
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Figure 1 illustrates the challenge of mining common pat-
tern from two images in arbitrary backgrounds. The prob-
lem of discovery is difficult, particularly when the common
patterns are occluded, scaled and shot from different views
under varying lighting conditions.

(a) Two images (b) Result

Figure 1. Common pattern discovery

2. Previous Works

Related works on the problem of common pattern dis-
covery include probabilistic model learning [2], subgraph
mining [3], maximum weighted bipartite graph mining [4],
multiple-instance learning [6] and visual model learning
[10],

The studies in [2, 3, 4, 6, 10] are based on one-to-one
mapping techniques, where a region or node is mapped to
another node. In [6], images are grouped into positive and
negative images (bags). The algorithm searches for the in-
tersection of the positive bags, minus the union of nega-
tive bags. The method is limited because specific detectors
are sometimes required for discovering certain patterns. In
[10], pattern discovery is carried out by determining the fea-
tures common to the positive and rare in the negative exam-
ples. A probabilistic visual model based on neighborhood-
frequency descriptors and significance measure is used to
model the common features. Both [6, 10] belongs to weakly
supervised learning because they require manual labelling
of positive and negative images.

[2] uses graph matching and EM algorithm, where a
common pattern is assumed as a linear combination of
model components. Graph matching is used to align ini-
tial pattern model, and EM is used to discover the model
components and their corresponding parameters. This ap-
proach is not flexible because the number of model com-
ponents are normally unknown and require user input. [3]
is a purely graph-based matching technique where images
are segmented based on colors, and modelled as an At-
tributed Relational Graph (ARG). Common pattern is de-
fined as the maximum common subgraph in the images.
However, the algorithm is sensitive to segmentation and is
limited to patterns with colorful and sharp-edged regions.
[4] is a robust block-based mapping. It solve the segmenta-
tion problem by not performing any segmentation at all. Im-
ages are partitioned into small square blocks, and are repre-
sented as a node in a bipartite graph. An iterative maximum

weighted bipartite graph matching using estimated transfor-
mation value obtained through procrustes analysis is used to
find the matching nodes. All [2, 3, 4] could be considered
as graph-based matching techniques.

There are still many areas of improvement to detect
common patterns from images, especially for unsupervised
learning. Most of the methods utilize the one-to-one map-
ping techniques where the number of nodes in all the com-
mon patterns in the different images must be similar. How-
ever, this is normally impossible for most real images, ow-
ing to occlusion, viewpoint difference, shadings and seg-
mentation. Therefore, a many-to-many mapping technique
is a more attractive alternative to solving the common pat-
tern problem. In this paper, we propose to use the Earth
Mover’s Distance (EMD) as our framework, through a
novel Local Flow Maximization approach. We will show
that our approach are insensitive to image segmentation and
can handle complex common patterns, which are difficult in
one-to-one mapping techniques.

3. Algorithm Overview

Figure 2 shows an overview of the algorithm. The al-
gorithm is divided into two portions: the initialization se-
quence and flow maximization sequence.

In the initialization stage, the images are converted into
Attributed Relational Graphs (ARG). A node similarity ma-
trix is created and used to calculate the node distances in
EMD. An initial EMD is performed over the whole im-
age and flows with small distances are extracted. Adjacent
source and destination nodes are grouped into components.
Each component is potential container of a common pat-
tern, which would be mined in the next stage. If there are
more than one common pattern in the images and they are
grouped into different components in either one of the im-
ages in this initialization stage, Local Flow Maximization
would be able to retrieve multiple common patterns from
the images.

In the Local Flow Maximization stage, the components
in the first image are matched with the components in the
second image to determine if a possible match occurs. The
Local Flow Maximization is based on the Expectation Max-
imization framework, which iteratively finds the location
where the local flow maximizes. If a common pattern ex-
ists, the flow’s centroid should converge at the centroid of
the common pattern.

4. Earth Mover’s Distance

The Earth Mover’s Distance (EMD) is a multi-point
matching technique, which is based on an old transporta-
tion problem. It is a flexible metric, which allows for par-
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2 input images

(1) Node Similarity matrix calculation
(Unary and Adaptive Neighborhood)

(2) Initial global EMD

(3) Extract flows with distance < 1 - T o

Compose adjacent nodes into components

(4) Perform localized EMD between
component Ci and Cj

(5) Get the initial centroid of the local flows
with distance < 1 - T o

(6) Perform EMD over all permutations
of radius pair scale space,

using the centroid as the origin

(7) Get the optimum radius pair
with similarity > T o

(8) Recalculate the centroid using the
optimum scale parameter

Centroid converges?

Common Pattern

Yes

No

Local Flow Maximization

Repeat for all
Ci and Cj pairs

Figure 2. Overview of our approach

tial matching, and can be applied to variable-length repre-
sentations of distributions. It allows huge information to
be compressed into signatures and still yield better results
compared to the conventional histogram methods for image
comparison. It has been successful in image retrieval [8]
and image database navigation and visualization [7]. Lately,
it has been extended for low-level image processing for cor-
ner, junction and edge detection [9].

In EMD, the result is the minimum amount of work
which minimizes the overall cost of moving the mass from
a signature to another.

EMD(S, D) = min WORK(S, D,F) (2)

WORK(S, D,F) =
m∑

i=1

n∑
j=1

distij × flowij (3)

where flow F = [flowij], with flowij representing the flow
from node si in the source signature S to node dj in the
destination signature D, subject to the constraints specified
in [8]. dist is the dissimilarity measure between the two

nodes. Since EMD’s flows are based on the minimum dis-
tance to minimize the total cost, we can prioritize the flow
between the common patterns if we could provide a higher
similarity value for the nodes within the common patterns.
We achieve this by using an adaptive neighborhood similar-
ity method, which we will elaborate in section 4.2.

4.1. Data Representation and Settings

We use Attributed Relational Graph (ARG) as our data
representation because it can be readily converted into the
EMD signatures. The image is initially segmented by its
color distribution and then converted into an ARG model.
Each ARG node is a color cluster, containing the follow-
ing information: node weight (normalized number of pixels
for the cluster), centroid position and average color value.
The edges represent the spatial neighborhood information
between the ARG nodes. Each ARG Nodes can be conve-
niently used as the input for generating the EMD’s signa-
tures.

The EMD color signatures is a data structure consisting
of a set of ordered pairs {(c1,w1), (c2,w2), ..., (cn,wn)},
where ci is the cluster representation and wi is the total
number of pixels for the cluster normalized by the image
size. For simplicity, we refer the ordered pair as si for the
source S and di for the destination D.

To compute the perceptual distance between the two sig-
natures, CIE-L*a*b color space is used because the Eu-
clidean distance between two nearby colors in the space is
more equivalent to their perceptual distance, compared to
the Red, Green and Blue (RGB) and Hue, Saturation and
Value (HSV) color space. Having defined the requirement
for the ground distance, we can define the distance metric
between si and dj as

distnode(i, j) = 1 − Hnode(i, j) (4)

where Hnode(i, j) is specified by equation (5). The distance
distnode ranges from 0 to 1, with 0 being the smallest dis-
tance between two nodes.

4.2. Node to Node Similarity

The fundamental problem in our method is how to en-
courage the flows between the nodes of the common pat-
terns. We achieve this by tapping into the neighborhood
information of each nodes. Kim et. al. [5] utilizes a
modified nested EMD to calculate the similarity between
2 nodes using the neighborhood information of a central
node for his perceptual 3-D shape descriptor. Sivic et. al.
[11] utilizes common neighborhood structure and extent to
mine for common patterns from the key frames of a video
sequence. Candidate matching objects are obtained when
both nodes have M matching neighbors. Their results prove
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that structural information in terms of neighborhood sim-
ilarity is a powerful discriminating feature that could be
tapped for common pattern mining. For our case, we use
the neighborhood node’s color information.

To overcome missing or faulty neighborhood assignment
caused by segmentation, we perform an adaptive neighbor-
hood search to perform a recursive search on a neighboring
node if it is similar in color to the parent nodes, and mark
only nodes with low color similarity as a neighbor. In this
scheme, nodes with more matching neighbor nodes are as-
signed a higher similarity value. During segmentation, a
region could be segmented into different color regions with
low distance value. Applying a direct neighborhood mea-
sure results in a missing neighborhood information. In the
adaptive neighborhood search technique, the nodes which
belong to the same region will retrieve the same set of cor-
rect neighbor node set by performing recursive search on
neighboring nodes until all neighboring nodes have differ-
ent color from the node’s color.

Finally, the node-to-node similarity Hnode is a weighted
similarity metric between the unary color similarity Hunary

and the adaptive neighborhood similarity Hneighbor. Let α
denotes the weighting coefficient, Anode denotes the total
number of matching neighbors and β denotes the minimum
number of matching neighbor pairs for a perfect neighbor
similarity value. Hnode is defined as

Hnode(i, j) = αHunary(i, j)+(1−α)Hneighbor(i, j) (5)

where

Hunary(i, j) = exp

[
−(

D(i, j)
γ

)2
]

(6)

and

Hneighbor =
{ 1

β × Anode Anode < β

1 Anode ≥ β
(7)

D is the Euclidean distance of the colors in the CIE-L*a*b
color space given by

D(i, j) = [(�L)2 + (�a)2 + (�b)2]
1
2 (8)

Both α and β are determined empirically from our exper-
iments, where β has a lower bound value of 2. From our
experiments, we manage to produce consistently accurate
results by setting α to 0.6 and β to 5.

The similarity is formulated so that Hunary(i, j) is an
exponential measure with the steepness of the slope gov-
erned by γ, which we set to 30. The final similarity node-
to-node matrix Hnode is a Ma ×Na matrix, where Ma and
Na are the total ARG nodes in each image.

5. Local Flow Maximization

5.1. Centroid-based Similarity Matrix

A centroid is generally the center point of a system of
masses. We define the flows’ centroid as the center of mass
for the points involved in the EMD flows having distance
smaller than a threshold value 1 − To, where each node is
assigned a weight of one. To is a similarity threshold value
over which two nodes are assumed to be similar. To is de-
termined empirically, and the rule of thumb is to set it to
a value larger than the weighting coefficient α. We obtain
consistently accurate results by setting To to 0.8 in our ex-
periments.

Let S = {s1, s2, . . . , sM} and D = {d1, d2, . . . , dN},
where M and N are the total number of source and desti-
nation nodes, contributing to EMD flows with distnode <
1 − To. The flows’ centroid for the source and destination
images can be formulated as

Cs(x, y) =
1
M

M∑
i=1

si(x, y) (9)

Cd(x, y) =
1
N

N∑
i=1

di(x, y) (10)

where si(x, y) and di(x, y) denote the centroid of the clus-
ter si and di.

Having defined the flows’ centroid, we can now define
the similarity metric used in Local Flow Maximization. The
metric must fulfil the following requirements: (i) Similarity
increases when the centroid of the EMD flow approaches
the centroid of the common patterns in both image. (ii) The
highest similarity happens when the centroid of the flow
overlaps with the centroid of both common patterns. (iii)
Provides the best estimate of the matching area using the
current centroid.

We use the Cs and Cd as the centers of the area encom-
passed by a circle with radius ri and rj respectively. All
ARG nodes whose centroid fall within the radius are se-
lected to generate the EMD’s signatures. The resolution of
the radius scale space is �rs,d = Ls,d/R where Ls,d are the
diagonals of the images and R is the total number of radius
steps. For all our experiments, we set R to 20 which pro-
vide a reasonable resolution and run time. We perform an
EMD for all permutations of signature pair generated from
the different radius settings. Thus, we end up with a R ×R
similarity matrix Hcentroid. This could be formulated as

Hcentroid(ri, rj) = 1 − EMD(Sri
, Drj

) (11)

where

Sri
=

M⋃
k=1

sk(x, y), ∀
k
sk(x, y) ≤ Cs(x, y) + ri (12)
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and

Drj
=

N⋃
k=1

dk(x, y), ∀
k
dk(x, y) ≤ Cd(x, y) + rj (13)

We define the centroid-based similarity value Hobject as
the total number of elements in Hcentroid which have sim-
ilarity value exceeding the object similarity threshold To.
Hobject can be formulated as

Hobject =
∑

i

∑
j

{
1 Hcentroid(ri, rj) > To

0 otherwise
(14)

Intuitively, Hobject meets the requirement (i) and (ii) be-
cause the similarity value will display the highest similar-
ity value when the flows’ centroid is correlated with the
common pattern’s centroid. For requirement (iii), all radius
pairs with similarity value larger than To are possible candi-
dates for the matching area. For our case, the best estimate
of matching area should be the value where the radius scale
pair maximizes to allow more space for EMD to find the
next best centroid space. Thus, we have

r∗i , r∗j = argmax
ri,rj

(ri + rj), (15)

where we consider only the radius pairs with similarity
value larger than To.

5.2. Local Flow Expectation Maximization

Initialization

 Set Initial Centroid, C [0] to the initial
global EMD flow centroid

M-Step

 Calculate new value of H
centroid

 and
H

object
using C[k]

E-Step

 Compute the radius scale pair, r [k+1]

which maximizes the local flow, with
the constraint that similarity must be
smaller than T

o

 Compute the new centroid, C [k+1] for
both image

H
object

 converges?

NO

YES

LFM completed

Figure 3. Overview of the LFM algorithm

The Local Flow Maximization (LFM) is the EMD’s local
flow maximization method based on the Expectation Maxi-
mization (EM) framework. The hidden data is the centroid

and the radius pairs when the local flows maximizes with
the constraint that the area within radius pair has similarity
higher than To. The observed values are the EMD flows
over the radius scale space, from which we obtain the cen-
troid similarity matrix Hcentroid and the object similarity
value Hobject. LFM aims to find the centroid and radius
pairs by maximizing Hobject. Figure 3 shows an overview
of the LFM algorithm.

In the Expectation stage, the best matching local area are
determined from equation (15) to maximize the local flow.
By calculating the flows in the area, a new value of the cen-
troid value is obtained from equations (9) and (10). For sim-
plicity, we summarize the sequence as a function E, which
takes in the centroid-based similarity matrix H(k)

centroid as
input and produces the centroid and radius pair as outputs.
Therefore, the maximization process could be formulated
as




Cs

Cd

rs

rd




(k+1)

= E(Cs, Cs, rs, rd|H(k)
centroid) (16)

In the Maximization stage, the new centroid value is used
to perform a series of EMD matching over all radius scale
space to retrieve a new Hcentroid, from which we calculate
a new object similarity value Hobject, which are obtained
from equations (13), (11) and (14). We denote the sequence
as a function Q, which takes in Cs,d as input and produces
the Hcentroid and Hobject as output. Therefore, the expec-
tation process could be formulated as

[
Hcentroid

Hobject

](k+1)

= Q(C(k+1)
s , C

(k+1)
d ) (17)

The two steps in LFM are iterated until the object simi-
larity value Hobject converges when ‖H(k+1)

object−H
(k)
object‖ =

0. As in EM, convergence will be to a local maximum
which depends on the initial starting point. In our algorithm,
the initial case is set to the centroid of the global EMD flow.
In the event where there are two common patterns, it will
converge to the object with more features. If the common
pattern has similar number of features, LFM will converge
into a point between the two common patterns. However,
the centroid will not converge to a global maximum, but
rather to the nearest local maximum. Therefore, the result
would be affected by the location of the initial global cen-
troid.

The noise encountered by LFM is the background nodes
with low distance in the EMD flow. For example, if a lot
of the background nodes are similar to the common pat-
tern’s internal or boundary node’s color, we will notice an
increase of noise. If the background noise level exceeds the
common pattern’s flow, Local Flow Maximization will not
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Table 1. Result of Common Pattern Discovery

CATEGORY HIT RATIO BG RATIO
Card1 0.9994 0.0269
Doll 0.8054 0.0609

Dustbin 0.8466 0.0000
Big Cat 0.8210 0.0715

Map 1.0000 1.8668
Milo 0.9843 0.0690

Milo2 0.9670 1.2100
RoadSign 1.0000 0.0000
Average 0.9280 0.4648

converge to the centroid of the common pattern. The level
of background noise depends on how efficient the node-to-
node similarity matrix Hnode can prioritize the EMD flows.
In our case, we use the adaptive neighborhood similarity to
provide a higher similarity value for the common patterns.

6. Results and Discussion

Common pattern discovery is still a new area of research
and we are not aware of any widely accepted method to
quantify the quality of the common pattern algorithm result.
For this paper, we compute the performance by using two
parameters, hit ratio and bg ratio. We manually label the
precise area of the common patterns and use it to calculate
the ratio of the correct matched area versus the total cor-
rect area, hit ratio and the ratio of the incorrect match area
versus the total correct area, bg ratio. Table 1 shows the re-
sult of common pattern discovery for several test cases in
our test case. Our algorithm manages to detect around 93%
of the common pattern area, with an average of 46% back-
ground noise.

To verify our Local Flow Maximization portion, we con-
figure our experiment by capturing an image with two ob-
jects: one with a lot of color features and the other with few
color features. The centroid of the flow should converge
to the second common pattern. The result of our algorithm
is shown in Figure 4. The large circle marks the best ra-
dius pair r, the small circles marks the flows with distance
smaller than To and the cross (+) shows the centroid of the
similar EMD flows for each iterations. The darkened ar-
eas are the areas with nodes involved in EMD flows with
large distances. Therefore, they are marked as background
nodes during the iteration. We could see how the centroid
converges to the common pattern with significant color fea-
tures and and the radius scale changes during each iteration.
In the experiment, the centroid converges after the fifth iter-
ation.

We also perform several experiments to show that our al-

gorithm is insensitive to segmentation, translation, rotation,
shot angle and partial occlusion. From the results in Figure
4, we can observed that the algorithm could handle trans-
lation and rotation with relative ease, since the algorithm is
designed to find the centroid of the common patterns and
matching is done over radius scale space.

(a) Segmented Image

(b) Initial

(c) Iter 0

(d) Iter 2

(e) Iter 4

(f) Result

Figure 4. Local Flow Maximization

We show that our approach is insensitive to segmenta-
tion, a difficult problem especially for one-to-one mapping
techniques. We verify this by performing a series of match-
ing using the same image with different segmentation set-
tings. We use the segmentation algorithm proposed in [1]
and set the minimum number of pixels per-cluster to 100,
150, 200, 250, 300, 350 and 400. As shown in Figure 5, our
algorithm manages to detect the position and the matching
area with good accuracy for all cases. This is owing to the
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adaptive neighborhood methodology and the many-to-many
mapping technique.

The result in Figure 6 shows that the algorithm is capa-
ble of performing multiple common pattern matching when
there are more than two common pattern coexisting in the
images. This is possible if the patterns are distinctive dur-
ing component generation. This is affected by how well the
node similarity, Hnode can distinguish between the common
patterns. In this setting also, we show that the algorithm can
handle a certain degree of occlusion as long as the major
color features are still visible.

(a) Minimum 100 pixel per cluster segmentation settings

(b) Minimum 150 pixel per cluster segmentation settings

(c) Minimum 250 pixel per cluster segmentation settings

(d) Minimum 350 pixel per cluster segmentation settings

(e) Minimum 400 pixel per cluster segmentation settings

Figure 5. Results using different segmenta-
tion settings

Figure 7, 8 and 9 shows some of the other experiments
that we have conducted. The images in 7 and 8 are diffi-
cult for one-to-one mapping techniques because the number
of nodes are different in both images. Our approach man-
ages to extract them with good accuracy and speed. Most
other algorithms based on subgraph mining are NP-Hard,
and consumes exponential time with respect to N , the total
number of nodes. For example, the algorithm used in [3] re-
quires 2× (N !) time and execution time amounts to several
hours when N grows to more than 200 on a 3GHz Pentium
4 with 512MB memory. With our algorithm, we completed
the task within a time frame of 5-10 minutes. Figure 7 also

(a) Segmented image

(b) First match

(c) Second match

Figure 6. Multiple common pattern detection

shows that our approach is robust to shot angle. The result
in Figure 8 shows a rough matching area because the back-
grounds contain a lot of nodes which are similar in color.

7. Summary and Conclusions

In this paper, we present a hierarchical approach to solve
the problem of common pattern discovery, where the po-
sitions and radius perimeters of the common pattern are
found. We use adaptive neighborhood and unary color sim-
ilarity as a measure of node-to-node similarity. A many-to-
many mapping technique is endorsed where EMD is used to
perform similarity matching. We propose a novel local flow
maximization approach to retrieve the location and best ra-
dius perimeter where the common pattern is located.

Experimental results shows that the algorithm is effec-
tive to detect even complicated common patterns, and is
insensitive to segmentation, which is a hard problem espe-
cially for one-to-one matching techniques. We also show
that the algorithm is robust to rotation, translation, shot an-
gle and certain degree of occlusion. We do not consider
objects at different scale, although the results shows that it
can handle certain degree of scale difference in the common
patterns. For all experiments, the sizes of the common pat-
terns are actually different and can be handled successfully
to certain extent. This is owing to the radius scale space
specified by Sec 5.1 where the image is matched at various
scale, and the best radius pair is selected in the process.

In our future works, we would improve our algorithm
on scale invariant. We also plan to investigate ways to im-
prove our adaptive neighborhood techniques so that the al-
gorithm could cover a wider variety of images. For this pa-
per, the background used are of different colors compared
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(a) Original images

(b) Segmented images

(c) Results

Figure 7. Experiment Big Cat

to the common pattern.
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