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ABSTRACT

This paper presents a novel motion localization approach
for recognizing actions and events in real videos. Exam-
ples include StandUp and Kiss in Hollywood movies. The
challenge can be attributed to the large visual and motion
variations imposed by realistic action poses. Previous works
mainly focus on learning from descriptors of cuboids around
space time interest points (STIP) to characterize actions.
The size, shape and space-time position of cuboids are fixed
without considering the underlying motion dynamics. This
often results in large set of fragmentized cuboids which fail
to capture long-term dynamic properties of realistic actions.
This paper proposes the detection of spatio-temporal mo-
tion volumes (namely Volume of Interest, VOI) of scale and
position adaptive to localize actions. First, motions are de-
scribed as bags of point trajectories by tracking keypoints
along the time dimension. VOIs are then adaptively ex-
tracted by clustering trajectory on the motion mainfold.
The resulting VOIs, of varying scales and centering at arbi-
trary positions depending on motion dynamics, are eventu-
ally described by SIFT and 3D gradient features for action
recognition. Comparing with fixed-size cuboids, VOI allows
comprehensive modeling of long-term motion and shows bet-
ter capability in capturing contextual information associated
with motion dynamics. Experiments on a realistic Holly-
wood movie dataset show that the proposed approach can
achieve 20% relative improvement compared to the state-of-
the-art STIP based algorithm.
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Figure 1: Examples of realistic human actions in
Hollywood movies and KungFu videos. Actions in
real videos exhibit large visual variation. This work
proposes to use keypoint trajectories to track mo-
tion and detect 3D video volumes to localize actions.

1. INTRODUCTION

Automatically recognizing human actions in videos is in-
creasingly receiving research attentions due to its great po-
tentials for various industry applications, such as event-based
video browsing, semantic indexing, video search and human-
computer interaction. Most early works focus on detecting
actions in domain-specified videos such as surveillance and
sports videos, as well as simplified action corpus (e.g. Weiz-
mann action dataset used in @, ) Recently, a number
of works aim to recognize actions and events
from realistic videos, such as movies, news videos and user-
generated web videos. The types of human actions to being
detected include single human behaviors such as Stand Up
and multibody interactions such as People Hugging. How-
ever, realistic action recognition is highly challenging due
to the presence of large intra-class variation, unconstrained
camera viewpoint and clutter background, as illustrated in
Fig.[l] Due to these visual variations, determining when and
where actions happen in a video become difficult. This in
turn also affects the effectiveness of feature extraction and
pattern learning for action recognition. In this paper, we
address the problem of when by position-independent local-
ization and where by scale-adaptive volumetric detection,
through the analysis of long-term motion dynamics.
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Figure 2: Flowchart of proposed algorithm for mo-
tion volume localization, modeling and learning.
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To capture human actions, early works focus on extract-
ing geometry shapes of human body from video [6}|7]. Since
they rely on exact knowledge of the object contours or mul-
tiple view geometries, these schemes are not reliable for an-
alyzing complicated real videos, in which geometry is hard
to extract and prone to errors. Another line of research [3|
5, |10] employ space time interest points (STIP) based ac-
tion modeling schemes. Feature points are located either by
a 3D Harris corner detector [5] or Gabor filters [10]. The
descriptors around those interest points are then computed
and quantized into Bag of visual-Words (BoW) whose statis-
tical distributions are used to represent the entire video se-
quence. Using the BoW, discriminative learning models (e.g.
SVM) and generative models (e.g. pLSA) were adopted [3].
For example, in [5] actions are implicitly localized by small
cubes and modeled using pixel statistics in fixed sized cubes.
The problem with these methods is that fragmentized cubes
cannot capture long-term dynamics of actions. More impor-
tantly, fixing the size of cubes is not adaptive to describe
actions which appear at uncertain space-time location.

To adaptively localize spatiotemporal motion for precise
action modeling, we propose trajectory generation to cap-
ture motion dynamics and subspace learning for action lo-
calization. Fig. [J] shows the overview of the proposed pro-
cedure. Bag of keypoint trajectories are first generated and
then clustered into separate motion flows by motion sub-
space learning. Trajectories in the same cluster are ex-
panded to form a 3D volume of adaptive size, namely Vol-
ume of Interest (VOI). VOI descriptors are then ex-
tracted for action learning. Comparing with small and frag-
mentized STIP cuboids in [5], VOIs with larger spatiotem-
poral scope are more suitable for capturing macroscopic hu-
man behaviors, e.g. StandUp and GetOutCar. By utilizing
fast trajectory computation, our approach is also more effi-
cient than STIP based method. We validate our approach
on realistic action videos (Hollywood movie shots from [5]),
on which using complementary features the dynamic VOIs
outperforms STIP based method [5] by a margin of 20%.

2. VOLUMETRIC MOTION LOCALIZATION

In this section we present a novel space-time motion lo-
calization algorithm by keypoint trajectories clustering. The

detected video volumes are called Volumes of Interest (VOIs),

from which features are extracted for video action modeling.

2.1 Trajectory Generation and Pruning

Trajectory Generation: We use keypoint trajectories
to track all motions in video, including human body actions.
Similar to recent work [11] which uses kinematic patterns
of trajectories to detect copied videos, we employ pyramid
Lucas-Kanade keypoint detection and tracking implementa-
tions in OpenCV [12]. As shown in Fig. [I} generated key-
point trajectories are capable of tightly tracking motions.
To prevent from introducing large camera motion, we set
the maximal trajectory length to 75 frames (equals to about
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Figure 3: VOI extraction and descrlptlon, (a) low
dimensional embedding of trajectories, (b) determi-
nation of spatiotemporal boundary of 3D VOI by
using the minimal and maximal coordinates of tra-
jectories in a cluster, (c) describing VOI with SIFT
and HKB (Histogram of Keypoint Behaviors).

3 seconds of duration). When trajectories are cut off at
shot boundary or when reaching max length, a new session
of keypoint detection and tracking starts to generate new
trajectories. We define keypoint trajectories as below.

DEFINITION 2.1. A keypoint trajectory T with length 1 is
defined as a sequence of point coordinates, where t denotes
its start frame in video.

.
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Trajectory Pruning: As observed in |2 [3] that ac-
tions and events tend to be dominated by significant motion
dynamics, we conduct trajectory pruning to retain suspect
action-related motions by filtering out motionless trajecto-
ries. A criterion C(T) is defined for this purpose,

C(T) = [std(X) + std(V)]/2,

— 2
where X ={z,,2,,...x f}7 Y = {y13y27"'7yf} ()

where std() denotes the standard variance of coordinate se-
quence. Physical meaning of std(X) and std(Y) is the ver-
tical and horizonal motion intensity of T, respectively. We
threshold C(T') to filter out nondistinctive trajectories. The
purpose is to keep only those suspect actions of trajectories
for further analysis and thus the threshold is set empirically.
In the experiment, by setting the threshold © < 8.5, in av-
erage 12.9% trajectories are removed.

2.2 Trajectory Clustering

We adopt motion subspace learning to project trajectories
onto a low dimensional space, where trajectories with dif-
ferent behaviors are discriminatively distributed. This will
facilitate trajectory clustering for localizing various motion
patterns in a video shot [§].

Motion Matrix: First we construct a motion matrix
Mosyxp using coordinates of all trajectories, where f is the
number of frames and p denotes the number of trajectories.
Magxp = [Tzlf><17Tz2f><17 o Tzlfxl’ T ’Tffxl] ] ic(1,p)
7xj7y37"'7w}7y}] ) ]6(17f)

(3)

Presenting trajectories in the form of motion matrix requires

length normalization. To keep the originality of data, we

adopt zero-padding (i.e. concatenating extra 0 to the end of
trajectories) for length normalization as suggested in [4].

SVD decomposition is conducted on motion matrix Mayxp,

where T2fXl =[xl gl

M2f><p—U2f><KSK><K Kxp (4)
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Figure 4: Quantifying a trajectory into Histogram
of Keypoint Behaviors (HKB). The resulting 25D
feature describes the statistical velocity and orien-
tation of keypoints motion on a trajectory.

where we assume rank(M) is K. After normalizing each col-
umn of V, we use a unit vector v;(i = 1,...,p) to represent
the corresponding trajectory T; in M. SVD decomposition
is a transformation that projects a R*f vector m; (the ith
column of M) onto the RX unit sphere which preserves the
subspace property, as illustrated in Fig. a). A subset of
m;(i = 1,...,p) spans a subspace of the same rank of the cor-
responding subset of v;(i = 1,...,p) [8]. After normalizing
data onto a low dimensional sphere, a group of neighboring
unit vectors are corresponding to trajectories with proximity
and similar kinematic behaviors. Intuitively these trajecto-
ries probably come from identical component of body.

Since the number of moving parts is unknown in real
videos, we adopt mean-shift clustering [9] on Vi, » to adap-
tively group similar v;, as in Fig. la The algorithm ac-
cepts the bandwidth (i.e. average range of a cluster) as the
parameter, which is empirically fixed to 350, a relatively
small value for clustering similar trajectories.

2.3 Localizing Action Motions

To localize motions of action in a video, we use a volumet-
ric 3D cube to encapsulate all trajectories in a cluster. The
3D cube is named as Volume of Interest (VOI). As demon-
strated in Fig. b), the boundary of a VOI is determined
using the maximal and minimal coordinates {z,y,t} of m; in
the cluster. As examples shown in Fig.[I} the bounding box
of VOIs explicitly localize actions on both spatial and tem-
poral domain. Each VOI contains a distinct motion pattern.
Features of all VOIs in a shot are extracted for learning.

3. FEATURE EXTRACTION AND ACTION
CLASSIFIERS LEARNING

Localized motion volumes are described by the widely
used volumetric features, e.g. 3D Histograms of Oriented
Gradient (HoG) [5] and SIFT. A 3D HoG is used to de-
scribe a VOI. SIFT features are extracted from a sub-frame
at the center of VOI (see Fig.[3c)). In addition we describe
trajectories as Histograms of Keypoint Behaviors (denoted
as HKB), as shown in Fig. HKB quantizes the displace-
ments between any two adjacent keypoints of a trajectory
into 25 states according to their velocities and orientations,
as shown in Fig. El With HKB, each trajectory is repre-
sented as a histogram of 25 states characterizing its 3D mo-
tion in VOI. For efficient and compact representation, Bag
of visual-Words model (BoW) is further applied to quantify
the VOI features. Specifically, the HoG, SIFT, and HKB
features of all VOIs in a video shost, respectively, are clus-
tered to form three visual vocabularies, of each 1000 words,
for describing the video shot as three BoW histograms.

To train action classifiers, we adopt nonlinear SVM learn-
ing using pre-computed kernel matrix Kyxn as in [5]. N is

Scale-adapted volumes
by trajectory clustering

Cuboids of multiple sizes |5
by dense scale sampling

Figure 5: Comparison of STIP cuboids and VOIs in
a video of GetOutCar. Multiple STIP cuboids of
predefined scales are sampled to label motion (left),
while VOIs localize actions of the person and car
separately in two cuboids of adaptive scale (right).

the number of histograms for training. Using kernel matrix
we are able to use single feature or combine multiple features
mentioned in Sec. [3] to model video actions. An elementary
kernel function (i.e. K;j,%,j = 1,..., N) is computed as,

1 c c
K (H;, Hj) = exp _Z/TDC (Hi, H) (5)
ceC
where H; = {hj,} and Hj = {h .} are two BoW his-
tograms of visual words extracted in feature type c (e.g.
SIFT or HKB descriptor) for the i-th and j-th samples re-

spectively, whereas D. (H;, H;) is the X2 distance7 namely

N
T2 Z o+ hc (©)

and A. is the average distance for normalization as in [5].

4. EXPERIMENTS AND DISCUSSIONS

The proposed approach is tested on the HOHA dataset
[5], a benchmark human action dataset which contains 430
movie video shots (219 for training and 211 for test) be-
longing to eight action classes (see Fig. @ We adopt one-
against-all strategy to train 8 action classifiers and evaluate
the performance using Average Precision (AP).

4.1 VOI versus STIP Cuboids

We first compare our proposed VOIs to the STIP cuboids
based on [5]. Figlf| shows an example for a video with the
action ‘get out of car’. Our approach requires neither scale
selection [10] nor dense scale sampling 5] to determine the
size of cubes to capture action. The merit of VOI lies at
it encapsulates trajectories to roughly label the spatiotem-
poral range of an action. In HOHA dataset the average
size of VOIs is (100, 72,60), which is much larger than size
of most STIP cuboids (e.g. (36,36,25) [5]). The average
number of VOIs in a video shot is 49.5, which is much less
than hundreds of STIP cuboids. It is worthnoting that [5]
utilizes griding technique to segment a shot into grids from
which features are extracted as channels. During their ex-
periments, channels are exhaustively combined and evalu-
ated. The best performance as a result of experimenting dif-
ferent ways of combination is presented in [5]. Using VOIs,
such brute-force kinds of evaluation is not required since
VOlIs are scale and position adaptive to the underlying mo-
tion dynamics. For fair evaluation, we only compare our
approach to the standard STIP in [5] without grid search.

In terms of speed efficiency, VOI detection is also more
efficient than STIP detection. Using implementation of [5],
it takes 132 seconds in average to detect space-time points
from a video of 40 seconds duration. Using OpenCV based
implementation, we detect VOIs in the shot within 41 sec-
onds. This is because we use tracking to avoid keypoint
detection on all frames which is highly time consuming.

D, (Hf, C
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Figure 6: Comparison of APs between proposed method and [5] for recognizing action events in HOHA.

4.2 Action Recognition

We quantitatively compare the action recognition accu-
racy of VOI and STIP [5] with different BoW features. Figl6]
shows the performances for eight actions on HOHA. Basi-
cally, VOI shows consistently better performance than STIP
for most actions when using same feature. VOI+HoG achieves
mean AP (MAP) of 28.22%, while for STIP+HoG it is 27%.
This indicates that action related features can be better ex-
tracted and modeled if the cuboids can cope with the under-
lying motion dynamics. STIP which often encodes an action
with excessive discrete and fragmented cuboids, in contrast
to VOI, fails in capturing motion in a holistic manner.

We also experiment the effectiveness of SIFT and HKB to
describe VOI. As shown in Fig[f] separately employing SIFT
or HKB indeed does not show satisfactory performance. By
combining both features for VOI, which jointly takes into
account the spatiotemporal dynamics and visual appear-
ance, the best overall MAP performance is exhibited in the
experiment. The BoWs of SIFT and HKB are combined
in kernel matrix computation and the recognition achieves
32.45% in MAP. This shows 20% improvement compared to
STIP+HoG (MAP=27%) of [5]. Among the eight actions
in HOHA, VOI is particularly capable of capturing multiple
body motion such as HugPerson, where their trajectories ex-
hibit distinctive motion patterns to be recognized. However,
for action such as HandShake, action related trajectories are
almost motionless and as a result being filtered out during
trajectory pruning stage. Recognizing this type of actions
remain challenging by using either VOI or STIP.

In addition to HOHA dataset, we also apply our approach
to KungFu videos crawled from the web. Figm shows the de-
tected VOIs on HOHA and Tai-Chi Kung-Fu videos. KungFu
videos show various actions such as complex Tai-Chi martial
arts which are difficult to extract and model with existing
approaches. Our results using VOI show encouraging perfor-
mance, where trajectories of human body motion are densely
tracked and VOIs are able to encapsulate actions with scale
and position adaptive volumes.

S. CONCLUSIONS AND FUTURE WORKS

We have presented a novel motion localization approach
for realistic action recognition. By robust keypoint trajec-
tory and motion subspace learning, our approach locates vol-
umes of motions which can cope with the long-term motion
dynamics of actions. We demonstrate that using scale and
position adaptive motion cuboids, visual features are more
holistically extracted and can lead to better recognition per-
formance. Our future works include recognizing complex
actions in martial art videos such as KungFu movies, which
are difficult to index and tag even with manual labeling.
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