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Paper

Object Pooling for Multimedia Event Detection and

Evidence Localization

Hao Zhang †, Chong-Wah Ngo †

Abstract Multimedia event detection (MED) and evidence hunting are two primary topics in the area of multimedia

event search. The former serves to retrieve a list of relevant videos given an event query, whereas, the latter reasons why

and how much the degree a retrieved video answers that query. Common practices deal with these two topics in separate

methods, however, in this paper, we combine MED and evidence hunting into a joint framework. We propose a refined

semantical representation named object pooling which can dynamically extract visual snippets corresponding to the location

of when and where evidences might appear. The main idea of object pooling is to adaptively sample regions from frames for

generation of object histogram that can be efficiently rolled up and back. Experiments conducted on large-scale TRECVID

MED 2014 dataset demonstrate the effectiveness of proposed object pooling approach on both event detection and evidence

hunting.

Key words: Object Pooling, Event Modeling, Search Result Reasoning

1. Introduction

With the popularity of video sharing website, such as

YouTube, thousands of user-generated videos are up-

loaded onto Internet every day. Unlike professionally

filmed videos (e.g., sport videos), these videos usually

suffer from low resolution, large diversities and reflect

complex event contents. As showed in Figure 1, the

sport “swimming” contains single interaction “people

swim in water” captured from different camera views,

whereas, multimedia event “birthday party” usually

contains a sequence of interactions, such as “people

sing birthday song”, “people blow candles”, “people

eat cake” and “people receive gift” in different scenar-

ios. Additionally, single sport video usually contains sig-

nificant motion patterns with few irrelevant clips, on the

contrary, multimedia video contains complex motions

with many irrelevant clips. As a result, the method of

sport detection with visual features (e.g., HOG, SIFT,

Improved Dense Trajectory) is not quite appropriate for

multimedia event detection and summarization, bring-

ing the needs to capture semantical meanings in multi-

media videos. To efficiently retrieve and summarize se-

mantical meanings of multimedia videos, many research

efforts have been spent on representing multimedia con-

tents with high-level semantical concepts. For example,
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Fig. 1 Comparison of Multimedia Event and Sport

Event.

the event “birthday party” usually contains relevant ob-

jects such as “people”, “birthday cake”, “candles”, “toy

gift”, etc (Figure 1). The video snippets having these

objects and/or actions could be extracted as evidences

for justifying the presence of a target event. As a re-

sult, multimedia event retrieval can significantly ben-

efit from the effective semantic representation of web

videos. However, the state-of-the-art concept detectors

are trained with deep convolutional neural networks

which yield high responses for primary objects occu-

pying large frame-area and downgrade responses for re-

gional objects covering small area, as a result, regional

objects are usually neglected.

The main contribution of this paper is on the pro-

posal of a refined semantical concept representation
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for multimedia videos by using an object pooling ap-

proach. The object evidences are locally extracted out

of video frames, which are further pooled within and

across frames to form an object histogram. The his-

togram can be directly utilized for retrieving event rel-

evant videos. During event evidence localization, the

histogram can be unrolled in time such that temporal

evidences, or specifically visual snippets, in the videos

can be readily identified in a unified way. Furthermore,

the spatial regions of event related objects can also be

effortlessly located through the “unrolled histograms”

(see Figure 2). Our model is the first attempt to lo-

cate not only when (i.e., which video frames) evidential

object appears, but also where (i.e., which spatial re-

gion) it resides. Additionally, with the help of homoge-

neous kernel mapping, we also propose a novel method

to identify important elements of nonlinear kernel SVM

(e.g., χ2-SVM). The experimental results demonstrate

that the proposed object pooling can both improve the

performance of multimedia event detection and provide

reasonable event evidences.

This paper investigates multimedia event detection

and spatial-temporal localization of visual evidences in

explaining video relevancy in a unified way by using a

large pool of concept detectors. We restrict the studies

to the domain of multimedia event, where each event

usually has a number of objects interacting with each

other.

The rest of this paper is organized as follows: Section

2 describes the Related Works on multimedia event de-

tection and event evidences localization. Section 3 de-

scribes Object Pooling for multimedia event detection,

while Section 4 describes Evidential Objects Localiza-

tion, Section 5 presents Experimental Settings, and Sec-

tions 6 discusses Results. Section 7 concludes the paper.

2. Related Works

Detection and summarization are two primary prob-

lems in the area of multimedia video analysis. Content-

based video retrieval detects event relevant videos, and,

video summarization helps to verify why a retrieved

video is being relevant. From the user point of view,

providing such a feature, which is equivalent to on-the-

fly generation of short summaries as evidences explain-

ing how a video answers an event query (a.k.a. multime-

dia recounting1)), can have potential in enhancing user

search experience. More specifically, instead of watch-

ing throughout a video, user can rapidly determine the

relevancy by simply reading evidences2).

Fig. 2 Overview of Object Pooling across spatial do-

main. Primary objects are detected from frame

and regional objects are accumulated from re-

gions. The two kinds of object histograms are

concatenated to represent a video frame.

In the literature, feature pooling in the spatial3)

and temporal4)5)6) dimensions is a technique intensively

studied. In the context of multimedia event, most pool-

ing techniques involve accumulation of features along

the temporal dimension. For example, the recent stud-

ies7)8) employ multiple-instance like algorithms in esti-

mating the importance of video frames in the pooling

features. Our proposed work is different in the way that

we mainly deal with object features at the frame level

(see Figure 2). Compared with approaches such as spa-

tial pyramid3), which rigidly divides a frame into some

predefined regions for spatial pooling, object pooling

has the capability of adaptively sampling regions where

objects are likely to reside. There are also few works,

such as9)10)11), focusing on the selection of few relevant

concepts from large-scale concept sets for multimedia

event detection and achieving promising results. Ob-

ject pooling refines semantical representation and can

be treated as the preprocessing of concept for selection.

There are some related works studying multimedia

event recounting2)12)13)14)15), but mostly treating video

retrieval and recounting as two disintegrated parts. For
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example in13)14)15), two different sets of classifiers, one

for scoring video relevancy and the other for searching

local evidences in a video, are separately trained. This

strategy can lead to redundancy in training and de-

tection, and more importantly, resulting in inconsistent

judgements when scoring videos and hunting evidences.

In contrast, object pooling provides a more sensible way

of unifying video retrieval and recounting, by rolling up

from local regions to a histogram for efficient event de-

tection and drilling down the histogram for not only

temporal but also spatial evidence localization, which

are not yet studied in other approaches. Our approach

has the advantage of simplicity and is easy to imple-

ment, if compared to other computationally expensive

approaches such as16)17), where the former adopts DPM

(deformable part based-model) requiring many train-

ing examples and the latter applies object classifiers

(SVM) across an image at multi-scales which requires

much computational cost.

Our work is motivated by the studies of object de-

tection. With the help of deep convolutional neural

networks (DCNN)18), the accuracy of object detection

improves significantly. Girshick et al.19) proposed an ob-

ject detection method called Region-CNN which utilizes

DCNN features extracted from image regions to train

object detector. Sermant et al.20) proposed OverFeat

which applies DCNN classifier on image with multi-

scale sliding windows. However, unlike these approaches

which aim to assign region to object, this paper ac-

cumulates object responses from regions to generate a

thorough representation for video frames.

3. Object Pooling

Multimedia event is usually generic in terms of event

definition and complex in forms of audio-visual con-

tent. A feasible way of detecting events is by modeling

the elementary concepts underlying an event, such as

by representing an event as a histogram of concepts,

which sometimes exhibits better performance than us-

ing low-level audio-visual features16)21)22)23)24). Similar

in spirit, we propose to represent each video frame by a

refined semantical histogram which accumulates object

responses from frames and frame regions.

Due to the existence of soft-max layer of deep con-

volutional neural networks, the state-of-the-art concept

detectors (DCNN) are preferential to enhance response

of primary object which occupies major region of an

image, and penalize responses of regional objects with

small areas which are informative for identifying the

underlining events in the video. Object pooling is de-

signed to address this issue by accumulating objects’

responses from both frame and frame regions. This pro-

cedure starts by sampling the regions in video frames

where objects may reside. A histogram of objects is

then generated for each region, indicating the proba-

bility distribution of object appearance in that region.

Then, the histograms of several regions are spatially

pooled across regions to generate a frame-level repre-

sentation (See Figure 2). Finally, we concatenate global

and region representations for each frame. The result-

ing histogram is further temporally pooled along the

temporal dimension. To this end, each video is repre-

sented by a video-level histogram serving as an input

for SVM classifier learning.

3. 1 Primary Objects

Primary objects usually locate at the center of an

image occupying large areas, making them preferential

to be detected and emphasized. By detecting concepts

on each video frame, state-of-the-art methods mainly

use primary objects to characterize contents of a video

frame.

( 1 ) Primary Object Detector

We employ deep convolutional neural networks

(DCNN) for object detection. DCNN has been demon-

strated to be effective in learning different levels of

image representation and concept classifiers simultane-

ously.

Following standard pipeline, we apply DCNN clas-

sifiers to each frame and represent it with a vector of

concept responses, where each element corresponds to

the probability of appearance of an object. The pri-

mary object vector is denoted as Pt ∈ R
D, where D is

the number of concepts and t denote the t-th frame.

3. 2 Regional Objects

Regional objects are objects which reside in non-

center parts of an image occupying small areas. When

an image is input into concept detectors, responses of

regional objects are usually overwhelmed by primary

objects. However, regardless of their sizes, regional

objects have potential to be event evidences, e.g., the

“birthday cake” in the first video frame (Figure 1). Ab-

sences of regional objects will lead to incomplete repre-

sentation of video contents. Thus, we propose to accu-

mulate the semantical information of small regions by

detecting the objects separately from primary objects.

( 1 ) Region Proposal

Objects can appear at any locations of a frame. The

ITE Trans. on MTA Vol. 4,  No. 3 (2016)
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purpose of region proposal is to sample candidate win-

dows, each of which contains an object. There are var-

ious off-the-shelf algorithms for determining the cate-

gory independent object locations, e.g, selective search
25), objectness26) and BING27). These algorithms are

designed for images. For video frames that generally

suffer from motion blur, we find that the color and

brightness based segmentation algorithms such as se-

lective search25) are more appropriate than saliency and

edge-based algorithms26)27).

Given a video frame, we employ selective search to

suggest candidate windows or bounding boxes for ob-

jects. The number of bounding boxes can be as many as

a thousand. To save computational cost, we only pro-

cess a small number of boxes which satisfy the prede-

fined selection criteria. Basically, we minimize the over-

lapping area among the selected boxes, while pruning

boxes of tiny size or with large ratio of width and height.

For frame ft extracted at timestamp t, we obtain K

number of candidate regions denoted as, Bt = {btk}Kk=1.

( 2 ) Regional Object Detector

DCNN architecture can be used to detect and locate

objects within a part of image, as demonstrated by ob-

ject detection models such as OverFeat20) and Region-

CNN19). We use similar DCNN architecture proposed

in18) but fine-tuned with a large concept bank.

Given a video frame ft and the proposed regions

Bt = {btk}Kk=1, we extract DCNN concept feature from

each region. The feature corresponds to the neuronal

response of DCNN given the visual content of a bound-

ing box as input. Thus, each region btk is characterized

as an object histogram rtk ∈ R
D.

Spatial pooling is carried out by combining the

region-level object histograms using the max∗ operator.

A frame-level histogram Rt ∈ R
D is then generated as

following:

Rt = max([rt1, rt2, · · · , rtK ]) (1)

where rtk denotes the object histogram for the k-th

bounding box of the t-th frame.

3. 3 Frame and Video Representation

( 1 ) Frame-level Histogram

Each video frame is represented in two forms: pri-

mary object histogram and regional object histogram,

where the former emphasizes main object with large size

and the latter collects regional objects. We generate the

frame-level histogram ht ∈ R
2D by concatenating the

∗ If A is a matrix, max(A) returns a column vector containing the

maximum element from each row

primary and regional representations:

ht =
[
Pt, Rt

]
(2)

( 2 ) Video-level Histogram

The video-level histogram is generated by temporally

pooling or rolling up histograms at the frame level us-

ing the max operator. Given a video of n subsampled

frames, the histogram H ∈ R
2D is obtained by using

max (or mean∗∗) operation:

H = max([h1, h2, · · · , hn]) (3)

4. Evidential Objects Localization

4. 1 Event Detection

Given a training video set {Hi, yi}Vi=1 with V videos,

in which Hi is the feature, and yi is the event label

for the i-th video. An event detector is learned over

training videos with nonlinear kernel SVM. The de-

cision function of nonlinear kernel SVM for a testing

video H is:

f(H) = W TΨ(H) (4)

where W is the hyperplane learned by SVM and Ψ(H)

is a nonlinear mapping function that projects vector H

into a high dimensional space.

4. 2 Evidence Localization

Before temporally and spatially locating key eviden-

tial objects, we need to identify which objects are ev-

idences for events (e.g., “cake”, “toy gift” for event

“birthday”). We solve this problem by calculating and

sorting contribution of each object for decision function

f(H). Objects which contribute most to the decision

function f(H) are identified as evidences.

An ideal situation to calculate contribution of each

object is that the mapping function Ψ(H) can be ap-

plied to each element H(j) independently, thus, the

contribution C(j) of the j-th element H(j) can be cal-

culated by below function:

C(j) = W T
j Ψ (H(j)) (5)

where W T
j is a subset of W T corresponding to

Ψ (H(j)) in dimensions (see Figure 3). Thus, function

4 can be rewritten as:

f(H) = W TΨ(H) =

2D∑
j=1

C(j) (6)

However, for nonlinear kernel, mapping function Ψ(H)

∗∗ If A is a matrix, mean(A) returns a column vector containing

the mean value for each row
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Fig. 3 Evidence Localization. Each dimension of object

histogram is separately mapped into Ψ̂(x) space,

then, the mapped feature is multiplied with cor-

responding SVM weights to calculate contribu-

tion. Object with large contribution C(2) is

identified as key evidence. By a reverse process

of temporal-spatial pooling, when and where ev-

idential object locate is identified.

usually has infinite dimension and elements of the

mapped vector are not independent. The problem is

solved by using a finite approximation of Ψ(H) called

homogeneous kernel mapping. In28), Vedaldi et al. pro-

posed homogeneous kernel mapping Ψ̂(H) to estimate

Ψ(H). Different from Ψ(H), Ψ̂(H) can map each el-

ement H(j) independently into a 2m + 1 dimensional

space. Thus, H ∈ R
2D can be mapped into 2D(2m+1)

dimensional space, where D denotes the number of con-

cepts and m is a parameter for approximation function.

In all, by utilizing homogeneous kernel mapping, we ap-

proximately calculate nonlinear kernel SVM using lin-

ear SVM in Ψ̂(H) space. There are various off-the-shelf

nonlinear kernels, such as Hellinger, intersection and χ2

kernels, which can be approximated by homogeneous

kernel mapping. In this paper, we select χ2-SVM since

it demonstrates good performance. Considering com-

putation cost, we only use m = 1 and map original

feature into a 3 times dimensional space. The mapping

function for each dimension is shown below.

Ψ̂(H(j)) =
√
H(j)

⎡
⎢⎣

0.8

0.6 cos(0.6 logH(j))

0.6 sin(0.6 logH(j))

⎤
⎥⎦ (7)

With formulas (5, 7), C(j) is calculated for the j-

th object (i.e., the j-th element in H). Then, we use

C(j) to rank contributions of objects for an multime-

ID Event Name

E021 Attempting a bike trick
E022 Cleaning an appliance
E023 Dog show
E024 Giving directions to a location
E025 Marriage proposal
E026 Renovating a home
E027 Rock climbing
E028 Town hall meeting
E029 Winning a race without a vehicle
E030 Working on a metal crafts project
E031 Beekeeping
E032 Wedding shower
E033 Non-motorized vehicle repair
E034 Fixing a musical instrument
E035 Horse riding competition
E036 Felling a tree
E037 Parking a vehicle
E038 Playing fetch
E039 Tailgating
E040 Tuning a musical instrument

Table 1 The 20 events defined in TRECVID MED 2014

dataset

dia event. Objects with top ranked contributions are

identified as evidences.

As is illustrated in Figure 3, we reverse the process

of temporal-spatial pooling and relocate the important

object in a spatial region of video frame, i.e., we locate

when evidence appears by searching for the frame which

has maximum object response and where evidence ap-

pears by searching for the region which has maximum

object response.

5. Experimental Settings

5. 1 Dataset

We conduct experiments using TRECVID MED 2014

dataset1), which defines 20 multimedia events on three

subsets: training, background and testing set. Differ-

ent from pre-segmented action recognition dataset such

as UCF-101, these videos are user-generated and not

segmented into shots. The average video length is 2.4

minutes. The events include “attempting a bike trick”,

“dog show” and etc. Table 1 shows the complete list

of events. In the training set, there are 1,996 positive

videos in total, approximately 100 positives for each

event. The background set has 4,992 randomly sam-

pled videos may or may not be relevant to the twenty

events. We treat this set as negative set. The testing

set contains 27,276 videos independent from the other

sets.

5. 2 Concepts and Latent Concepts

We train concept detectors with DCNN architecture
18)34). Specifically, the DCNN architecture is imple-

mented by Caffe29) and pre-trained with ILSVRC-2012

data set30) containing 1.26 million training images of

1000 categories.

To fully capture the semantical meaning of multime-

dia event, we utilize TRECVID SIN, MED Research

Collection1), ImageNet30) dataset to create a large-scale

concept-bank with 1,843 concepts. We summarize the

ITE Trans. on MTA Vol. 4,  No. 3 (2016)
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pipeline to generate concept detectors as below:

SIN-346: 346 concept detectors are fine-tuned on

TRECVID SIN’14 dataset1) with AlexNet structure18).

Objects responses extracted by this DCNN are named

as SIN-346.

RC-497: Similar to31), we select 497 concepts from

TRECVID MED’14 Research Collection1), manually

annotate at most 200 positive keyframes for each con-

cept, and fine-tune 497 concepts using AlexNet struc-

ture. Similarly, this feature is named as RC-497.

ImageNet-1000: 1000 concept detectors are trained

with AlexNet structure on a subset of ImageNet dataset
30) containing 1.26 million training images. For simplic-

ity, the feature is named as ImageNet-1000.

Latent-Concept Descriptors: Compared to out-

put layer (soft-max layer), even though the elements of

fc7 relu feature (i.e., 4,096 dimensional outputs of the

2nd fully connected layer) are not assigned to human-

understandable semantical labels, they can be used as

visual descriptors reflecting semantical attributes. To

differentiate fc7 relu feature with conceptual features,

we refer the fc7 relu feature as latent-concept descrip-

tors. We directly use VGG-19-layers Net34) provided by

Caffe and pre-trained with ImageNet dataset to extract

latent-concept descriptors.

5. 3 Regions

We use “single strategy” of selective search to propose

around 200 alternative regions for each video frame.

Specifically, single strategy segments objects based on

color, size and texture similarity in HSV space.

To reduce computation cost, we remove tiny re-

gions with areas smaller than 1
10 of the area of whole

frame. We also empirically remove the regions with
hight
width or width

hight ratio larger than 4. Additionally, we

prune bounding boxes with large overlaps. The over-

lap ratio between two regions (b1 and b2) is defined as:

overlap = area(b1∩b2)
area(b1∪b2)

. If two regions are overlapped

by 0.5, we only retain one of them. By pruning these

regions, we approximately obtain 20 regions for each

video frame.

Since DCNN requires a fixed input size, we resize each

frame region into the required resolution (227× 227 for

AlexNet, 224×224 for VGG-19-layers Net) first. Then,

for each frame region, its representation is obtained by

feeding it into pre-trained DCNN architecture. Thus,

each region is characterized by DCNN outputs reflecting

concept probabilities. Region-level features are further

max pooled to generate the frame-level representation.
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5. 4 Evaluation Details

In all the experiments, we apply homogeneous kernel

mapping with VLFeat toolbox32) and linear SVM with

LIBSVM toolkit33). We conduct extensive experiments

on two standard training conditions: in 100Ex, 100 pos-

itive exemplars are provided for each event; in 10Ex, 10

positive exemplars are provided for each event.

We uniformly sample one frame every two seconds

from video and apply object pooling on each frame. For

temporal pooling of frame-level feature, both max and

mean operator are experimented. In the 100Ex condi-

tion, we utilize 5-fold cross-validation to select the pa-

rameter of regularization coefficient C in linear SVM.

In the 10Ex condition, we set the same C as 100Ex. Av-

erage precision (AP) is used as evaluation metric.

6. Result Discussion

6. 1 Results for MED

( 1 ) Performance of object pooling

For 100Ex and 10Ex, we compare object pooling

against a baseline where concept detection is conducted
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directly on frame level (i.e., primary object). We con-

duct experiments on concept-bank feature (1,843 Con-

cepts) and latent-concept feature (i.e., 4,096 dimen-

sional fc7 relu). To generate video-level representation,

we utilize max operator as temporal pooling strategy.

As shown in Fig 4, we observe similar patterns that

object pooling outperforms baseline for most events un-

der both 100Ex and 10Ex conditions. Specifically, with

concept-bank feature, object pooling outperforms base-

line by a relative mAP improvement of 12.8% (0.250 to

0.282) under 100Ex and 24.6% (0.138 to 0.172) under

10Ex.

With latent-concept descriptors (See Figure 5), ob-

ject pooing also outperforms baseline by a relative mAP

of 15.5% (0.27 to 0.312) and 58.2% (0.122 to 0.193), in-

dicating that object pooling brings larger improvements

especially with less training data (10Ex VS 100Ex) and

has generalization ability to even latent-concept fea-

tures.

( 2 ) Impacts of Different Concept Sets
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Fig. 6 MED14 Test 100/10Ex performance compari-

sion with different concept sets (mAP)

We take subsets of the concept-bank feature under

MED14 Test 100Ex and 10Ex as examples to see the

impacts of different concept sets, and verify the robust-

ness of object pooling.

Since concept-bank is composed of three subsets:

SIN-346 (346-D), RC-497 (497-D), ImageNet-1000

(1,000-D), we compare object pooling with baseline on

each subset of concepts. As shown in Figure 6, though

different concept sets are used, we can see clearly

that object pooling significantly outperforms baseline

in most cases, indicating the robustness of object pool-

ing. Additionally, performance of object pooling consis-

tently improves with respect to the amount of concepts

used, indicating the potential of object pooling with

even larger-scale concept-bank.

EK100
mean max

Baseline OP Baseline OP
E021 0.155 0.104 0.137 0.138
E022 0.061 0.084 0.159 0.175
E023 0.452 0.563 0.413 0.555
E024 0.023 0.038 0.033 0.059
E025 0.012 0.022 0.006 0.005
E026 0.047 0.048 0.054 0.056
E027 0.076 0.065 0.066 0.069
E028 0.167 0.292 0.193 0.264
E029 0.144 0.244 0.058 0.196
E030 0.104 0.138 0.172 0.160
E031 0.611 0.670 0.729 0.740
E032 0.068 0.122 0.092 0.220
E033 0.359 0.400 0.451 0.499
E034 0.390 0.352 0.436 0.461
E035 0.380 0.405 0.358 0.396
E036 0.080 0.080 0.129 0.150
E037 0.168 0.294 0.158 0.234
E038 0.136 0.116 0.080 0.101
E039 0.329 0.399 0.177 0.309
E040 0.047 0.043 0.070 0.093
mAP 0.190 0.224 0.199 0.244

Table 2 MED14 Test 100Ex per event performance

comparision with mean/max pooling in tem-

poral domain(mAP)

EK10
mean max

Baseline OP Baseline OP
E021 0.065 0.089 0.052 0.094
E022 0.017 0.025 0.028 0.091
E023 0.156 0.088 0.052 0.097
E024 0.018 0.014 0.004 0.009
E025 0.004 0.004 0.002 0.002
E026 0.027 0.026 0.015 0.034
E027 0.053 0.071 0.049 0.072
E028 0.053 0.140 0.075 0.123
E029 0.063 0.171 0.014 0.096
E030 0.014 0.018 0.026 0.080
E031 0.447 0.520 0.358 0.499
E032 0.056 0.137 0.094 0.091
E033 0.254 0.282 0.276 0.361
E034 0.067 0.084 0.155 0.183
E035 0.278 0.377 0.250 0.340
E036 0.018 0.030 0.057 0.051
E037 0.087 0.205 0.217 0.278
E038 0.008 0.009 0.008 0.009
E039 0.083 0.159 0.077 0.140
E040 0.045 0.037 0.041 0.093
mAP 0.091 0.124 0.093 0.137

Table 3 MED14 Test 10Ex per event performance com-

parision with mean/max pooling in temporal

domain(mAP)

( 3 ) Impact of Temporal Pooling

We take ImageNet-1000 concept feature under

MED14 Test 100Ex and 10Ex as examples to see the

impacts of different temporal pooling methods (i.e.,

max/mean operator).

As is shown in Table 2, we observe that, under 100Ex,

object pooling using mean operator in temporal pool-

ing obtains better AP for 14 out 20 events bringing a

relative mAP improvements of 17.4% (0.190 to 0.223).

Similarly, max operator in object pooling obtains bet-

ter AP for 18 out of 20 events bringing a relative mAP

improvements of 23.2% (0.198 to 0.244). Similar obser-

vations can be found in Table 3 for 10Ex. To conclude,

our proposed object pooling is robust to different pool-

ing strategies, and consistently brings improvements for

most of the multimedia events compared with baseline,

indicating the effectiveness of regional objects. Addi-

tionally, compared with temporal pooling by operator

mean, operator max contributes larger improvements.

This is probably because responses of regional objects
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10Ex 100Ex
SP OP SP OP

E021 0.085 0.094 0.120 0.138
E022 0.016 0.091 0.111 0.175
E023 0.048 0.097 0.592 0.555
E024 0.006 0.009 0.016 0.059
E025 0.003 0.002 0.017 0.005
E026 0.023 0.034 0.068 0.056
E027 0.076 0.072 0.087 0.069
E028 0.089 0.123 0.225 0.264
E029 0.096 0.096 0.144 0.196
E030 0.037 0.080 0.176 0.160
E031 0.546 0.499 0.703 0.740
E032 0.149 0.091 0.117 0.220
E033 0.163 0.361 0.518 0.499
E034 0.070 0.183 0.389 0.461
E035 0.316 0.340 0.427 0.396
E036 0.027 0.051 0.063 0.150
E037 0.211 0.278 0.236 0.234
E038 0.009 0.009 0.100 0.101
E039 0.108 0.140 0.395 0.309
E040 0.033 0.093 0.056 0.093
mAP 0.106 0.137 0.228 0.244

Table 4 MED14 Test 100Ex per event performance

comparision (mAP)

are downgraded by mean pooling in the process of gen-

erating video-level representation, reducing the effects

of regional objects.

( 4 ) Object pooling and Spatial pyramid

To verify effectiveness of regional objects against

rigidly divided pyramid, we also compare performances

of object pooling against spatial pyramid (SP)3). By SP,

a frame is partitioned into a pyramid of 1× 1 and 2× 2

regions, for which each region is represented by an ob-

ject histogram. SP temporally pools the histograms by

max operator, resulting in five video-level histograms,

which are finally early fused and fed into SVM for clas-

sifier learning. As shown in Table 4, object pooling

still outperforms SP by a relative mAP improvement of

18.1% (0.108 to 0.137) for 10Ex and a relative mAP im-

provement of 7% (0.228 to 0.244) for 100Ex. Note that

our proposed method adopts a more compact feature

(2,000 dimensions) than SP (5,000 dimensions).

6. 2 Results for Evidence Localization

Given an event query, we retrieve relevant videos

from testing video set (i.e., MED14 Test) by MED sys-

tem. Then, we identify the importance of each object

by calculating its contribution to the decision function

(4). We treat the top few objects which contribute most

to decision function (4) as evidential objects. Finally,

with the help of object pooling, we can easily identify

spatial and temporal locations of evidentiall objects in

these videos. We show some of the identified evidential

objects in Figure 7.

We observe that for event “bike trick”, the eviden-

tial objects, such as “trike”, “bike”, “moped” and etc,

are all relevant objects. For most of them, our sys-

tem is able to locate objects with their spatial regions.

However, we also observe a special case: when primary

object is selected as evidences, the whole frame is rec-

ommended as evidence, which is reasonable. For other

Fig. 7 Examples of evidences located for videos of dif-

ferent events. The film strip highlights temporal

evidences, and the bounding box shows the spa-

tial position of an evidence concept. The key

concept associated with a bounding box is also

given.

events, (e.g., “dog show”, and “beekeeping”), there are

few irrelevant objects involved, such as “green table”

for event “dog show” and “loaf” for event “beekeeping”.

The reason lies in that “green table” is visually similar

to “carpet” which is evidential objects in “dog show”

and “loaf” is visually similar to “honeycomb” which is

evidential objects for “Beekeeping”. To conclude, ob-

ject pooling are able to locate evidential objects in both

temporal and spatial domain with a reasonable perfor-

mance.

7. Conclusions

We have presented object pooling for dynamic lo-

calization of spatio-temporal evidences. Experimental

findings suggest that the approach is effective for event

detection in web videos, especially when very few posi-

tive training examples are available. When applying for

event evidence localization, object pooling also demon-

strates potential in enabling a more quick and accurate

way of judging video relevancy.
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