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Unsupervised Celebrity Face Naming in Web Videos
Lei Pang and Chong-Wah Ngo

Abstract—This paper investigates the problem of celebrity face
naming in unconstrained videos with user-provided metadata.
Instead of relying on accurate face labels for supervised learning,
a rich set of relationships automatically derived from video
content and knowledge from image domain and social cues is
leveraged for unsupervised face labeling. The relationships refer
to the appearances of faces under different spatio-temporal
contexts and their visual similarities. The knowledge includes
Web images weakly tagged with celebrity names and the celebrity
social networks. The relationships and knowledge are elegantly
encoded using conditional random field (CRF) for label inference.
Two versions of face annotation are considered: within-video and
between-video face labeling. The former addresses the problem of
incomplete and noisy labels in metadata, where null assignment
of names is allowed—a problem seldom been considered in the
literature. The latter further rectifies the errors in metadata,
specifically to correct false labels and annotate faces with missing
names in the metadata of a video, by considering a group of
socially connected videos for joint label inference. Experimental
results on a large archive of Web videos show the robustness of
the proposed approach in dealing with the problems of missing
and false labels, leading to higher accuracy in face labeling than
several existing approaches but with minor degradation in speed
efficiency.

Index Terms—Celebrity face naming, social network, uncon-
strained web videos, unsupervised.

I. INTRODUCTION

L ABELING celebrities in Web videos is a challenging
problem due to large variations in face appearance.

The problem becomes increasingly important due to the mas-
sive growth of videos in Internet. According to YouTube
trends map,1 about 80% of popular videos are people-related
and among the people-related videos, about 75% are about
celebrities. To date, most search engines index these videos
with user-provided text descriptions (e.g., title, tag), which
are often noisy and incomplete. The descriptions are given
globally, and hence the correspondences between celebrity
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Fig. 1. Example of Web video illustrating the challenge of associating the
names (italic) in metadata with the detected faces (with bounding boxes) in the
video. Among the 14 faces of four celebrities (Hillary Clinton, Barack Obama,
Wolf Blitzer and John Edwards), only four faces (dotted bounding boxes)
of two celebrities (Hillary Clinton and Barack Obama) are mentioned in the
metadata. In addition, only two (Hillary Clinton and Barack Obama) out of
three celebrities who are mentioned appear in the video.

names and faces are not explicit. It is not unusual that a men-
tioned celebrity does not appear in the video, and vice versa,
a celebrity actually appearing in a video is not mentioned. For
these reasons, searching people-related videos may yield un-
satisfactory retrieval performance, either because of low recall
or low precision. Ideally, finding the direct correspondences
between names and faces could help rectify the potential errors
in text descriptions and thus serve as a preprocessing step for
video indexing. Furthermore, user search experience could be
improved if the name-face correspondence is visualized, for
example, by showing the name of a celebrity when a cursor
moves over a face [1].
The problem of celebrity naming can be traced back to name-

face association [2], where the goal is to align the observed faces
with a given set of names. In the literature, this problem has been
attempted in the domains of news videos [1], [2], movies [3] and
TV series [4], capitalizing on the rich set of time-coded infor-
mation including speech transcripts and subtitles. Nevertheless,
these approaches often assume the ideal situation where the text
cue is “rich” such that the given name set is free-of-noise and
can perfectly match the observed faces. As a consequence, di-
rectly extending these approaches to Web video domain is not
straightforward. Utilization of rich context information for face
naming is also studied in the domain of personal album collec-
tion [5]–[8], by using timestamps, geotags, personal contact lists
and social networks. Nevertheless, these approaches cannot be
directly applied for domain unrestricted videos, because of the
absence of context cues and prior knowledge such as family re-
lationships for problem formulation.
Fig. 1 illustrates the problem with a real example of Web

video. Out of the fourteen faces (of four celebrities) detected in
the video, only four of them have names mentioned in the meta-
data. Furthermore, among the three celebrities who are men-
tioned, only two of them appear in the video. In other words,

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 2. Within-video naming constructs a graph modeling the face-to-name and face-to-face relationships among the faces and names found in a video ( ). By
social network, between-video labeling expands the graph by connecting to the graphs of two other videos ( and ) that share social relations. The expanded
graph is additionally modeled with name-to-name relationship inferred from the social network.

there are missing faces and names in the video and text respec-
tively. Imposing constraints such as a face must be assigned to a
name [8] and every given name must match to at least one face
[3] apparently will result in erroneous labels. Such examples of
videos are not rare. A statistic on a dataset used in this paper
indicates that there are as high as 52% and 54% of Web videos
suffering from the missing faces and names problems respec-
tively. Additionally, a common characteristic of Web videos, as
shown in Fig. 1, is that faces appear wildly different as a result of
motion blur, lighting and resolution changes. In brief, the chal-
lenge of name-face association can be attributed to incomplete
text labels, noisy text and visual cues.
In this paper, leveraging on rich relationships rather than rich

texts [1]–[4] in Web video domain, an algorithm based on con-
ditional random field (CRF) [9], [10] is proposed to address the
problem of face naming. We consider three major kinds of rela-
tionships as follows.
• Face-to-name resemblance models how likely a face
should be assigned to a name based on external knowledge
from image domain.

• Face-to-face constraint considers factors such as back-
ground context, spatial overlap, temporal disconnectivity
and visual similarity for relating faces from different
frames and videos.

• Name-to-name relationship, or social relation, considers
the joint appearance of celebrities by leveraging social
network constructed based on the co-occurrence statistics
among celebrities.

The first two relationships are exploited for labeling faces
in a video, which we term as “within-video” face labeling.
The task is to assign the names mentioned in metadata to the
faces detected in a video, with the problem of missing faces
and names in mind such that “null assignment” of names is
allowed. The social relationship extends naming within a single

video to “between-video” naming, by performing labeling
of faces on a group of videos whose celebrities fall in the
same social network. Compared to “within-video” naming, the
relationships established among videos allow the rectification
of names incorrectly tagged and the filling in of missing names
not found in metadata.
Fig. 2 depicts two major tasks in this paper. Given a Web

video , “within-video” labeling constructs a graph with
the names and faces in the video as vertices. Based upon
the face-to-name and face-to-face relationships, edges are
established among the vertices for inference of face labels
by CRF. The inference can be affected by situations such as
there are faces whose names are not mentioned in the metadata
(e.g., Cenk Uygur), and similarly names mentioned in the
metadata but faces do not appear in the video (e.g., Barack
Obama). “Between-video” face labeling, by associating
to a social network, crawls relevant videos (i.e., and )
and forms a larger graph composing of names and faces from
multiple videos. Using social cues, additional edges modeling
name-to-name relationships are also established. As shown
in the example of Fig. 2, the expanded graph has the advan-
tages that the missing name “Cenk Uygur” (marked in yellow
rectangle) in can be propagated from and and the
corresponding faces are assigned with the name replacing
the “null” label, while the face wrongly labeled as “Hillary
Clinton” (marked in green rectangle) can be rectified with
name-to-name relationship as well as the similar faces found
in .
The main contribution of this paper is on the extension of

name-face association to domain unrestricted Web videos for
celebrity face naming. Particularly, this paper exploits three
major relationships in addressing the problems of missing
names and faces commonly happened in weakly-tagged videos,
which are issues yet to be fully explored. CRF has been



856 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

employed in the literature for various labeling tasks, but in
different contexts such as image annotation [11] and associ-
ation of faces and time-coded overlaid text [12], which are
different from this paper. We consider CRF in this paper mainly
for its power in integrating diverse sets of relationships and
off-the-shelf algorithms for label inference [13]–[15]. CRF,
nevertheless, is known to be suffered from slow inference speed
and high memory consumption, and hence is prohibited in some
applications where scalability is a concern. In this paper, we
suggest a practical way to bypass this problem by leveraging
social relation to constrain the complexity of inference.
The remaining sections are organized as following.

Section II presents the related works. Section III elaborates
the problem formulation and describes our solution based on
CRF for within-video celebrity naming, with the consideration
of the missing names and faces problem. Section IV extends
the solution to between-video celebrity naming, by leveraging
social cues to rectify the potential errors in user-provided text
descriptions. Section V presents experimental results, and
finally Section 6 concludes this paper.

II. RELATED WORK

The existing research efforts for face naming are mostly ded-
icated to the domain of Web images [16]–[18] and constrained
videos [4], [19] such as TV series, news videos and movies.
These works can be broadly categorized into three groups:
model-based, search-based and constrained clustering-based
face naming.
Model-based approaches seek to learn classifiers for face

recognition. Due to the requirement of labeled samples as
training examples for each face model, these approaches
generally do not scale with the increase number of names.
There have been numerous efforts strived for learning ef-
fective classifiers from smaller size of training samples. For
example, by using Fisher discriminant analysis the approach
in [20] wisely incorporates the labeled and unlabeled samples
into kernel learning for face annotation. In [21], partial label
information derived from the domain of broadcast videos are
exploited for face naming using multiple instance learning. In
this case, labeling a face is equivalent to judging whether a face
is anonymous or not, which significantly cut short the labeling
time. In [22], weakly-labeled images directly crawled from
Web are leveraged for learning of face models. To minimize
labeling efforts, a bootstrap learning strategy, which is named
as consistency learning in [22], is employed to automatically
filter out false samples from weakly labeled Web images for
model training. A slight deviation of model-based learning is
the so-called face verification, which determines whether a
face pair belongs to the same person identity. DeepFace [23]
is the most recent work achieving great success by using deep
learning techniques. However, the requirement of large training
samples for adequately covering visual appearance variations,
for example, 4.4 million face labels for around 4,000 persons
in DeepFace, is resourcefully expensively.
In contrast to model-based learning, search-based approaches

mine the names from the retrieved examples deemed to be
similar to the query faces. Therefore, the need for training

examples is not applicable here since no classifier will be
explicitly trained. Generally speaking, the main challenge for
this line of approaches is to conquer the problem of noisy
labels, for example, by unsupervised label refinement [24],
when no supervisory information is available. The problem
of name mining is then straightforwardly tackled by majority
voting among the top– retrieved images [24]. In [25], the
local coordinate coding (LCC) is applied to enhance the weak
labels while minimizing the impact of noisy labels during the
voting of top– images. The most recent effort by [26] posts
this problem as the measuring of the weights for votes casted by
images, through learning distance functions from multimodal
features and the optimal fusion of these functions. Specifically,
distance functions and fusion weights are offline learnt in a
query independent manner using training examples. During
retrieval, a vote from a top- retrieved image to a candidate
name is weighted based on its multimodal similarities to a
query, determined by the learnt distance metrics and their
optimal fusion weights.
The most related works to this paper are clustering-based

approaches. The underlying assumption is that faces belonging
to a person can be densely clustered and hence be exploited for
face naming. These approaches generally perform well when
there are only a few name candidates to be considered for a
face. Existing approaches include constraint Gaussian mixture
models (CGMM) [17], [18], graph-based clustering (GC) [17]
and face-name association by commute distance (FACD) [27].
Using Expectation-Maximization (EM) algorithm, CGMM
[17], [18] learns a Gaussian mixture model for each name. The
learning iterates between assigning faces to the best possible
model (E-step) and updating of model parameters (M-step).
A null category for dealing with missing names problem is
also learnt by treating all the faces as a mixture model. GC
[17] and FACD [27] adopt a different strategy by using graph
representation to model the density of faces. Started from the
candidate names given in metadata, GC first retrieves images
tagged with these names. A graph is then online constructed
with faces in these images as vertices and their similarities
as edges. The problem of name assignment is formulated
as finding the densest sub-graphs, each corresponding to a
name, from the graph. With the constraint that each face in a
picture can be assigned to at most one name and vice versa,
the problem of name assignment is shown to be equivalent
to min-cost-max-flow problem, which can be solved using
simplex algorithm. A merit of GC is that null category assign-
ment can be naturally considered in the problem and no extra
parameter is required. FACD strategically speeds up the graph
construction by offline indexing the name-face pairs into an
inverted index. Different from GC, FACD assigns names by
explicitly enumerating the steps, named as commute distance,
required to traverse from a face to a name through the random
walk algorithm. Compared to GC, an extra threshold needs to
learn in order to gate the activation of null category assignment,
when the commute distances between a face and the candidate
names are considered far. Different from the proposed work in
this paper, these approaches [16]–[18], [27] are designed for
Web images, and do not exploit inter-image correlation for a
more global way of name-face association.
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Fig. 3. Example of graph depicting the modeling of relationships for face
naming as an optimization problem. The objective function is to maximize the
probability of assigning the right names or labels (denoted as ) to faces based
upon the unary and pairwise potentials defined by various relationships.

III. RELATIONSHIP MODELING

This section begins by formulating the problem of within-
video face labeling as an optimization problem under condi-
tional random field (CRF). Multiple relationships are then de-
fined to characterize the sets of faces and names in the CRF.

A. Problem Definition and Notation
Given a video, the inputs to the problem of name-face associ-

ation are the observed (or detected) faces from the video and the
celebrity names found in metadata. Denote the celebrity names
as a set and the detected faces as a se-
quence , where and represent the
number of names and faces respectively. The problem here is
to assign at most one name to a face , such that
every face in a video is given either a name or no name (i.e.,
null assignment). The output of the problem is a label sequence,
denoted as , where each element is an
indexed variable indicating face in the sequence is assigned
with a name or “null”.
Under CRF, the face and label sequences are modeled as a

graph for name inference. The graph is undirected, denoted as
, where is the set of vertices and is

the set of edges connecting vertices. The edges are established
based upon different relationships defined between faces and
between faces and names. Fig. 3 shows an example of the graph
with 11 faces in the observed sequence. There is an index vari-
able, , encoding the label for each of the eleven faces.
Basically, the problem now is to enumerate each possible

label assignment, and then eventually select one among the as-
signments as the best solution that maximizes the probability of
assignment. With a little abuse of notations, let’s denote each of
such assignment as a vector for a vector
of observed faces . Here, we would like to

estimate the conditional probability . Following the local
Markov property in CRF, we assume that two indexed variables

are independent of each other if there is no edge (or
relationship) between them.With reference to Fig. 3 as example,
the variable is dependent on the variable , but not the vari-
able . Following the convention of CRF in naming notation
[10], we name the set of dependent labels and observations as
“factor”. For example, is a factor, and
is also a factor. To this end, the conditional probability can be
factorized into the following forms

(1)

where is the set of factors in , is a potential function, and
is a partition function served for

normalizing the probability score. We consider two kinds of po-
tentials in characterizing , namely the unary potential
and pairwise potential , which model the face-
to-name and face-to-face relationships respectively as shown in
Fig. 3. The conditional probability can thus be rewritten as

(2)

where . Furthermore, the pairwise potential is a
linear combination of three functions, each features one kind of
relationships, as follows:

(3)

Each of these feature functions models spatial ( ), tem-
poral ( ) or visual ( ) relationship, and is weighted by

respectively. In the remaining subsections,
we will further detail the unary potential (Section III-B) and
the feature functions under pairwise potential (Section III-C).
In brief, the problem of face naming can be elegantly stated

as to maximize the probability in (1). The inference of names
can be rigorously solved with off-the-shelf algorithms such as
Markov Chain Monte Carlo (MCMC) [13] or Loopy Belief
Propagation (LBP) [14], [15]. As shown in Fig. 3, the chal-
lenges of face naming originate from the large variations in
visual appearance and face resolution. Relying merely on face
similarity for naming is likely to fail in this kind of examples.

B. Unary Potential
The unary potential energy measures the likelihood of a face
being labeled with a name or “null”. To do so, we model each

name as a multivariate Gaussian distribution of faces as

(4)

where is the set of Gaussian parameters, and
represents the facial feature extracted from face . The faces
used for modeling (4) are extracted from Web images crawled
from search engines (See Section V-A2).
We model the assignment of a face to “null” category as a

problem of information uncertainty. Specifically, considering
the probability distribution of labeling a face with the names in
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, the uncertainty in labeling can be characterized by the nor-
malized entropy as

(5)

The uncertainty reaches the highest (i.e., higher entropy value)
when the probabilities are uniformly distributed. Reversely,
when the probability of assigning to a name is noticeably high
than other names, the uncertainty becomes lower. To this end,
the unary potential characterizing the edge between a face
and a label is defined as

if
if

(6)

where the probability of labeling a face as belonging to “null”
category is proportional to the uncertainty of assigning the face
to the given names. Note that (6) contributes to the conditional
probability . CRF will numerate all possible name as-
signments and eventually select the one with the highest proba-
bility as the name assignment for .

C. Pairwise Potential
The pairwise potential energy characterizes the possible rela-

tionships between two faces, as described by (3). This sub-sec-
tion defines the feature functions of each relationship in charac-
terizing the pairwise potential energy.
Spatial Relationship: Given two frames of different shots,

the spatial locations of faces, as well as their overlapping area,
give clue to the identity of face. Generally speaking, by cine-
matography practice, the position and size of a face shall not
change dramatically across shots for maintaining temporal co-
herence. Nevertheless, this clue is weak considering that any
two faces at the center of frames will overlap regardless of their
identities. A more robust way of modeling spatial relationship
is to also consider the background of the frames where faces re-
side. Specifically, when two frames sharing similar background,
the spatial relationship can be leveraged to establish edges in
for linking the labels assigned to faces.
Denote as a color histogram [28] for the background of

a frame where the face resides, the feature function for spatial
relation is defined as

(7)

The similarity between background frames is measured by
cosine similarity, i.e., . The parameter is an empirical
threshold, which will be discussed in Section V-B. Equation (7)
specifies the condition for an edge to be established between
two faces. Note that the notation is an indicator function
which means that an edge between the faces and is
established when the condition is met.
To weight the significance of the knowledge, the parameter
(3) is considered to be characterized by the positions and

sizes of faces. Denote area( ) and overlap( , ) as the size
of a face and the area of overlap with face respectively,
the proportion of face overlap is

(8)

The value for model parameter is set on-the-fly depending
on the assigned labels as follows:

if
if
if

(9)

The face overlap is utilized to boost (penalize) when the same
(different) names are assigned during label inference. For the
case of two faces assigned to null category, the knowledge of
whether they belonging to the same identity is unknown. To
model the uncertainty, max operator is used such that the assign-
ments will not be punished, regardless of their actual identities.
Temporal Relationship: The appearance of faces at different

timestamps along the temporal axis gives clue of whether the
names assigned to faces should be exclusive of each other.
Specifically, faces, which coincide in any of a frame along the
timeline of a video, should belong to different identities and
hence can be assigned different labels throughout the video.
Denote as the timestamp where a face appears, the
feature function for temporal relationship is defined as

(10)

where an edge between and is established if the condition
is fulfilled. Nevertheless, note that this relation-

ship is further controlled by the model parameter , which can
still assign a weight of zero to this relationship if both faces have
the same labels, i.e., , as following

if
if

A special case is when two faces are both assigned to “null” cat-
egory. Since this case does not imply that the two faces should
belong to the same person, the value for is set equal to 1.
Visual Relationship: Like spatial relationship, face similarity

only provides weak clue to the name identity in the Web video
domain. Generally speaking, the dissimilarity between two
faces can always be attributed to situations such as changes
in viewpoint and lighting conditions. The inference of labels
based on face dissimilarity can thus be uncertain. On the other
hand, two highly similar faces nevertheless is a necessary clue
to evidence the name identity. Based on these two facets of
perception on face similarity, the feature function for visual
relationship is modeled as

(12)

where is an empirical threshold for filtering low similar faces
from taking part in the label propagation in CRF. Cosine simi-
larity, , is used for measuring the similarity between
two faces and . The parameter characterized by facial
similarity is set as

if
if
if

(13)
Similar to (9), max operator is used when both labels are as-
signed to null category.
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D. Complexity Analysis
Algorithm 1 summarizes the major steps of within-video face

naming. The run time complexity is governed by two major
parts: graph construction (particularly step-2) and CRF label
propagation (step-3). As shown in Algorithm 1, the first two
steps involve mainly the establishment of unary and pairwise
potentials for the graph , given the sets of faces and
names in a video. For unary term, the complexity is

, where and are the number of names and faces
respectively. Since pairwise potential considers any two face
pairs, the complexity is . For the third step, we employ
Loopy Belief Propagation (LBP) [14], [15] for label propaga-
tion. For each face under investigation, the speed of LBP is dom-
inated by message passing, or more specifically, the possible
pairwise name assignments for every edge of the face. In
the worst case when the graph is fully connected, the complexity
is , assuming the inference converges
in iterations.
The required memory cost is proportional to the size of a

graph. Using adjacency matrix as the graph representation, the
space complexity is . Furthermore, each vertex and edge
are represented as a vector of size and a matrix of size
respectively, resulting in extra and
for storing vertices and edges. In practice, as the spatial and vi-
sual relationships connect only faces with high background and
visual similarities respectively, the constructed graph is gener-
ally sparse. As a consequence, the complexity in terms of speed
and space for a video is not considered high.

Algorithm 1Within-video face labeling.

Input: The sets of faces and names in a video
Output: Face labels that maximizes in (2)
1) Constructing a graph by modeling the unary

potential for each face , where an edge between
and is weighted with (6).

2) Establishing edges for any pairs of and
in that satisfy the condition in (7), (10) and (12),
with their edge weights set respectively based on
spatial (9), temporal (11) and visual (13) relationships.

3) Performing loopy belief propagation [14], [15] on
for face labeling.

IV. LEVERAGING SOCIAL CUES
Performing face naming within a video has the limitation

that only the names mentioned in the metadata will be con-
sidered. In the situation where missing names or faces exist,
probabilistic inference of labels could become arbitrary due to
lack of sufficient clues. In the extreme case, there maybe no
edges established for some faces after the evaluation of pair-
wise relationships. Under this situation, the amount of mes-
sages passing between faces will be limited, which directly im-
pacts the effect of label propagation. By extending the proposed
approach in Section III to beyond a single video, faces orig-
inally lacking channels for effective message passing should
have higher chance to be connected. To be explicit, the ad-
vantages of involving multiple videos in graph construction are
twofold. By the candidate names from third party videos, faces

originally labeled as null can be named as far as possible through
CRF optimization. Second, ambiguous labels due to informa-
tion uncertainty can be resolved with additional cues derived
from other videos.

A. Social-Driven Graph Splitting
With a video collection as input, the graph presented in

Section III-A is expanded with a vertex set including all the
observed faces and names mentioned in the collection. The ex-
pansion will result in dramatic increase of edges under the mod-
eling of unary and pairwise potentials. Specifically, unary po-
tential considers all the available names as admissible labels
for a face, while visual relationships establish links for sim-
ilar faces across videos. Note that the spatial and temporal rela-
tionships, which are only valid within a video itself, cannot be
leveraged for between-video connectivity. Due to the quadratic
complexity of CRF, the significant increase in size of a graph is
expected to affect the speed efficiency. As an example in the ex-
periment, considering a collection of 2,000 videos, processing
each video sequentially will take 27minutes in total. Jointly pro-
cessing the videos as a whole will slow down the speed by 200
times theoretically.
A vivid cue that can be exploited for reducing the size of

graph is social networks among the celebrities under consider-
ation. For example, the former president of China Jintao Hu is
not likely to be linked to any face in a video about “Britain’s
Got Talent show”. In other words, social network helps trim-
ming potentially superfluous relations, giving light of splitting
a large graph into subgraphs of each depicting a social network.
With this intuition, we first exploit the co-occurrence of celebri-
ties in mining social networks, followed by constructing one
graph per social network for CRF optimization. Fig. 4 summa-
rizes the name inference using social networks, where there are
three major steps.
Denote as a graph depicting the re-

lationship among celebrities, where is the vertex set repre-
senting names, and is the edge set linking celebrities. The
notation denotes a weight matrix of size , whose ele-
ment describes the relationship between two celebrities
and defined as

(14)

where is the set of videos tagged with celebrity , and
denotes the set cardinality. Equation (14) basically calculates
the co-occurrence statistics of celebrities as the proportion of
videos where both names are tagged. As can be seen in the
step-1 of Fig. 4, using the matrix , a social graph
is constructed. We connect each name in to five other
names with the largest weights, such that the resulting graph is
sparse and efficient to be processed. Subsequently, by Walktrap
algorithm [29], the graph is further partitioned into sub-graphs
corresponding to social networks. The algorithm is highly ef-
ficient and capable of estimating the number of communities
automatically.
Having the social networks, we distribute each video to one

or multiple networks based on the names mentioned in a video
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Fig. 4. Between-video naming: the process of constructing social networks and performing CRF on multiple smaller graphs.

(step-2 of Fig. 4). Denote as the set of celebrities in a com-
munity , and as the set of names tagged in a video . A
video is assigned to if . By doing so, each
network will be associated with a video pool , and mean-
while the community size will also be expandedwith new names
from the pool, i.e., . In other words,
is composed of celebrities not only from the network but also
all names tagged in the videos assigned to . To this end, as de-
picted in step-3 of Fig. 4, CRF only needs to separately consider
the videos and celebrities in the domain of a community for
name inferencing, which overall cuts short the running time.

B. Name-to-Name Social Relation

Recall that the joint modeling of videos as a graph has the
advantage that a name not mentioned in a video can still
be exploited for labeling faces in . Intuitively, the chance that
there is a celebrity named appearing in is proportional
to the co-occurrence of with other names mentioned in .
For example, Bill Clinton has a higher chance than George
Bush to appear in a video tagged with the name Barack Obama,
giving the fact that Clinton has closer political relationship
with Obama. With this intuition, the unary potential term in (6),
which characterizes the edge between a face and a label ,
can be augmented with social information, or name-to-name
relationship, as follows:

if
if (15)

where

(16)
and is the matrix capturing the co-occurrence statistics of
celebrities. The max operator basically picks a name
who co-occurs most with , and uses the corresponding score
in for adjusting the significance of unary potential. Basically,
the equation takes into account whether the label is actually
socially connected to any names mentioned in a video . The
probability of being is boosted, if the statistics supports such
claim. Equation (16) combines both clues from visual and social
in a linear fashion. The empirical parameter , which is set equal
to 0.5, is for trading off the importance of visual and social cues.

C. Algorithm Implementation
While running CRF separately on each community as shown

in Fig. 4 has accelerated face naming, a practical concern is the
memory cost. For a community with 13 celebrities, 279 videos
(i.e., ) and 34 candidate names (i.e., ),
the memory consumption can be as high as 5G bytes. Further-
more, for videos with celebrities who could be assigned to more
than one community, the result of labeling may not be consis-
tent across communities. For practical consideration, we thus
propose CRF to be conducted on video rather than on commu-
nity basis.
Algorithm 2 summarizes the details. The algorithm starts by

processing each video individually. Given a video , step-1
constructs a graph by establishing the face-to-name and face-
to-face relationships based on the unary and pairwise poten-
tials. Step-2 crawls videos sharing the same social networks
as . Subsequently, step-3 builds a new graph to estab-
lish edges among the involved videos based on face similarity
and name-to-name relationship. Among the crawled videos,
eventually only includes videos that establish edges with ,
which is usually a sparse and small graph in size. For example,
there are typically about 30 videos per graph in our experiments.
Performing face inference on such graph, step-4 of the algo-
rithm, will take about one second and occupy only 0.04G bytes
of memory.

Algorithm 2 Between-video face labeling.

Input: A Web video and the associated metadata
Output: Face labels
1) Construct a graph connecting faces and names in

by (4), (7), (10) and (12).
2) Crawl the videos, and their graphs, sharing the same

social networks as from the dataset.
3) By (12) and (15), a new graph is constructed by

establishing edges to connect all the graphs in steps
1 and 2.

4) Perform loopy belief propagation [14], [15] on
for face labeling.

In Algorithm 2, it is important to note that steps 1 to 3
only need to be performed once for all the videos in a dataset.
Precisely, with reference to the social networks, multiple large
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graphs can be constructed for all the videos in a dataset. When
labeling faces for a video , only videos which connect to
will be involved during face inference. Algorithm 2 can also be
directly applied for unseen or newly arrived videos. Basically,
by crawling all the videos sharing the same social networks
as an unseen video (step-2), a graph can be built (step-3)
on-the-fly by relationship modeling among these videos for
name inference (step-4).

V. EXPERIMENTS

The experiments include within-video (Section V-C) and be-
tween-video (Section V-D) face naming. The empirical studies
investigate the effectiveness of various relations proposed in
this paper, with comparison to state-of-the-art approaches. The
runtime efficiency is also detailed in Section V-E.

A. Dataset and Evaluation Metrics

Dataset: A dataset named Cele-WebV [30] is constructed
for experiments. The dataset is originated from the core dataset
of MCG-WEBV [31], composing of 14,473 Web videos up-
loaded to 15 YouTube channels during December of year 2008
to November of year 2009. To preprocess the dataset, candi-
date person names are extracted from the video metadata, by
stepwise matching of a word as well as a succession of words
against Wikipedia. A person name is verified if the category tag
for birth year is found in the matched Wikipedia pages. By fil-
tering out names that appear in less than 10 videos, finally there
are 141 celebrity names being retained for experiments. The
dataset Cele-WebV is formed by pooling together 2,583 videos
containing the 141 celebrities. A total of 41,047 frontal faces
are extracted2 from 409,900 keyframes of the dataset, including
20% of close-up faces with resolution larger than
pixels.
To facilitate the result analysis, we further split the dataset

into three subsets: Easy, Average and Hard, representing the
potential difficulty in face naming. The Easy (Hard) subset con-
tains videos with no more than 2 (more than 4) celebrity names
found in the metadata. The Average dataset includes the re-
maining videos with 3 or 4 names. Table I shows the detailed
statistics of Cele-WebV dataset. To generate ground-truth, each
face is labeled with a celebrity name found in the video meta-
data. By doing so, each celebrity has on average 136.5 faces.
However, there are only 46% (19,240 out of 41,047) of faces
being labeled with names. On average, each video has 8.56 faces
without assigning a name. On the other hand, there are 52% of
celebrity names do not associate with any faces in the videos.
The large number of faces without a name, as well as names
without corresponding faces, basically hint the challenge of this
dataset.
We also create another subset named Cele-WebV by fully la-

beling all the faces in a video regardless of whether the celebrity
names are mentioned in the metadata of the video. There are 300
videos randomly selected from Cele-WebV being included in
this subset. Different from Cele-WebV, we expand the number

2We employ the commercial software developed by ISVision for face detec-
tion. [Online]. Available: http://www.isvision.com/cn/index

TABLE I
CELE-WEBV AND ITS SUBSETS. THE SECOND COLUMN SHOWS THE NUMBER

OF VIDEOS, FOLLOWED BY THE AVERAGE NUMBER OF FACES, TAGGED
NAMES AND CELEBRITIES PER VIDEO IN THE REMAINING COLUMNS.
THE NUMBERS INSIDE PARENTHESIS INDICATE THE PERCENTAGE OF
FACES WITHOUT NAMES IN THE METADATA (3RD COLUMN) AND
THE PERCENTAGE OF NAMES WITHOUT FACES APPEARING IN

THE VIDEOS (4TH COLUMN)

of celebrities from 141 to 200 names. Out of the 2,487 faces
without names found in the metadata, 146 faces are labeled with
a name among the 200 celebrities. Finally, we create another
dataset named Cele-WebV consisting of 800 videos not in the
core dataset of MCG-WEBV. Note that there is no overlap of
videos between Cele-WebV and Cele-WebV, though both sets
of videos are originated from MCG-WEBV. As Cele-WebV ,
the 7,663 faces in the dataset are fully labeled with the names of
200 celebrities. Among 3,739 faces (48.8%) without celebrity
names in the metadata, 223 of them are labeled. Compared with
Cele-WebV, there is a higher percentage of names, on average
around 1.27 out of 2.1 names in the metadata, without any faces
found in the video.
Supporting Image Dataset and Features: A face dataset

consisting of Web images of the 200 celebrities is also con-
structed. The pictures are crawled from Google image search
engine using the celebrity names as the keywords. The top-150
pictures presented by the search engine for each celebrity are
crawled. No human intervention is involved throughout the
procedure. To reduce noises, pictures with more than one faces
are filtered out. Finally, there is a total of 19,851 images in the
dataset. The dataset is used for modeling the unary potential as
described in Section III-B. For each celebrity, a multivariate
Gaussian model is learnt, by treating the Web images of the
celebrity as positive examples. Note that the relatively small
number of Web images, around 100 per celebrity, hinders the
use of more complex model such Gaussian mixture model
(GMM).
Two features, facial feature and color histogram, are extracted

for measuring the face and background similarities respectively.
The facial feature is represented by a 1,937 dimensional vector,
describing the salient points extracted from 13 facial regions
[4]. The dimension of the facial feature is reduced to 100 by
principal component analysis (PCA). The background feature
is represented by a color histogram of 300 dimensions in RGB
space. Cosine similarity is employed as proximity measurement
for background features [28].
Performance Evaluation: Similar to [16], [17], [19], [27],

the performance is measured by accuracy and precision. Both
measures count the number of faces correctly labeled, but differ
where accuracy also includes the counting of faces without la-
bels. Denote as the set of faces correctly labeled (including
“null assignment”), and as the groundtruth labels of all the
faces in a dataset. The set , which is composed of a
subset with all the faces assigned with names and a subset
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Fig. 5. Sensitivity of the parameters (left) and (right) towards the accuracy
and precision of face naming.

with faces without assigned a name. The definitions of accuracy
and precision are

(17a)

(17b)

Note that accuracy and precision are calculated across all the
faces in a test collection, rather than averaged over videos. Re-
call is not used here because we do not consider the problem
of “retrieving all faces given a name”, rather we are dealing
with the problem of whether a face is labeled with a correct
name (precision), and otherwise labeled as “null” if the name
is missing from metadata (accuracy).
There are three datasets used in the experiments. The ex-

periments on within-video and between-video face naming
are conducted on Cele-WebV and Cele-WebV respectively.
Cele-WebV is also used for empirical parameter tuning. The
parameters of the proposed as well as compared approaches
are tuned using grid search in a brute-force manner for the
best possible performance. For more objective evaluation, the
dataset Cele-WebV is used as an independent dataset for
evaluation, where no parameter tuning is allowed.

B. Parameter Sensitivity

There are two empirical parameters, and , used in our
method for controlling the graph sparsity. These parameters
are for filtering out the faces with low facial and background
similarities, as outlined in (7) and (12) respectively. Fig. 5 shows
the sensitivity of these two parameters on Cele-WebV. Both pa-
rameters exhibit similar performance trends,where a lower value
will result in inclusion of noises, and hence lower performances
in both accuracy and precision. On the other hand, an extremely
high value will filter most of the true positive relationships. The
performances drop in this case since there are only few edges left
to be leveraged for multiple relationships modeling. Basically,
for both parameters the performances peak at certain values,
which are relatively high to filter most noises while still capable
of retaining a good number of true positives for estimation.With
a reasonable setting, the performances vary within the ranges
of 46% - 52% for precision, and 50% - 58% for accuracy. In the
remaining sections, the parameters of and are set to 0.9 and
0.85 respectively.

C. Within-Video Face Naming

We first investigate the effect of considering multiple rela-
tionships in our approach (CRF-L). Table II contrasts the per-
formances when different relationships are incorporated. On top
of the unary potential (UP) defined based upon external Web
images, each relationship basically improves the accuracy (pre-
cision) by at least 7% (5%). Visual relationship is observed to
be contributing less than other relationships mainly due to the
large variation of face appearance in Web videos, attributed to
the uncontrolled video capturing environment. By integrating
all the three relationships, an improvement of 16% (18%) is at-
tained in accuracy (precision). It is also observed that the per-
formance is inversely proportional to the number of names men-
tioned in metadata and the number of faces in a video. It is worth
noting that, when multiple relationships are leveraged, the rela-
tive improvement is indeed proportional to the number of faces
and names. Generally speaking, the large number of faces and
names increases the uncertainty of naming, but results in a graph
with more relationships to be exploited on the other hand. For
example, the appearance of multiple faces in a frame hints the
exclusive relationships when assigning the names. As shown in
Table II, the temporal relationship contributes more to the per-
formance in the Hard subset than the Average and Easy subsets.
It is worthwhile to note that the accuracy of null assignment (be-
cause of missing names) is also improved when more names are
given in the metadata. For Hard subset, the accuracy is 52.3%,
against the 47.9% and 48.5% achieved by the Average and Easy
subsets respectively. This is simply because the entropy \(5)
used for measuring the uncertainty of name-face assignment be-
comes more reliable, when more names are available for pro-
viding a more complete picture of statistics. Similar observa-
tion is also noted for the missing faces problem. Lower error
rate (31.6%) is attained in Hard subset than Average (37.2%)
and Easy (35.8%), due to the presence of more relationships to
be exploited for inference.
Next,wecompare our proposedmethodCRF-Lwithfiveother

approaches: random assignment (RA), threshold-based null as-
signment (TA), constrained Gaussian Mixture Model (CGMM)
[17], [18], graph-based clustering (GC) [17] and commute dis-
tance (FACD) [27]. RA is a baseline, which randomly associates
a face either to a name in the metadata or to null category. TA is
based on our method but considering only the unary potential,
and an empirical threshold optimally tuned for null assignment.
Note that CGMM, GC and FACD are originally designed for
name-face association in the domain of Web images. In the
experiments, similar to CRF-L, these approaches operate on the
keyframe-level and directly use the names tagged in metadata as
the candidate names for labeling. Both CGMM and GC involve
iterative optimization. In the experiment, the iteration stops as
soon as nomore than 3% of face labels are updated. The learning
process normally converges within 10 iterations. For FACD,
there are two key parameters: top- similar faces of a name to be
used for graph construction, and the threshold for null category
assignment. We tune the parameters in the range of values sug-
gested by [27], and choose , and equals to a value where
40% of faces in the dataset are assumed belonging to null cate-
gory based on commute distance. For all the three approaches,
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TABLE II
WITHIN-VIDEO CELEBRITY NAMING: EFFECT OF COMBINING MULTIPLE RELATIONSHIPS. THE IMPROVEMENTS OF CRF-L AGAINST UP IN
ACCURACY (PRECISION) IN “EASY,” “AVERAGE,” AND “HARD” ARE 12.9% (22.6%), 31.7% (24.2%), AND 38.6% (46.5%), RESPECTIVELY

TABLE III
WITHIN-VIDEO CELEBRITY NAMING: PERFORMANCE COMPARISON ACROSS DIFFERENT SUBSETS OF CELE-WEBV

note that temporal relationship is also considered and utilized
as the “cannot link” constraint for restricting the assignment of
names.
Table III lists the comparison of six different approaches. The

general trend is that all the approaches outperform the base-
lines RA and TA, and the performance gaps become wider with
the increase difficulty level of the dataset. CRF-L exhibits the
overall best performance across all the subsets. Using the unary
potential and temporal relation alone ( ) as shown in
Table II, the accuracy (0.536) is already higher than all other
compared approaches. A key observation is that facial similarity
alone is not always reliable in Web video domain, where the ap-
pearance can be wildly different even within the same video. As
a consequence, CGMM, GC and FACD, which depends heavily
on facial similarity for model learning and graph construction,
suffer from imprecise modeling. Although temporal relation is
also considered by these approaches, the fact that the relation
is utilized as a hard constraint, rather than soft constraint as in
CRF-L, also limits its power in label estimation. In short, CRF-L
enjoys the advantages that multiple relations, in addition to fa-
cial similarity, can softly interact to reach consensus, resulting in
more robust face labeling than other approaches. By integrating
multiple relationships softly, CRF-L can also effectively mini-
mize the error propagation in message passing.

D. Between-Video Face Naming
This section verifies the performance of our approach

(CRF-G), which models multiple relationships not only within
videos but also among videos. The experiment is conducted on
Cele-WebV . For CRF-G, the 200 celebrities are split into 12
communities using Walktrap algorithm [29]. The community
size ranges from as small as 15 videos with 4 celebrities to as
large as 81 videos with 28 celebrities. Depending on which
communities the tagged celebrities belong to, each video in
Cele-WebV is assigned to one or multiple communities. As
presented in Section IV-C, CRF-G builds an extended graph
for each video based on the connections of a video with other
videos in the communities. We compare CRF-G to consistency
learning (CL) [22], which label faces regardless of whether

TABLE IV
BETWEEN-VIDEO FACE NAMING. THE IMPROVEMENT OF CRF-G

AGAINST CRF-L IS SHOWN IN THE PARENTHESIS

names are tagged. CL builds a face model per name using
images crawled from Web. In the implementation, we use
the face dataset crawled from Google (see Section V-A2) as
training examples for learning 200 -nearest-neighbor ( -NN)
classifiers as the face models. Here, the value of is empir-
ically tuned to 5, which exhibits the best performance when
tested across different values of . As in [22], the bootstrapping
strategy is employed for selecting the best possible samples for
learning -NN. By doing so, there are 2,831 Web images in the
face dataset being filtered out by CL. The motivation of CL can
be viewed as similar to the unary potential energy in CRF-G,
except with a more sophisticated way of sample selection and
classifier learning.
Table IV shows the performance comparison. Recall that in

Cele-WebV , out of 2,487 faces not being tagged, there are 146
faces belonging to one of the 200 celebrities. By CRF-G, there
are 79 out of these 146 faces being correctly named. Further-
more, there are also 687 incorrectly labeled faces by CRF-L
being rectified, where among them 55 of the labels are due to
the missing faces problem. On the other hand, CRF-G does
generate false alarms, where 345 faces, correctly assigned with
“null”, are incorrectly labeled, and 51 faces, correctly named
by CRF-L, are falsely labeled. The false labels are mostly at-
tributed to facial features, which adjust the uncertainty of la-
beling (5) for “null” assignment. Overall, CRF-G outperforms
CRF-L by 4.5% and 3.6% respectively in terms of accuracy and
precision. Comparing to CL and UP, it is apparent that lever-
aging multiple relations has advantage over classifier learning.
Similar to the observation as in within-face naming, visual in-
formation alone suffers from imprecise estimation due to wildly
different appearances of faces across videos.



864 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 6, JUNE 2015

Fig. 6. Performance comparison of eight different approaches on Cele-WebV
dataset. (a) Accuracy. (b) Precision.

Fig. 7. Time cost (seconds) of various methods on Cele-WebV.

E. Performance Comparison
This section shows the experimental results on Cele-WebV ,

where no parameter tuning is allowed. Performance comparison
is conducted for a total of eight different approaches listed in
Fig. 6. As shown in the results, CRF-G shows the overall best
performances in accuracy and precision followed by CRF-L.
The performance trend is similar to that of observed on Cele-
WebV and Cele-Web* datasets. To verify that the performance
of different methods presented in Fig. 6 is not by chance, we
also conduct significance test using randomization test [32]. The
target number of iterations used in the randomization is 100,000.
At the significance level of 0.05, CRF-G significantly outper-
forms all other approaches including CRF-L. Meanwhile, the
performance of CRF-L is also significantly better than all other
six compared approaches.
Fig. 7 details the online processing time of six different ap-

proaches on Cele-WebV using a PC with 8-core 2.67GHZ cpu

and 20 GB memory. Note that the decomposition of celebri-
ties into communities (in CRF-G), model learning (in CL), and
construction of inverted index (in FACD) are all considered of-
fline and the time for these operations are not shown. For CRF,
online processing includes the time spent for graph construc-
tion and face naming. In CRF-L, the average size of a graph
is 16 vertices (faces), 19 edges (pairwise potential) and 3.1 la-
bels (candidate names and null label). Considering that a total
of 27 minutes is required for processing a video collection of
880 hours, CRF-L is fairly efficient. When introducing external
knowledge from other videos and considering celebrity relation-
ships by social networks, the average graph size is grown to 84
vertices, 113 edges and 12.3 labels. Additional 40% of time is
required for CRF-G compared to CRF-L. CGMM and GC, in
contrast to CRF-G and CRF-L which process each video indi-
vidually, consider all the videos and labels in one run, resulting
in slower speed. Among all the approaches, CL is the most ef-
ficient in terms of online processing. The efficiency, however,
is traded off by the expensive offline processing in sampling
training examples for classifier learning.

F. Discussion
This subsection further discusses the factors that could impact

the performance and practicality of CRF-G.
Impact of social relation.We examine the impact of social cue

in face naming, by comparing CRF-G to the case when social
relation is not considered. Precisely, CRF is run on a graph con-
structed using all the videos in Cele-WebV , and without social
relation to split the graph and adjust the unary potential (15). The
experimental result shows that social relation speeds up CRF-G
by 16 times, from 3,809 seconds to 241 seconds. In terms of
performance effectiveness, social relation contributes 20% and
29% of improvements for the accuracy and precision of CRF-G
respectively. The results basically indicate that running CRF-G
on multiple smaller sub-graphs will not degrade the effective-
ness, and meanwhile, significantly speed up the efficiency.
Scalability. To study the scalability of CRF-G, we further

expand Cele-WebV from 200 to 1,000 celebrities. This re-
sults in a relatively large social network, which is split into 87
communities after applyingWalktrap algorithm on the network.
The accuracy and precision attained for this expanded dataset
are 0.556 and 0.508 respectively. The results correspond to the
drops of 5.1% in accuracy and 2.5% in precision when com-
paring to running CRF-G on 200 celebrities. As CRF-G operates
on multiple smaller communities rather the whole social net-
work, the increase in the number of celebrities basically means
more number of communities to be processed, but does not nec-
essarily imply that the scale (in terms of the number of faces and
names) of each community will also expand proportionally. As
a result, the overall performance is not impacted adversely.
Variations in face appearances. Next, we investigate the ro-

bustness of CRF-G to face variations. Among the 4,564 faces
in Cele-WebV , there are 3,441 faces, or 75% of faces, being
manually picked up and regarded as suffering from changes
in pose, illumination and resolution. Fig. 8 shows some sam-
ples of clean and noisy faces. Labeling this subset of faces is
generally challenging, for example, using unary potential alone
can only attain the accuracy of 0.404 and precision of 0.260.
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Fig. 8. Samples of “noisy” (bottom) versus “clean” (top) faces, due to different
effects: (left to right) pose, illumination, resolution, make-up, occlusion, aging,
and drawing.

Fig. 9. True and false positives by CRF-G. (a) The face is strongly con-
nected to the label “Barack Obama,” and indirectly influences the labeling of
three other faces suffering from changes in face appearances. (b) Two visually
similar faces ( : Alexandra Burke, : Beyonce Knowles) result in false la-
beling of .

CRF-G is able to achieve the accuracy of 0.514 and precision of
0.404, which basically show the benefit of exploiting different
relationships for this problem. When clean and noisy faces are
linked in a graph, CRF-G possesses the capability in propa-
gating the strong beliefs from clean to relatively noisy faces,
which is the key reason leading to performance improvement.
Fig. 9(a) shows an example illustrating how noisy faces can be
correctly labeled. On the other hand, when two faces are in-
correctly linked, as an example shown in Fig. 9(b), false la-
beling is also likely to happen. Comparing to the other subset
of clean faces ( , ), the
performance drops due to face variations are 36% in accuracy
and 48% in precision. Basically, the success in labeling depends
mostly on whether the right and correct relationships are estab-
lished among the clean and noisy faces for message passing by
CRF-G.
In modeling unary potential, we employ the multivariate

Gaussian with single distribution for modeling unary potential.
Considering that Gaussian mixture model (GMM) has better
capability in capturing face variations, we also conduct addi-
tional experiment investigating the advantage of GMM. Using
the expanded Cele-WebV dataset with 1,000 celebrities for the
experiment, a total of 96,314 Web images for these celebrities
were crawled. We assume that the images of a celebrity contain
ten Gaussian components. Using GMM, the accuracy (preci-
sion) is boosted to 0.569 (0.511), corresponding to 2.9% (1.9%)
of improvement over the approach that does not employ GMM.
Nevertheless, our analysis shows that GMM helps very little
in rectifying errors due to severe face variations. We speculate
that, due to the different data distributions in image and video
domains, the effectiveness of GMM is limited tough helpful in
capturing variations peculiar to the video domain, such as the
effects of resolution and occlusion shown in Fig. 8.

Fig. 10. Tradeoff between t-precision and t-recall when thresholding the results
of CRF-G on Cele-WebV .

Practicality. The CRF-G formulation is to maximize the con-
ditional probability as in (1). In the application where it
is better not to suggest the name of a celebrity than assigning an
incorrect name, we can set a threshold to gate whether a name
should be assigned to a face given the value of . With
this intuition, we set a threshold such that a face is assigned
to a name indexed by only if . Fig. 10 shows
the tradeoff between precision and recall by thresholding on

. Note that t-precision is defined as the number of cor-
rectly labeled faces over the number of labeled faces given the
threshold set as . Similarly, t-recall measures the proportion of
faces being correctly labeled out of all the faces with labels in
the dataset. “Null asignment” is not considered here because the
assignment means not to assign a name to a face. From Fig. 10,
it can be seen that setting the threshold to the value of 0.15
can achieve a precision of 0.843, while still with a recall of
0.4. Beyond this threshold point, precision continues improving
slightly but recall tends to drop significantly.

VI. CONCLUSION AND FUTURE WORK

We have presented the modeling of multiple relationships
using CRF for celebrity naming in the Web video domain. In
view of the incomplete and noisy metadata, CRF softly en-
codes these relationships while allowing null assignments by
considering the uncertainty in labeling. Experimental results ba-
sically show that these nice properties lead to performance su-
periority over several existing approaches. The consideration of
between-video relationships also results in further performance
boost, mostly attributed to the capability of rectifying the errors
due to missing names and persons. The price of improvement,
nevertheless, also comes along with increase in processing time
and the number of false positives. Fortunately, the proposals
of leveraging social relation and joint labeling by sequential
video processing still make CRF scalable in terms of speed and
memory efficiency.
While the overall performance of the proposed approach is

encouraging, the effectiveness is still limited by facial feature
similarity, which is used in the unary energy term and pairwise
visual relationship. With the recent advancement in facial fea-
ture representations such as DeepFace [23] and face track [33],
we plan to investigate the effectiveness of incorporating these
representations into the proposed CRF framework in the near
future.
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