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Human Action Recognition in Unconstrained
Videos by Explicit Motion Modeling

Yu-Gang Jiang, Qi Dai, Wei Liu, Xiangyang Xue, and Chong-Wah Ngo

Abstract— Human action recognition in unconstrained videos
is a challenging problem with many applications. Most
state-of-the-art approaches adopted the well-known bag-of-
features representations, generated based on isolated local
patches or patch trajectories, where motion patterns, such as
object–object and object-background relationships are mostly
discarded. In this paper, we propose a simple representation
aiming at modeling these motion relationships. We adopt global
and local reference points to explicitly characterize motion
information, so that the final representation is more robust to
camera movements, which widely exist in unconstrained videos.
Our approach operates on the top of visual codewords gener-
ated on dense local patch trajectories, and therefore, does not
require foreground–background separation, which is normally
a critical and difficult step in modeling object relationships.
Through an extensive set of experimental evaluations, we show
that the proposed representation produces a very competitive
performance on several challenging benchmark data sets. Further
combining it with the standard bag-of-features or Fisher vector
representations can lead to substantial improvements.

Index Terms— Human action recognition, trajectory, motion
representation, reference points, camera motion.

I. INTRODUCTION

HUMAN action recognition has received significant
research attention in the field of image and video

analysis. Significant progress has been made in the past two
decades, particularly with the invention of local invariant
features and the bag-of-features representation framework. For
example, currently a popular and very common solution that
produces competitive accuracy on popular benchmarks is to
employ the bag-of-features representation on top of
spatial-temporal interest points (STIP) [1], [2] or the
temporal trajectories of frame-level local patches (e.g., the
dense trajectories by Wang et al. [3], [4]).
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Fig. 1. Illustration of the proposed approach. (a) A video frame of a
kissing action. (b) Local patch trajectories, with the largest trajectory cluster
shown in green. (c) Amended trajectories by using the mean motion of
the green cluster as a global reference point; See details in Section IV-A.
(d) The original patch trajectories, with a trajectory on a person’s head shown
in red (circled). (e) Amended trajectories by using the motion of the red
trajectory as a local reference point; The relative motion patterns w.r.t. the
red trajectory (as visualized in (e)) are quantized into a pairwise trajectory-
codeword representation; See details in Section IV-B. This figure is best
viewed in color.

One disadvantage of the typical bag-of-features approach
is that it ignores the motion relationships among foreground
objects or between the objects and the background scene.
Apparently such motion patterns are important for recognizing
many human actions and thus should be incorporated into a
recognition system. This is particularly necessary when the
target videos are captured under unconstrained environment
with severe camera motion, which often hinders the acquisition
of the real motion of foreground objects (e.g., consider the case
of a camera moving at the same pace with a person).

In this paper, we propose an approach to model the motion
relationships among moving objects and the background.
We adopt two kinds of reference points to explicitly char-
acterize complex motion patterns in the unconstrained videos,
in order to alleviate the effect incurred by camera movement.
Figure 1 illustrates our proposed approach. Tracking of local
frame patches is firstly performed to capture the pixel motion
of the local patches. With the trajectories, we then adopt a
simple clustering method to identify the dominant motion,
which is used as a global motion reference point to calibrate

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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the motion of each trajectory. As will be discussed later,
although the identified global motion reference may not be
accurate, it helps uncover at least some motion relationships
in the scene. In addition, to further capture the relationships
of moving objects, we treat each trajectory as a local motion
reference point, which leads to a rich representation that
encapsulates both trajectory descriptors and pairwise relation-
ships. Specifically, the trajectory relationships are encoded
by trajectory codeword pairs in the final representation.
Since each trajectory codeword represents a unique (moving)
visual pattern (e.g., a part of an object), the motion among
objects/background can be captured in this representation.
With the local reference points, the resulted representation is
naturally robust to camera motion as it only counts the relative
motion between trajectories, which is considered as the main
contribution of this work.

Although very simple in its form, our approach has the
following advantages. First, it has been widely acknowledged
that motion patterns, particularly the interaction of moving
objects, are very important for recognizing human actions
(e.g., the distance changes between two people in action
“kissing”), and the modeling of such motion interactions in
unconstrained videos is difficult due to camera motion. Using
trajectory-based pairwise relative motion is a desirable solution
to uncover the real object movements in videos. On the other
hand, we notice that there have been several works exploring
pairwise relationships of local features, where generally only
one type of relationship such as co-occurrence or proximity
was modeled, using methods like the Markov process.
In contrast, our approach explicitly integrates the descriptors of
patch trajectories as well as their relative spatial location and
motion pattern. Both the identification of the reference points
and the generation of the final representation are very easy to
implement, and very competitive action recognition accuracy
can be achieved on several challenging benchmarks. Moreover,
we also show that the proposed motion representation can be
reduced to very low dimensions for efficient classification with
no performance degradation.

The rest of this paper is organized as follows. We first
briefly discuss related works in Section II, and then intro-
duce the tracking of local patches, which is the basis of
our representation, in Section III. Section IV elaborates the
proposed approach and Section V discusses an extensive set
of experiments and results. Finally, Section VI concludes
this paper.

II. RELATED WORKS

Human action recognition has been extensively studied in
the literature, where most efforts have been devoted to the
design of good feature representations. Local features, coupled
with the bag-of-features framework, are currently the most
popular way to represent videos [2], [5]. In addition to the bag-
of-features, several alternative feature coding methods have
been proposed, such as the Fisher Vectors [6], VLAD [7]
and the super vectors [8], some of which have also been
successfully used in human action recognition.

Recent works on video representation may be divided
into the following two categories. The first category

extracts or learns spatial-temporal local features, which are
spatial-temporal volumes typically capturing representative
regions like the boundary of a moving object. Many efforts
in this category focused on the design of good local
volume detectors/descriptors [1], [9]–[13] or feature learning
algorithms [14]–[16]. A few others focused on the selection or
sampling of more effective local volumes [17], [18] or higher-
level attribute representations [19], [20]. Instead of directly
using the spatial-temporal local features in the bag-of-features
representation, the other category performs temporal tracking
of local patches and then computes features on top of the local
patch trajectories [3], [21]–[26]. In the following we mainly
focus our discussion on the trajectory-based approaches, which
are more related to this work. Readers are referred to [27]–[29]
for comprehensive surveys of action recognition techniques,
particularly those focusing on the design of recognition
models.

In [21], Uemura et al. extracted trajectories of SIFT patches
with the KLT tracker [30]. Mean-Shift based frame segmen-
tation was used to estimate dominating plane in the scene,
which was used for motion compensation. Messing et al. [22]
computed velocity histories of the KLT-based trajectories for
action recognition. The work of [26] also adopted the KLT
tracker, and proposed representations to model inter-trajectory
proximity. They used a different set of trajectories and did
not specifically focus on alleviating the negative effect of
camera motion. Wang et al. [23] modeled the motion between
KLT-based keypoint trajectories, without considering trajec-
tory locations. Spatial and temporal context of trajectories
was explored in [25], where the authors adopted an elegant
probabilistic formulation and focused on modeling context, not
directly on alleviating the negative effect of camera motion.
Raptis and Soatto [24] and Gaidon et al. [31] proposed tracklet,
which emphasizes more on the local casual structures of action
elements (short trajectories), not the pairwise motion patterns.
In [32], the authors extended [24] to a mid-level representation
by grouping trajectories based on appearance and motion
information, leading to a set of discriminative action parts,
which are essentially identified by the found trajectory clusters.
The idea of grouping trajectories is similar to our method in
the identification of the global reference points, but the way
of using the trajectory clusters is totally different. Another
work by Kliper-Gross et al. [33] proposed a representation
called motion interchange pattern to capture local motions
at every frame and image location. The authors also pro-
posed a suppression mechanism to overcome camera motion,
which—as will be shown later—offers much lower recognition
accuracies than our approach. In addition, Wang et al. [34]
performed trajectory-based modeling using Bayesian models
and Wu et al. [35] proposed to use decomposed Lagrangian
particle trajectories for action recognition. Several other
authors also explored object-level trajectories [36], [37] for
video content recognition.

A representative approach of trajectory-based motion
modeling is from Wang et al. [3], [4], [38], who generated
trajectories based on dense local patches and showed that the
dense trajectories significantly outperform KLT tracking of
sparse local features (e.g., the SIFT patches). Very promising
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results have been observed on several human action
recognition benchmarks. They found that long trajectories are
often unstable and therefore adopt short trajectories that only
last 15 frames. To cope with camera motion, they extended
Dalal’s motion boundary histogram (MBH) [39] as a very
effective trajectory-level descriptor. MBH encodes the gradi-
ents of optical flow, which are helpful for canceling constant
camera motion, but cannot capture the pairwise motion rela-
tionships. Jain et al. [40] extended the work by considering
the compensation of dominant motion in both tracking and
encoding stages, which is different as Wang’s work only
used the MBH to consider the issue in the encoding stage.
A new descriptor called Divergence-Curl-Shear (DCS) was
also proposed based on differential motion scalar features. In a
recent work of Wang and Schmid [38], feature matching across
frames was adopted to estimate a homography that helps
cancel global motion, such that the effect of camera motion can
be alleviated. This method is similar to our global reference
point based method, which may fail when moving objects
like humans dominate the scene [38]. In addition, it cannot
explicitly capture the pairwise motion relationships between
objects, which can be achieved by our local reference point
based method. Furthermore, Jung et al. [41] also clustered
trajectories for feature modeling, but did not adopt the idea of
dense trajectories, which are more effective. Piriou et al. [42]
explored a method for computing the dominant global image
motion in the scene using probabilistic models.

Our representation integrates trajectory descriptors with the
pairwise trajectory locations as well as motion patterns. It not
only differs from the previous inter-trajectory descriptors in its
design, but also generates competitive recognition accuracies
compared to the state-of-the-art approaches on challenging
benchmarks of realistic videos. This work extends upon a
previous conference publication [43] by adding new
experiments on a large dataset, more comparative analysis
with alternative methods and baselines, and extra discussions
throughout the paper. In addition, we also discuss and evaluate
a solution to successfully reduce the dimensionality of the
proposed representation, which is very important particularly
when dealing with large datasets.

III. GENERATING DENSE TRAJECTORIES

The proposed representation is generated based on local
patch trajectories. In this paper, we adopt the dense trajectory
approach by Wang et al. [3], [4] as it has been shown effective
on several benchmarks. We briefly describe the idea of dense
trajectories as follows. Notice that our approach is not limited
to this specific trajectory generation method and can be applied
on top of any local patch trajectories.

The first step is to sample local patches densely from every
frame. We follow the original paper to sample patches in
8 spatial scales with a grid step size of 5 pixels. Tracking
is then performed on the densely sampled patches by median
filtering in a dense optical flow field. Specifically, a patch
Pt = (xt , yt ) at frame number t is tracked to another patch
Pt+1 in the following frame by

Pt+1 = (xt+1, yt+1) = (xt , yt ) + (F × ω)|(x̄t ,ȳt ), (1)

where F is the kernel of median filtering, ω = (ut , vt ) denotes
the optical flow field, and (x̄t , ȳt ) is the rounded position of Pt .
To compute the dense optical flow, the algorithm of [44] is
adopted, which is publicly available from the OpenCV library.
A maximum value of trajectory length is set here to avoid a
drifting problem that often occurs when trajectories are long,
and 15 frames were found to be a suitable choice. According to
the authors, this is considered as an effective strategy to make
sure the trajectories are mostly correct. To further improve
tracking accuracy, trajectories with sudden large displacements
are removed from the final set.

After the trajectories are generated, we can compute several
descriptors to encode either the trajectory shape or the local
motion and appearance within a space-time volume around the
trajectories. In [3], the shape of a trajectory is described in a
very straightforward way by concatenating a set of displace-
ment vectors �Pt = (Pt+1 − Pt ) = (xt+1 − xt , yt+1 − yt ).
In order to make the trajectory shape (TrajShape) descriptor
invariant to scale, the shape vector is further normalized by
the overall magnitude of motion displacements:

TrajShape = (�Pt , . . . ,�Pt+L−1)
∑t+L−1

i=t ‖�Pi‖
, (2)

where L = 15 is the length (frame number) of the trajectories.
Three descriptors are used to encode the local motion

and appearance around a trajectory: Histograms of Oriented
Gradients (HoG) [45], Histograms of Optical Flow (HOF),
and the MBH. HOG captures local appearance information,
while HOF and MBH encode local motion patterns. To get
a fine-grained description of local structures, the space-time
volumes (spatial size 32×32 pixels) around the trajectories
are divided into 12 equal-sized 3D grids (spatially 2×2 grids,
and temporally 3 segments). For HOG, gradient orientations
are quantized into 8 bins, which is a standard setting used
in the literature. HOF has 9 bins in total, with one addi-
tional zero bin compared to HOG. With these parameters
the final representation has 96 dimensions for HOG and
108 dimensions for HOF. As described earlier, MBH com-
putes a histogram based on the derivatives of optical flow.
Specifically, the derivatives are computed separately on both
horizontal and vertical components. Like HOG, 8 bins are used
to quantize orientations, and as there are two motion boundary
maps from the derivatives along two directions, the MBH
descriptors have 96×2 = 192 dimensions. By using the deriv-
atives of optical flow, MBH is able to cope with global motion
and only captures local relative motion of pixels. This is quite
useful for the analysis of realistic videos “in the wild” with
severe camera motion, but the pairwise motion relationships
are not captured in MBH. The parameters for computing the
descriptors are chosen based on an empirical study conducted
in [3]. All the three descriptors have been shown effective in
human action recognition studies, particularly on benchmarks
of unconstrained videos [2], [3], [5], [40], [46].

Notice that the method was recently augmented by
Wang and Schmid in [38]. The general flow of computing
the features remains the same, except that, as aforementioned
in Section II, global motion is estimated and trajectories deter-
mined to be on the background are excluded from computing
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the representations. In the experiments, we will show results
of our approach on both the original trajectories [3] and the
new improved trajectories [38].

IV. TRAJECTORY-BASED MOTION MODELING

In this section, we introduce the proposed trajectory-based
motion modeling approach. We first elaborate a method that
utilizes global reference points to alleviate the effect of camera
motion specifically for improving the TrajShape descriptor.
After that we describe a trajectory-based motion representation
that uses each individual trajectory as a local reference point.
This representation integrates the location and motion rela-
tionships of the local patch trajectories as well as their local
appearance descriptors. Because of the use of relative motion,
it is not sensitive to camera movements. Between the two ideas
using global and local reference points respectively, the latter
representation is considered as a more important contribution.
We elaborate both of them in the following.

A. Improved Shape Descriptor With Global Reference Points

Identifying the global motion in complex unconstrained
videos is not an easy task. Typical solutions include
foreground-background separation [21] and video stabiliza-
tion [47], etc. In this paper we present a very simple solution
by clustering the motion patterns of all the found trajectories
on the scene. The dominant pattern from the largest clusters
is treated as reference points to calibrate motion, so that the
effect of global/camera motion can be alleviated. Specifically,
given a trajectory T with start position Pt on frame t , the
overall motion displacement of the trajectory is

�T = (Pt+L−1 − Pt ) = (xt+L−1 − xt , yt+L−1 − yt ). (3)

Notice that, because the length of the dense trajectories has
been restricted to only 15 frames (0.5 seconds for a 30 fps
video), most trajectories are fairly straight lines with small
angle deviations from the overall motion direction. To verify
this, we compute the angles between the moving directions of
all the segments of each trajectory and the “overall” motion
direction (between the starting and ending points) of the
trajectory. Results are visualized in Figure 2. We see that
almost all the segments are within 90 degrees and more than
half of them are within 45 degrees, indicating that the “shape”
of the trajectories is mostly very straight. Because of this
observation, we do not need to further split a trajectory and
only adopt the overall displacement to represent its motion.

The motion pattern similarity of two trajectories is
computed by S(Tu ,Tv ) = ||�Tu − �Tv ||. With this
similarity measure, we cluster trajectories starting within each
5-frame temporal window of a video, and empirically produce
five trajectory clusters per window. Note that the TrajShape
descriptor also can be used to compute similarities and gen-
erate the trajectory clusters, but we have observed that the
2D displacement vectors show similar results at a much faster
speed.

It is difficult to predict which cluster contains trajectories
on the background scene and which one refers to a moving
object. For instance, if the foreground objects are small,

Fig. 2. Distribution of the angles between the motion directions of trajectory
segments and the overall trajectory motion direction. Outer circle shows
statistics of the Hollywood2 dataset and inner circle plots that of the Olympic
Sports dataset. This figure is best viewed in color. See texts for more
explanations.

then the largest cluster may refer to the background scene.
However when the foreground objects are very large and
occupy most area of a frame, trajectories from the largest
cluster may mostly come from the objects. This problem was
also found in the recent work of Wang and Schmid [38], who
used a more complex method of feature matching to identify
the global motion. In the experiments, we empirically choose
the top-three largest clusters (out of a total of five clusters)
and compute the mean motion displacement of each cluster as
a candidate dominant motion direction. We found that this is
more reliable than using a single cluster (see evaluations of
this choice in Section V-D). Figure 3 visualizes the trajectory
clustering results on two example frames, where the top-three
clusters are shown in different color. Note that, for some spe-
cial motions like camera zooming in or out, the induced image
motion is a divergence field, and the resulting trajectories are
straight segments but of any orientations. In this rare case
using more clusters might be helpful, but three was just found
to be a reliable number in general.

Given a trajectory cluster C, let the mean motion
displacement be �C = (�x̄c,�ȳc). The displacement of a
trajectory between two nearby frames within the correspond-
ing 5-frame window is adjusted to �P ′

t = �Pt − �C/15,
where �C/15 is the determined global motion. We then update
the displacement of all the trajectories in the next 5-frame
window and further proceed until the end of the video. With
this compensation by the estimated dominant motion, the
TrajShape descriptor in Equation (2) can be adjusted to:

TrajShape′ = (�P ′
t , . . . ,�P ′

t+L−1)
∑t+L−1

i=t ‖�P ′
i ‖

, (4)

where TrajShape′ is the improved descriptor. Using the mean
motion displacements of the three largest clusters, a trajectory
has a set of three TrajShape′ descriptors, each adjusted by the
motion pattern of one cluster. The method of converting sets
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Fig. 3. Visualization of trajectory clustering results. Trajectories from the top-three largest clusters are visualized in green, light red and yellow respectively,
while the remaining ones are shown in white. (a) Two people kissing; (b) Two people getting out of a car. This figure is best viewed in color.

of TrajShape′ to measure video similarity will be described
later.

It is worth further explaining that, if the cluster corresponds
to the background, the adjustment of �C/15 represents the
canceling of the camera motion. While when the cluster
corresponds to a large moving object such as a human subject
dominating the scene, the adjustment can be explained as
estimating the relative motion of all the other components
to the subject, which can also alleviate the effect of camera
motion, simply because of the use of relative motion. In this
case, as the reference point (i.e., the mean motion of the
cluster) corresponds to a large area of the scene, it can still be
considered as a global reference point, in contrast to the local
reference points discussed in the following.

B. Motion Modeling With Local Reference Points

The global reference points can be used to alleviate the
effect of camera motion. However, the resulted representation
can hardly capture the motion relationships between moving
objects, which motivates the proposal of local reference points
in this subsection, which is considered as the main contribution
of this work.

We start from discussing the quantization of the appearance
descriptors, and will elaborate the use of local reference
points afterwards. Since the number of trajectories varies
across different videos, a common way to generate fixed-
dimensional video representation is to use the well-known
visual codewords, which are cluster centers of the trajectory
descriptors. This is the same with the classical bag-of-features
framework based on static SIFT descriptors [48]. In our
representation, we also use visual codewords as the abstract
units to encode the pairwise motion relationships. For each
type of trajectory descriptor (e.g., HOF), a codebook of
n codewords is generated by clustering the descriptors using
k-means.

We use every trajectory as a local reference point to
characterize relative motion, so that camera motion may be
canceled and the motion relationships between objects can be
encoded. Specifically, given two trajectories Tu and Tv , the
relative motion (with Tv as the local reference point) can be

computed by

M(Tu,Tv ) = �Tu − �Tv , (5)

where �T can be computed by Equation 3. Note that for
most cases it is not needed to use the dominant motion �C
to further cancel global motion here, since the relative motion
is already robust to camera movement. However, for some
special types of camera movements like zoom in or out,
or when the objects are with different depth in the scene,
computing relative motion in the above form is not sufficient
to fully cancel camera motion, and therefore using the global
reference points is still helpful. We will show in the experi-
ments that the improved trajectory shape descriptor TrajShape′
is complementary to this pairwise motion representation and
can be combined to achieve higher recognition accuracies.

Figure 4 visualizes the generation of the motion feature
representation with local reference points, named as TrajMF.
The relative motion M(Tu,Tv ) of two trajectories is quantized
in a way that incorporates very rich information, including
trajectory neighborhood appearance descriptors, motion direc-
tion and magnitude, as well as the relative location of the
two trajectories. The neighborhood appearance information is
encoded in TrajMF because this representation is constructed
based on the trajectory codewords, which are generated using
the appearance descriptors like HOG. In the final representa-
tion as shown in the middle of Figure 4, we only consider
the overall relative motion between codeword pairs, so that
the dimension of TrajMF is fixed. All the pairwise trajectory
motion patterns are mapped/accumulated to their correspond-
ing codeword pairs. In other words, given a pair of trajec-
tories, we first find their corresponding codeword pair, and
then add the quantized motion vector (explained in the next
paragraph) to that particular entry. Because a visual codeword
may represent a (moving) local pattern of an object or a
part of the background scene, the final TrajMF representation
implicitly encodes object-object or object-background motion
relationships.

The motion pattern between two trajectories is quantized
into a compact vector, according to both the relative motion
direction and the relative location of the trajectory pair.
Formally speaking, let Q(·) be the quantization function
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Fig. 4. An illustration of the trajectory-based motion feature representation, named as TrajMF. The motion of two trajectories in (a) is converted to relative
motion (Tu relative to Tv in this example) in (b), which is then mapped to an entry of a codeword-based matrix representation (c), by quantizing the local
descriptors of the two trajectories. The motion pattern between each codeword pair, i.e., an entry in (c), is described by a 16-d vector, based on the relative
motion direction and relative location of all the trajectory pairs falling into that entry. The quantization maps for generating the 16-d vector are shown in (d).
The resulted representation is a vector that concatenates all the values in (c), which is in very high dimension but can be mapped into a compact space using
dimension reduction techniques. See texts for more explanations.

according to motion direction and relative location (see the
quantization maps in Figure 4(c)), which outputs a quantiza-
tion vector with all zeros except the bit that an input trajectory
pair should be assigned to. The motion vector of a codeword
pair (wp, wq ) is then defined as the summation of the motion
vectors of all the trajectory pairs that fall into the codeword
pair:

f(wp, wq )

=
∑

∀(Tu ,Tv )→(wp,wq )

Q(M(Tu ,Tv ),L(Tu,Tv )) · ||M(Tu,Tv )||,

(6)

where “→” denotes the trajectory-to-codeword mapping,
||M(Tu,Tv )|| is the magnitude of the relative motion, and

L(Tu ,Tv ) = (P̄Tu − P̄Tv ) = (x̄Tu − x̄Tv , ȳTu − ȳTv )

indicates the relative location of the mean positions of two
trajectories. In the experiments we use four bins to quantize
both the motion direction and the relative location direction,
and therefore f is 16-d. Evaluations of these parameters can
be found in a later Section V. Concatenating f of all the
codeword pairs, the final TrajMF representation has n×n

2 ×
4 × 4 dimensions (n is the number of codewords), which
is obviously very high. We discuss techniques to reduce the
dimensions of TrajMF in the following subsection.

C. Dimension Reduction of TrajMF

The goal of dimension reduction is to improve the efficiency
of recognition and reduce the usage of memory. We experi-
mented with several dimension reduction methods to reduce
the dimension of TrajMF. The first method came into our mind
was to use data mining techniques [49], [50] for feature selec-
tion, which choose a subset of the entries in the TrajMF based
on an estimation of discriminativeness in recognition. Another
work we considered is [51], where the authors proposed
product quantization to map high-dimensional inputs into low
compact spaces. However, as will be shown in the experiments,
our results indicate that both options are ineffective and the
performance is always degraded.

We therefore decided to reduce the feature dimension with
the simple principal components analysis (PCA). Naive PCA
cannot be deployed in our case due to the high computational
needs arised from the high dimensionality of the original
features. We therefore adopt the EM-PCA approach proposed
by Roweis [52], which was designed to be suitable for
high dimensional data and large collections. We briefly
introduce it below.

Consider a linear model that assumes an observed data
sample y ∈ Rp is generated by

y = C x + v, (7)

where the k-dimensional latent variables x ∈ Rk follow the
unit normal distribution with zero mean (p ≥ k). C ∈ Rp×k

is the transformation matrix, and v is the noise vector.
We can view PCA as a limiting case when the noise

covariance becomes infinitely small. So the model can be
rewritten as Y = C X where Y is a matrix of the observed data
and X is a matrix of the latent variables. The first k principal
components can then be learned through the following
EM algorithm [52]:

e − step : X = (CT C)−1CT Y

m − step : Cnew = Y XT (X XT )−1

It is an iterative process and the required storage space is
O(kp) + O(k2), which is much smaller than the naive PCA
solution.

D. Classification

The proposed representations can be used to convert videos
to feature vectors, which are then used for action model learn-
ing and prediction. In this subsection we briefly discuss classi-
fier choices for both the augmented trajectory shape descriptor
and the TrajMF representation. For TrajShape′, we adopt the
standard bag-of-features approach to convert a set of descrip-
tors into a fixed-dimensional vector. Following [2] and [3],
we construct a codebook of 4,000 codewords using k-means.
All the three TrajShape′ descriptors of every trajectory
are quantized together into a single 4,000-d histogram for
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Fig. 5. Example frames of a few action classes in Hollywood2 (first row), Olympic Sports (second row), HMDB51 (third row) and UCF101 (bottom row)
datasets. Videos in all the datasets were mostly captured under unconstrained environments with camera motion.

each video, which is used as the final representation. This
is classified by the popular χ2 kernel Support Vector
Machines (SVM) due to its consistently good performance on
histogram-like representations.

The TrajMF can be computed on top of any basic trajectory
descriptors. We adopt all the three descriptors used in [3]:
HOG, HOF, and MBH. For each type of trajectory descriptor, a
separate TrajMF representation is computed. We evaluate both
the original TrajMF and its dimension reduced version. As the
dimension of the original TrajMF is very high, non-linear
classifiers such as the χ2 SVM are unsuitable due to speed
limitation, and thus more efficient alternatives like the linear
SVM are preferred. We will evaluate these popular kernel
options in the experiments.

V. EXPERIMENTS

A. Datasets and Evaluation

We conduct extensive experiments using four challenging
datasets of realistic videos: Hollywood2 dataset [53], Stanford
Olympic Sports dataset [54], HMDB51 dataset [47], and
UCF101 dataset [55]. Many videos in these datasets contain
camera motion and their contents are very diverse. Figure 5
gives some example frames from each of the datasets.

The first dataset is the widely adopted Hollywood2 [53],
which contains 1,707 video clips collected from 69 Hollywood
movies. The dataset is divided into a training set of 823 sam-
ples and a test set of 884 samples. 12 action classes are
defined and annotated in this dataset, including answering
phone, driving car, eating, fighting, getting out of car, hand
shaking, hugging, kissing, running, sitting down, sitting up,
and standing up. Each class is learned by a one-versus-all SVM
classifier. Recognition performance is measured by average

precision (AP) for a single class and mean AP (mAP) for the
overall performance of all the classes.

The Olympic Sports dataset [54] has 783 clips and 16 action
classes. So on average there are around 50 clips per class.
The classes are high jump, long jump, triple jump, pole vault,
gymnastics vault, shot put, snatch, clean jerk, javelin throw,
hammer throw, discus throw, diving platform, diving spring-
board, basketball layup, bowling, and tennis serve. We adopt
the provided train/test split by Niebles et al. [54], and use
one-versus-all SVM for classification. Like Hollywood2,
mAP is used as the performance measure.

The HMDB51 dataset was recently collected by
Kuehne et al. [47], containing 6,766 video clips in total. There
are 51 action classes, each with at least 101 positive samples.
The action names can be found in Figure 6. We adopt the
official setting of [47] to use three train/test splits and also
the one-versus-all classifiers. Each split has 70 training and
30 test clips for each action class. Also following [47],
we report mean classification accuracy over the three splits.

The last dataset is the UCF101 [55], which was collected
by Soomro et al. and is currently the largest publicly available
dataset for action recognition. The dataset has 101 action
classes and 13320 video clips in total. Each category is
grouped into 25 groups, with each group containing
4-7 videos. We adopt one-versus-all SVMs and the leave-
one-group-out strategy, i.e., each time 24 groups are used for
training and 1 for testing. We report the mean classification
accuracy over the 25 train/test splits.

B. Results and Discussion
First, we report the performance of the proposed

representations. We set the number of codewords n to 300,
and use 4 bins to quantize both the motion direction and
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Fig. 6. Confusion matrices of the fusion results (“All combined”) on the Hollywood2 (upper right), Olympic Sports (lower right) and HMDB51 (left) datasets.

TABLE I

PERFORMANCE OF BASELINES, OUR REPRESENTATIONS, AND THEIR COMBINED FUSION ON HOLLYWOOD2, OLYMPIC SPORTS, HMDB51 AND

UCF101 DATASETS, USING THE ORIGINAL DENSE TRAJECTORIES [3]. THE “4 COMBINED” BASELINE RESULTS (USING FOUR FEATURES

TRAJSHAPE, HOG, HOF AND MBH) ARE COMPUTED BASED ON THE STANDARD BAG-OF-FEATURES. “OUR 4 COMBINED” INDICATES

THE FUSION RESULTS OF THE TRAJSHAPE′ AND THE THREE TRAJMF REPRESENTATIONS. “ALL COMBINED” INDICATES RESULTS

FROM THE FUSION OF OUR REPRESENTATIONS AND THE BASELINE. NOTE THAT BETTER RESULTS ARE REPORTED

THAN THE CONFERENCE VERSION [43] ON HMDB51 BECAUSE ONE-VS.-ALL SVM (NOT MULTI-CLASS SVM) IS

ADOPTED FOLLOWING THE LITERATURES USING THIS BENCHMARK. FUSION IS DONE BY

SIMPLY AVERAGING THE PREDICTIONS OF SEPARATE CLASSIFIERS

the relative location, as depicted in Figure 4. The linear
kernel SVM is adopted to classify the three original TrajMF
representations before dimension reduction (each based on a
different trajectory descriptor) and the χ2 kernel SVM is used
for the other representations. Later on we will evaluate the
dimension reduced TrajMF, kernel choices, and also several
key parameters.

Table I gives the results on the four datasets, using the
original dense trajectory features [3]. In addition to discussing
our proposed representations, we also present the results of the

bag-of-features baselines using the same set of dense trajectory
descriptors. Following the work of Wang et al. [3], in the
bag-of-features representation, we use a codebook of
4000 words for each type of the trajectory descriptor. We use
the source codes released by the authors to generate the
dense trajectories and compute the basic descriptors, while the
bag-of-features representation is based on our own implemen-
tation. As shown in the table, the amended trajectory shape
descriptor TrajShape′ outperforms the original TrajShape,
which validates the effectiveness of using the simple
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TABLE II

PERFORMANCE OF BASELINES, OUR REPRESENTATIONS, AND THEIR COMBINED FUSION ON HOLLYWOOD2, OLYMPIC SPORTS, HMDB51 AND

UCF101 DATASETS, USING THE IMPROVED DENSE TRAJECTORIES [38]. THE “4 COMBINED” BASELINE RESULTS ARE COMPUTED

BASED ON THE FISHER VECTOR CODING. “OUR 4 COMBINED” INDICATES THE FUSION RESULTS OF THE TRAJSHAPE′ AND

THE THREE TRAJMF REPRESENTATIONS. “ALL COMBINED” INDICATES RESULTS FROM THE FUSION OF OUR

REPRESENTATIONS AND THE BASELINE. FUSION IS DONE BY SIMPLY AVERAGING

THE PREDICTIONS OF SEPARATE CLASSIFIERS

TABLE III

PERFORMANCE OF THE DIMENSION REDUCED FEATURES ON HOLLYWOOD2, OLYMPIC SPORTS, HMDB51 AND UCF101 DATASETS, USING BOTH THE

ORIGINAL AND THE IMPROVED DENSE TRAJECTORIES. OVERALL THE RESULTS ARE VERY CLOSE TO THAT OF THE HIGH DIMENSIONAL FEATURES

clustering-based method to cancel global motion. On the
large UCF101 dataset, the performance is boosted from
57.1% to 59.0%, which is very encouraging considering
simplicity of our method and the complexity of the dataset.
In contrast, recently Jain et al. [40] proposed ω-Trajdesc
descriptor based on a different motion compensation method
and achieved 51.4% on Hollywood2 and 32.9% on HMDB51,
which are slightly higher to ours.

For the TrajMF representation, we also observe very promis-
ing performance. Combining our TrajShape′ and TrajMF rep-
resentations (“Our 4 combined”) generates better results than
the “4 combined” baseline of [3] on the Olympic Sports and
UCF101 datasets. On Hollywood2 and HMDB51 the perfor-
mance is similar or slightly lower than the bag-of-features
baseline. We underline that the TrajMF representation is not
a direct replacement of the baseline bag-of-features. In fact
they are complementary because they emphasize on different
aspects of the visual contents. More specifically, TrajMF
encodes in particular the motion relationship information and
the bag-of-features captures visual appearances. As shown
in the table, further combining our representations with the
baseline (“All combined”) gives substantial improvements on
all the four datasets. This confirms the fact that the TrajMF
representations are very complementary to the standard
bag-of-features, and should be used together for improved
action recognition performance. Note that in Table I, the
results on HMDB51 are based on one-vs.-all SVMs following
existing works, which are found to be better than that reported
in the previous conference paper [43], where multi-class SVMs
were used. This is probably due to the fact that popular multi-
class SVMs use a top-down hierarchical classification scheme,
which is less optimal compared with the binary one-vs.-all
SVMs that train an optimal separation plane solely for each
class.

We also evaluate our approach on the improved dense
trajectories [38]. Results are summarized in Table II. The
improved version uses feature matching to estimate camera
motion, so that the effect from global camera movement can
be alleviated. This is similar to our goal of using the motion
reference points, but our TrajMF has an additional capability
of modeling the motion relationships as discussed earlier.
As shown in the table, it is interesting to observe that the
TrajShape′ still outperforms the baseline with clear margin.
This is probably because we use three global reference points
instead of one as [38], which also confirms the fact that global
camera motion is very difficult to be estimated accurately. The
combination of our TrajMF representations with the baseline
offers similar performance gains to that on the original dense
trajectories, leading to very competitive results on all the four
evaluated datasets (row “All combined”). This again verifies
the effectiveness of our proposed representations. Note that
in this experiment, the well-known Fisher vector coding is
adopted for the baseline, which is significantly better than the
bag-of-features [38].

Next we evaluate the performance of the dimension reduced
TrajMF using EM-PCA. For the Hollywood2, HMDB51 and
UCF101, the dimensionality is reduced to 1,500, while for the
Olympic Sports, we use 500 because there are only 783 videos
in this dataset. We will evaluate the effect of dimensionality
later. Linear kernel SVM is also adopted in this experiment.
Table III summarizes the results. Compared with the results
in Table I and Table II, we can see that the performance
remains almost the same after dimension reduction. For the
“4 combined” results, we even observe better performance in
several cases, which is probably because the PCA process
is able to remove noises from the original features. These
results confirm that EM-PCA is suitable for compressing the
TrajMF features. Although very simple, we consider this as an



3790 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2015

TABLE IV

PERFORMANCE OF SEVERAL KERNEL OPTIONS FOR THE TRAJMF REPRESENTATION, USING THE ORIGINAL DENSE TRAJECTORIES. “OUR

4 COMBINED” DENOTES THE COMBINATION OF THE 4 REPRESENTATIONS DERIVED FROM USING THE MOTION REFERENCE POINTS,

AND “ALL COMBINED” IS THE COMBINATION OF OUR 4 REPRESENTATIONS AND THE BASELINE BAG-OF-FEATURES

TABLE V

PERFORMANCE OF VARIOUS DIMENSION REDUCTION METHODS ON HOLLYWOOD2, OLYMPIC SPORTS, HMDB51 AND UCF101 DATASETS. FOR BOTH

MUTUAL INFORMATION AND PRODUCT QUANTIZATION, THE TRAJMF FEATURES ARE REDUCED TO 2,000 DIMENSIONS

important ingredient of the approach as the original TrajMF
features are in high dimensions which may prevent its use
in some applications. Figure 6 further shows the confusion
matrices of the fusion results on Hollywood2, Olympic Sports
and HMDB51. Errors mostly occur between classes that are
visually similar, like “drink” and “eat” in HMDB51, and
“HugPerson” and “Kiss” in Hollywood2.

We also report the performance of several popular classifier
kernels, in order to identify the most suitable kernel for the
proposed TrajMF representation. We only discuss results on
the original dense trajectories in this experiment, as the obser-
vations from the improved trajectories are mostly the same.
Specifically, we evaluate χ2, HI (Histogram Intersection) and
Linear kernel SVMs for the original TrajMF representations,
and the χ2 kernel is replaced by RBF kernel for the dimension
reduced TrajMF representation that has negative values, on
which the χ2 kernel is not applicable. The HI kernel is
also dropped for the dimension reduced TrajMF since it is
no longer a histogram. Instead of reporting the performance
of each single TrajMF classified by different kernels, we
report the fusion performance due to space limitation. Fusion
performance is also more important as we care more on the
best possible results that can be attained on these challenging
datasets. Table IV shows the results. Across all the fusion
results, we use fixed kernel options for the baseline bag-of-
features representation and the trajectory shape descriptors,
and deploy different kernels on the TrajMF. We see that
the performance of these kernels does not differ significantly
under all the settings. More interestingly, the linear kernel
is observed to be very robust for both the original and the
dimension reduced TrajMF representations, offering similar or
better results than the nonlinear kernels on all the datasets.

This is very appealing as the linear kernel is much more
efficient.

C. Comparative Studies

In this subsection, we first compare our results with alter-
native solutions for dimension reduction and for alleviating
the effect of camera motion, followed by a comparison with
recent state-of-the-art results.

We first compare results of a few dimension reduction
methods. For this, we consider two alternative methods as
discussed in Section IV-C. One is using mutual information
to select a subset of discriminative dimensions, and the other
method is Product Quantization [51], which decomposes the
input space into a Cartesian product of low dimensional
subspaces that can be quantized separately, where the num-
ber of the subspaces is equal to the number of the target
dimensions. In our implementation, we use 8 binary values
to quantize each subspace which is converted to an integer
between 0 and 255 in the dimension-reduced representation.
We fix the final dimension of both methods to 2,000, which
is higher than 1,500 from the EM-PCA as we found 2,000 is
a better number for both the compared methods.

Results are summarized in Table V, where we show both
our results of “Our 4 combined” and the “All combined”
which further includes fusion with the Fisher Vector baseline
on the improved trajectories. We see that for all the datasets
EM-PCA is clearly better. This is probably because PCA can
preserve most valuable information from the original feature,
while Mutual Information incurs significant information loss
by selecting only a small fraction of the dimensions. Product
Quantization is better than Mutual Information but its way
of quantizing the features into binary vectors also loses
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TABLE VI

SPEED AND MEMORY COST BEFORE AND AFTER DIMENSION

REDUCTION, ON THE HOLLYWOOD2 DATASET USING THE

TRAJMF-HOG FEATURE. DIMENSION REDUCTION HELPS

REDUCE BOTH COST SIGNIFICANTLY. THE TRAINING

PROCESS OF THE EM-PCA COSTS 885S, AND

REDUCING THE DIMENSION OF ONE FEATURE

ONLY REQUIRES 0.035S. SPEED IS MEASURED

AS THE SINGLE THREAD RUNNING TIME ON

A REGULAR MACHINE WITH INTEL CORE i7

4770 3.4GHz CPU AND 32 GB RAM

TABLE VII

COMPARISON WITH A VIDEO STABILIZATION-BASED APPROACH, USING

THE HOLLYWOOD2 DATASET AND THE ORIGINAL DENSE TRAJECTORIES.

OUR APPROACH GENERATES SIMILAR PERFORMANCE TO THE

DENSE TRAJECTORY BASELINE ON STABILIZED VIDEOS,

BUT IS MORE EFFICIENT

more information. Table VI further compares the speed and
memory cost before and after using dimension reduction,
where we can clearly see the advantages of reducing the
feature dimensions.

To alleviate the effect of camera motion, we consider
an expensive yet very powerful stabilization-based method.
We experiment with the HMDB51 dataset, which has a stabi-
lized version obtained by applying a standard image stitching
method [47], [56], where camera motion is basically fully
canceled. We re-run the dense trajectory baseline on the sta-
bilized HMDB51 dataset. The results are shown in Table VII.
We see that our method gives very close performance to
the new baseline on stabilized videos, which are extremely
expensive to be generated using the method of [56]. This is
very encouraging and clearly proves the effectiveness of our
method in dealing with camera motion.

In Table VIII, we further compare our results with several
state-of-the-art approaches. On Hollywood2, we obtain 2.4%
gain over [38] (w/o Human Detection, HD), which used Fisher
vectors on the improved dense trajectories. This performance
gain is nontrivial considering that our result is based on the
same set of trajectories and [38] already has a function of
canceling global motion based on homography estimation.
In other words, the only added information comes through
the modeling of relative motion relationships in the TrajMF
representation. Compared to [38] using human detection
(i.e., w/HD) to compensate camera motion, our result is still
1.1% higher, which is very encouraging as the HD process is
very expensive. Compared with a recent hierarchical spatio-
temporal feature learning approach [15], a significant gain of
12.1% is achieved. The approach of Jain et al. [40] considered

motion compensation in both tracking and feature encoding
stages, which is very interesting. A very high-dimensional
descriptor called VLAD was included in their best result,
where more features were also used. However, it is still around
3% lower than ours.

On Olympic Sports, we attain better results than most
of the compared approaches, including an attribute-based
action learning method [19], a graph-based action modeling
approach [61], a new sparse coding-based representation [62],
a method modeling the dynamics of action attributes over
time [64], the approach of Jain et al. [40], and a mid-level
representation called motion atom and phrase [65]. Compared
with [38], we achieve better result than the without HD
approach and similar performance to the HD based approach.
Our best performance on HMDB51 is much higher than the
baseline result reported [47], where a biologically inspired
system of Serre et al. [68] was used. Our approach is also much
better than recent approaches like the Action Bank [20], the
Motion Interchange Pattern [33], and the new sparse coding-
based representation [62]. Compared with a recent work on
the sampling of local features [18], a new VLAD encoding
approach [60], and the approach of Jain et al. [40], we also
achieve better performance. For the approach of
Narayan and Ramakrishnan [66], the authors used the
Granger causality to model the temporal cause and effect
relationships of dense trajectories for action recognition. The
result of 58.7% reported in the table is from the fusion of
their causality descriptor and the improved dense trajectory
baseline. Compared with [38], like the observations on the
Olympic Sports, we obtain better performance than the
without HD approach and similar result to that of the HD
based approach. In addition, a recent work by Peng et al. [67]
used a new Fisher vector encoding method and achieved
very strong results. As their method focuses on a very
different aspect of the problem, our method is expected to be
complementary.

Since the UCF101 is relatively a new benchmark, there are
not many published results. The original baseline [55] is based
on the simple and standard HOG/HOF descriptors, which is
much worse than our approach. Compared with recent works
on fusing multiple super vectors [58] and improved VLAD
encoding [60], we also achieve better result with clear margins.
Our result is also better than the without HD performance of
Wang and Schmid [38], which was reported in the THUMOS
action recognition challenge as the best result [57]. This
again verifies the effectiveness of our approach by explicitly
modeling the motion relationships, even when the global
motion calibration was already used in the improved dense
trajectory baseline [38]. Notice that the baseline result of [55]
was produced by a multi-class SVM, which we found is
generally around 10% lower than using multiple one-vs-all
SVMs. All the other results reported in the table are based on
the latter.

D. Evaluation of Parameters

In this subsection, we evaluate a few important parameters
including the number of clusters in TrajShape′, and the size
of the visual codebook, the number of quantization bins
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TABLE VIII

COMPARISON WITH THE STATE-OF-THE-ART METHODS. OUR RESULTS ARE GIVEN IN THE BOTTOM ROW. THE PERFORMANCE OF LAPTEV et al.

ON THE OLYMPIC SPORTS DATASET IS OBTAINED FROM [54], AND THE PERFORMANCE OF WANG AND SCHMID [38] ON THE UCF101

IS REPORTED IN THE THUMOS ACTION RECOGNITION CHALLENGE 2013 [57]

Fig. 7. Performance of TrajShape′ on Hollywood2 (a) and Olympic Sports
(b) using different total numbers of clusters and different numbers of selected
clusters for motion compensation.

(for both motion direction and relative location) and the
number of dimensions used in the dimension reduced TrajMF.
Results of the TrajMF representations are based on the original
dense trajectories, which are overall a bit lower than that of the
improved trajectories. For most experiments, we report perfor-
mance on both Hollywood2 and Olympic Sports datasets. For
the number of dimensions of TrajMF, we use Hollywood2 and
UCF101, as Olympic Sports has too few videos to evaluate a
wide range of feature dimensions.

1) Number of Clusters: We first evaluate the performance
of TrajShape′ on Hollywood2 and Olympic Sports datasets,
using different numbers of clusters and different numbers of
selected clusters for motion compensation. Results are shown
in Figure 7, where we see that it is consistently good to group
all the trajectories into five clusters and then use the top-three
largest clusters as references to adjust the trajectories. Using
more clusters may bring noise into the representation as the
“small” clusters are not always meaningful, and thus the results
of selecting four clusters are generally worse than that of three.

2) Number of Codewords: Figure 8(a) shows the results
w.r.t. visual codebook size. We use 4 quantization bins for

Fig. 8. Evaluation of TrajMF parameters on Hollywood2 and Olympic
Sports datasets, using only the TrajMF-HOG feature. (a) Codebook size.
(b) Number of motion direction quantization bins. (c) Number of relative
location quantization bins.

both motion direction and relative location. We see that the
performance on both datasets is fairly stable over various
codebook sizes. Using a codebook of 600 codewords, we
obtain 41.2% on Hollywood2 and 68.9% on Olympic Sports.
Since the dimension of TrajMF is quadratic to the number of
codewords, the minor gain over smaller codebooks does not
justify the use of a much higher dimensional representation.
Even using dimension reduction, if the original dimension is
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Fig. 9. Evaluation of TrajMF dimensionality on Hollywood2 and UCF101
datasets. (a) TrajMF-HOG feature only. (b) Combination of multiple features.

too high, the reduction process requires more computational
workload. Therefore we conclude that a codebook of
200-300 codewords is preferred for TrajMF.

3) Number of Quantization Bins: Figure 8(b) and 8(c) plot
the results w.r.t. the number of quantization bins, respectively
for motion direction and relative location. We use
300 codewords and fix the number of relative location
quantization bins at 4 for (b) and motion direction quantization
bins at 2 for (c). 4 bins are consistently better than 2 bins
on both datasets. Further using more bins can improve the
results slightly.

4) Number of Dimensions: In Figure 9 we further show the
results of different dimensionality ranging from 100 to 1500,
on the Hollywood2 and UCF101 datasets. We show results of
both individual feature (TrajMF-HOG) and the combination of
multiple features. We see that the performance of the single
feature drops with less dimensions. However, for the fusion
result, there is no performance degradation at all when the
reduced dimension is as low as 500. These results confirmed
that dimension reduction can be reliably used on TrajMF with
no performance drop.

VI. CONCLUSION

We have introduced an approach for human action
recognition in unconstrained videos, where extensive cam-
era motion exists, which affects the performance of many
existing features. Our proposed solution explicitly models
motion information in videos. Two kinds of motion reference
points are considered to alleviate the effect of camera move-
ment and also take object relationships into account in action
representation. The object relationships are encoded by the
relative motion patterns among pairwise trajectory codewords,
so that accurate object boundary detection or foreground-
background separation is avoided. Extensive experiments on
four challenging action recognition benchmarks (Hollywood2,
Olympic Sports, HMDB51 and UCF101) have shown that the
proposed approach offers very competitive results. This single
approach already outperforms several state-of-the-art methods.
We also observed that it is very complementary to the standard
bag-of-features and Fisher vectors. In addition, we have shown

that the dimension of our proposed TrajMF can be reduced
by simple EM-PCA with no performance degradation.
Overall, we believe that approaches explicitly modeling
motion information are needed in a robust human action recog-
nition system, particularly when dealing with unconstrained
videos such as those on the Internet. One promising future
work is to further explore higher order relationships instead
of just pairwise motion patterns, which may be very helpful
for recognizing highly complex actions.
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