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Deep Multimodal Learning for Affective
Analysis and Retrieval

Lei Pang, Shiai Zhu, and Chong-Wah Ngo

Abstract—Social media has been a convenient platform for
voicing opinions through posting messages, ranging from tweeting
a short text to uploading a media file, or any combination of
messages. Understanding the perceived emotions inherently
underlying these user-generated contents (UGC) could bring
light to emerging applications such as advertising and media
analytics. Existing research efforts on affective computation are
mostly dedicated to single media, either text captions or visual
content. Few attempts for combined analysis of multiple media
are made, despite that emotion can be viewed as an expression of
multimodal experience. In this paper, we explore the learning of
highly non-linear relationships that exist among low-level features
across different modalities for emotion prediction. Using the deep
Bolzmann machine (DBM), a joint density model over the space
of multimodal inputs, including visual, auditory, and textual
modalities, is developed. The model is trained directly using
UGC data without any labeling efforts. While the model learns
a joint representation over multimodal inputs, training samples
in absence of certain modalities can also be leveraged. More
importantly, the joint representation enables emotion-oriented
cross-modal retrieval, for example, retrieval of videos using the
text query “crazy cat”. The model does not restrict the types of
input and output, and hence, in principle, emotion prediction and
retrieval on any combinations of media are feasible. Extensive
experiments on web videos and images show that the learnt joint
representation could be very compact and be complementary to
hand-crafted features, leading to performance improvement in
both emotion classification and cross-modal retrieval.
Index Terms—Cross-modal retrieval, deep Boltzmann machine,

emotion analysis, multimodal learning.

I. INTRODUCTION

S OCIAL MEDIA is an opinion-rich knowledge source
including plenty of timely user-generated-contents (UGC)

with different media types. Automatically understanding the
emotional status of users from their uploaded multimedia con-
tents is in high demands for many applications [1]. For example,
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Fig. 1. Examples of emotional images and videos with their associated tags and
titles from Twitter and YouTube. The left image in the first row describes the
destruction caused by Hurricane Sandy and the right one describes the Manta
roller coaster at Sea World Orlando. The textual descriptions for these two im-
ages are almost the same and the implicit emotions can only be predicted by the
visual information. In contrast, emotion classification in the lower two videos
with similar visual appearances is performed using the strong clues in the tex-
tual captions and auditory information.

when searching information about a resort, the retrieved images
or videos can be ranked based on their emotions to provide
implicit comments. In addition, when asking opinion-related
questions about hot events, providing emotion tags for retrieved
videos helps users more quickly understand the sentiment of
public’s view. This function can also be used by governments to
better understand people’s reactions towards their new policies.
The existing works on affective analysis of UGC data are

mostly devoted to singlemedia [2]–[10]. For example, linguistic
[2], [4] and semantic [3], [5] features are both adopted for text-
based analysis. However, inferring perceived emotion signals
underlying short messages that are usually sparse in textual de-
scription is not easy. Fig. 1 (1st row) shows two images of “sad-
ness” and “happiness” emotions respectively. Nevertheless, no
obvious emotion clues are observed by merely reading their text
captions, which play the roles of referring visual content (roller
coaster) rather than emotion in the images. In other words, the
captions convey semantic meanings while the actual emotion
signals are buried inside the images. Apparently, visual con-
tent such as color contrast and tone provide more vivid clues
to reveal the underlying emotions for this example. The second
row of Fig. 1 shows a counter example, where the emotions
are subject to user perceptions by looking at the snapshots of
dogs sampled from two different videos. By turning off the vi-
sual signals and only listening to audio effects, the woofing and

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



PANG et al.: DEEP MULTIMODAL LEARNING FOR AFFECTIVE ANALYSIS AND RETRIEVAL 2009

laughing sounds of dogs already convey a strong sense of emo-
tions. In this example, the moods underlying videos are also
somewhat captured by the words “dirty”, “hates” and “loves”
in the captions.
Due to these limitations, there are several works studying

the fusion of multimodal features, including multi-kernel fu-
sion [1], conditional random field [11] and Bayesian rules [12].
These works are based on the standard early or late fusion strate-
gies [11]–[14], despite the employment of different machine
learning models. The “shallow” way of combining different fea-
tures is also questionable in principle, given the diverse repre-
sentations and correlational structures among different modali-
ties. For example, it remains an open problem on the right way
of combining raw pixels and audio waveform, for joint under-
standing of phonemes and visemes (lip pose and motion), in
speech recognition [15]. In brief, the highly non-linear rela-
tionships existing between different modalities, particularly, are
often overlooked by the existing approaches.
Emotion is also correlated with surrounding context, specif-

ically the objects, sounds and scenes in images or videos. For
example, a video with “a man listening to bird chirping in the
garden” casts an enjoy mood useful for emotion prediction.
SentiBank [6] is one such recent effort that explicitly identifies
3,244 adjective noun pairs (ANPs) for learning large-scale
emotion-oriented concept classifiers. Examples of ANPs are
“amazing flowers”, “awesome view” and “shy smile”. Nev-
ertheless, due to the open nature of how nouns and adjectives
are combined, SentiBank is hard to be generalized to cover
the possible ANPs, not even mentioning the daunting efforts
required in labeling of training examples for training ANP
classifiers free of sample noise.
In this paper, we propose a more generalized framework for

unsupervised feature learning based on Deep Boltzmann ma-
chine (DBM) [16], aiming to learn features coupling emotion
and semantic signals buried in multimodal signals. As we con-
sider eight types of wildly different features in terms of sta-
tistical properties, deep-based learning is preferable for infer-
ring non-linear relationships among features within and across
modalities. A joint embedded space shared by multimodal sig-
nals is expected to capture such relationships with semantic
and emotion contexts. As studied in other works [17], a joint
space learnt by DBM is capable of preserving both common and
modality-specific information. The learning of DBM is unsuper-
vised and thus is suitable for our problem as plenty of weakly
labeled training examples are freely available on social media
websites. Although these examples are without careful hand-la-
bels, the text captions can still somewhat provide rich learning
signals for mapping diverse visual and auditory features to a co-
herent embedded space shared by different modalities. For ex-
ample, the text captions in Fig. 1 provide clue connecting two
visually dissimilar roller coasters. The word “joy” can possibly
link diverse events, such as wedding party and couple hugging,
of different audio-visual effects.
Traditionally emotion prediction and semantic classification

are treated as two separate tasks. Emotion-oriented queries such
as “dog hates bath” always posts challenges for no clear under-
standing of how classifiers of different natures should be com-
bined. SentiBank [6] could possibly deal with such queries, but
is inherently limited by the number of ANP vocabularies. Our
model, empowered on the joint space learnt through DBM, can

more naturally answer these queries, assuming the availability
of a huge number of training exampleswith wild but rich textual,
visual and auditory signals. Due to unsupervised learning, our
model has a much better capacity and scalability than SentiBank
in capturing emotional experience in multimodal settings. Fur-
thermore, the joint space also enlightens cross-modal retrieval,
where for example, either text-to-video or video-to-text search
can be performed under our model.
The main contribution of this paper is the proposal of a deep

multimodal learning platform that enables a more generalized
way of learning features coupled with emotions and semantics.
Empirical studies also demonstrate the feasibility of employing
such features for multi-modal affective classification and re-
trieval. The remaining of this paper is organized as follows.
Section II presents related works. Section III presents the deep
network architecture, followed by Sections IV and V describing
the joint space representation and network learning respectively.
Section VI and VII presents experimental results on affective
analysis and retrieval respectively, and finally Section VIII con-
cludes this paper.

II. RELATED WORK

Affective computation has been extensively studied in the
last decades, and many methods are proposed for handling var-
ious media types including textual documents [2]–[5], images
[6]–[10], music [18]–[20] and movies [11]–[14]. Two widely
investigated tasks are emotion detection and sentiment analysis.
Both of them are standard classification problems with different
state spaces. Usually emotion detection is defined on several
discrete emotions, such as anger, sadness, joy etc., while sen-
timent analysis aims at categorizing data into positive or nega-
tive. Since the adopted techniques of these two tasks are quite
similar, we will not differentiate them in this section. Previous
efforts are summarized mainly based on the modality of the data
they are working on.
For textual data, lexicon-based approach using a set of pre-de-

fined emotional words or icons has been proved to be an effec-
tive way. In [2], they propose to predict the sentiment of tweets
by using the emoticons (e.g., positive emoticon “:)” and neg-
ative one “: (”) and acronyms [e.g., lol (laugh out loudly),
gr8 (great) and rotf (rolling on the floor)]. A partial tree kernel
is adopted to combine the emoticons, acronyms and Part-of-
Speech (POS) tags. In [4], three lexicon emotion dictionaries
and POS tags are leveraged to extract linguistic features from
the textual documents. In [3], a semantic feature is proposed to
address the sparsity of microbloggings. The non-appeared enti-
ties are inferred using a pre-defined hierarchical entity structure.
For example, “iPad” and “iPhone” indicate the appearance of
“Product/Apple”. Furthermore, the latent sentiment topics are
extracted and the associated sentiment tweets are used to aug-
ment the original feature space. In [5], a set of sentimental as-
pects, such as opinion strength, emotion and polarity indicators,
are combined as meta-level features for boosting the sentiment
classification on Twitter messages.
Affective analysis of images adopts a similar framework with

general concept detection. In SentiBank [6], a set of visual con-
cept classifiers, which are strongly related to emotions and sen-
timents, are trained based on unlabeled Web images. Then, a
SVM classifier is built upon the output scores of these concept
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Fig. 2. Multimodal DBM that models the joint distribution over visual, auditory, and textual features. All layers but the first (bottom) layers use standard binary
units. The Gaussian RBM model is used to model the distributions over the visual and auditory features. The replicated Softmax topic model is applied on the
textual features.

classifiers. The performance of SentiBank is recently improved
by using deep convolution neural network (CNN) [7]. Neverthe-
less, the utility of SentiBank is limited by the number and kind of
concepts (or ANPs). Due to the fact that ANPs are visually emo-
tional concepts, selection of right samples for classifier training
could be subjective. In addition to the semantic level features, a
set of low-level features, such as color-histogram and visual aes-
thetics, are also adopted in [8]. The combined features are then
fed into a multi-task regression model for emotion prediction. In
[21], hand-crafted features derived from principles-of-art such
as balance and harmony are proposed for recognition of image
emotion. In [10], the deep CNN is directly used for training
sentiment classifiers rather than using a mid-level consisting of
some general concepts. Since Web images are weakly labeled,
the system progressively select a subset of the training instances
with relatively distinct sentiment labels to reduce the impact of
noisy training instances.
For emotional analysis of music, various hand-crafted fea-

tures corresponding to different aspects (e.g., melody, timbre
and rhythm) of music are proposed. In [19], the early fused fea-
tures are characterized by cosine radial basis function (RBF). In
[22], a ListNet layer is added on top of the RBF layer for ranking
the music in valence and arousal in Cartesian coordinates. Be-
sides hand-crafted features, the authors in [20] adopt deep belief
networks (DBN) on the Discrete Fourier Transforms (DFTs) of
music signals. Then, SVM classifiers are trained on the latent
features from hidden layers.
In the video domain, most research efforts are dedicated to

movies. In [14], a large emotional dataset, which contains about
9,800 movie clips, is constructed. SVM classifiers are trained on
different low-level features, such as audio features, complexity
and color harmony. Then, late fusion is employed to combine
the classifiers. In [13], a set of features are proposed based on
psychology and cinematography for affective understanding in
movies. Early fusion is adopted to combine the extracted fea-
tures. Other fusion strategies on auditory and visual modalities
are studied in [12]. In [11], a hierarchical architecture is pro-
posed for predicting both emotion intensity and emotion types.

CRF is adopted to model the temporal information in the video
sequence. In addition to movies, a large-scaleWeb video dataset
for emotion analysis is recently proposed in [1], where a simpli-
fied multi-kernel SVM is adopted to combine the features from
different modalities.
Different from those works, the approach proposed in this

paper is a fully generative model, which defines a joint repre-
sentation for various features extracted in different modalities.
More importantly, the joint representation conveying informa-
tion from multiple modalities can still be generated when some
modalities are missing, which means that our model does not
restrict to the media types of user generated contents.

III. DEEP NETWORK DESIGN

Fig. 2 shows the proposed network architecture, which is
composed of three different pathways respectively for visual,
auditory and textual modalities. Each pathway is formed by
stacking multiple Restricted Boltzmann Machines (RBM),
aiming to learn several layers of increasingly complex repre-
sentations of individual modality. Similar to [23], we adopt
Deep Boltzmann Machine (DBM) [16] in our multimodal
learning framework. Different from other deep networks for
extracting feature, such as Deep Belief Networks (DBN) [24]
and denoising Autoencoders (dA) [25], DBM is a fully gener-
ative model which can be utilized for extracting features from
data with certain missing modalities. Additionally, besides
the bottom-up information propagation in DBN and dA, a
top-down feedback is also incorporated in DBM, which makes
the DBMmore stable on missing or noisy inputs such as weakly
labeled data on the Web. The pathways eventually meet and the
sophisticated non-linear relationships among three modalities
are jointly learned. The final joint representation can be viewed
as a shared embedded space, where the features with very
different statistical properties from different modalities can be
represented in an unified way.
The proposed architecture is more generalized and powerful

in terms of scale and learning capacity. In visual pathway, the
low-level features amount to 20,651 dimensions, resulting in
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large number of parameters to be trained if connecting them di-
rectly to the hidden layer. Instead, we design a separate pathway
for each low-level feature, which requires less parameters and
hence more flexible and efficient to train. This advantage makes
our system more scalable to handling higher dimensional
features, rather than features of 3,875 dimensions used in [23].
We further consider learning the separated pathways in visual
modality in parallel. The computational cost can be further
reduced. Furthermore, we generate a compact representation
which represents the common feature and preserves the unique
characteristic of each visual feature. In this way, it will not over-
whelm other modalities because of high dimensionality during
joint representation learning. Auditory and textual pathway do
not suffer from this problem. However, the proposed structure
can be easily extended for other modalities.
It is worth noticing that the high-level semantics in visual and

auditory modalities can be represented in the final joint repre-
sentation, by considering the correlations between them and tex-
tual inputs during training. Since our model is fully generative,
the semantics of input data without textual modality can also be
extracted. Other semantic features for visual and auditory data
(e.g., SentiBank [6], Classemes [26] and Objectbank [27]) ba-
sically adopt the shallow learning models, which learn the local
patterns extracted from the data. These methods suffer from in-
formation loss [28], [29], and is sensitive to the diverse appear-
ance of input data. In contrast, our model has the capability of
mining generative representations from the raw data, which has
been proved to be more powerful [17], [30].

IV. MULTIMODAL JOINT REPRESENTATION
Our network is built upon RBMs. A standard RBM has

two binary-valued layers, i.e., visible layer (denoted as ) and
hidden layer (denoted as ). The probability distribution over
the inputs is defined as

(1)

is the free energy between and , given by

(2)

where is the weight of link connecting two layers, and
are the bias weights for respectively. The feature learning
problem is elegantly stated to maximize the probability in (1)
or to minimize the free energy in (2). The standard RBM can
only handle binary-valued inputs. Other generalized RBMs in-
clude Gaussian RBM [31] designed for modeling real-valued
inputs and Replicated Softmax [32] for modeling sparse word
count vectors. Next, we describe different pathways and their
joint representation. Each pathway consists of a stack of RBMs
selected according to the property of input data.

A. Visual Pathway
The visual input consists of five complementary low-level

features widely used in previous works [1], [6]. As shown in
Fig. 2, each feature is modeled with a separate two-layer DBM.
Let denote the set of five features, respec-
tively as DenseSIFT [33], GIST [34], HOG [35], LBP [36] and

SSIM [37]. Furthermore, let , and
as the sets of real-valued inputs, first and second

hidden layers respectively, where . For example, refers
to the visible layer for DenseSIFT. In addition, the joint layer in
visual pathway (the layer in red in Fig. 2 is denoted as
The connections between and are modeled with

Gaussian RBM [31] and the connections between and
are modeled with standard binary RBM. Hence, the prob-

ability distribution over the real-valued input is given by

(3)

where is the partition function and the free energy is
defined as

(4)

where are the model parameters.
Note that for brevity, the bias terms on the hidden layers are
omitted. To generate the joint representation over these five low-
level features, we combine the five DBM models by adding an
additional layer on top of them. Then, the joint density
distribution over the five features is given by

(5)

The density distribution in (5) is given by

(6)

The joint distribution of and over
in (5) can be easily inferred from (3) as

(7)

Until now, all the probability distributions in (5) are provided
and the probability distribution over the whole set of input fea-
tures in visual pathway can be easily inferred by subscribing
these equations.

B. Auditory Pathway
The input features adopted in auditory pathway are MFCC

[38] and Audio-Six (i.e., Energy Entropy, Signal Energy, Zero
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Crossing Rate, Spectral Rolloff, Spectral Centroid, and Spectral
Flux) [1]. The Audio-Six descriptor, which can capture different
aspects of an audio signal, is expected to be complementary to
the MFCC. Since the dimension of Audio-Six is only six, we
directly concatenate the MFCC feature with Audio-Six rather
than separating them into two sub-pathways as the design in
visual pathway. The correlation between these two features can
be learned by the deep architecture of DBM [23]. Let denote
the real-valued auditory features and and represent
the first and second hidden layers respectively. Similar to (3),
the DBM is constructed by stacking one Gaussian RBM and
one standard binary RBM.

C. Textual Pathway

Different from the visual and auditory modalities, the inputs
of the textual pathway are discrete values (i.e., count of words).
Thus, we use Replicated Softmax [32] to model the distribution
over the word count vectors. Let as a visible unit denoting the
associated metadata (i.e., title and description) of a video , and

denotes the count of the th word in a pre-defined dictionary
containing words. The first and second hidden layers are
and . Then, the probability of generating by the text-
specific two-layer DBM is given by

(8)

Note that the bias term of the first hidden layer is scaled up
by the length of the document. This scaling is important for al-
lowing hidden units to behave sensibly when dealing with doc-
uments of different lengths. As stated in [23], [32], without the
bias scaling, the scale of the weights would be optimized to fit to
the average document length. This would induce that the longer
documents tend to saturate the units and shorter ones may be
ambiguous on activating the hidden units.

D. Joint Representation

To combine the learned representations of DBMs for the three
modalities, an additional layer is added on top of the three path-
ways, which is annotated as “Joint Representation” in Fig. 2.
We denote this layer as . We further use
to represent all the visible inputs. The final joint density distri-
bution over multi-model inputs can be written as

(9)

By subscribing (5) and (8) into above equation, the probability
distribution over the multiple inputs formulated by the proposed
network can be easily inferred. We do not show the detail for-
mula here due to the space limitation.

V. NETWORKING LEARNING AND INFERENCING

A. Approximate Network Learning
The learning of our proposed model is not trivial due to mul-

tiple layers of hidden units and multiple modalities. Inspired
by [23], we split the learning process into two stages. First,
each RBM component of the proposed multimodal DBM is pre-
trained by using the greedy layerwise pretraining strategy [16].
In this stage, the time cost for exactly computing the deriva-
tives of the probability distributions with respect to parame-
ters increases exponentially with the number of units in the net-
work. Thus, we adopt 1-step contrastive divergence ( ), an
approximate learning method, to learn the parameters. In
algorithm, a -step Markov chain is initialized with the training
sample. The stochastic reconstruction of the training sample
from Markov chain by Gibbs sampling has a decreased free en-
ergy. Hence, this reconstruction can be approximately treated
as the distribution generated by the RBM model. The contrast
between the training sample and its reconstruction is used to
approximate the direction of the change for the parameters. In
practice, is widely used for RBM training, since good ap-
proximation of the changing direction is already obtained when

. Note that, actually performs poorly in approxi-
mating the size of the change in parameters. However, it is ac-
curate enough for learning a RBM to provide hidden features
for a high-level RBM training [39]. This is because retains
most of the information in the inputs.
As discussed in [39], is still far from optimal to be

used for learning a joint-density model. Therefore, in the joint
learning stage, we adopt a more radical departure from ,
named as “persistent contrastive divergence” (PCD) [40]. In
contrast to initialize each alternating Gibbs Markov chain at a
training sample, the states of a number of persistent chains or
“fantasy particles” are tracked in PCD. Each persistent chain
has its hidden and visible states, which are generated by running
mean-field updates with Gibbs sampling for one or a few times
after each weight is updated. Then the derivative of the proba-
bility distribution is approximated by the difference between the
pairwise statistics measured on a mini-batch of data and the per-
sistent chains. Since the weight-updates repel each chain from
its current state by raising the energy of that state, the persistent
chains mix surprisingly fast [41]. Furthermore, PCD also learns
significantly better models than or even as reported
in [40].

B. Joint Representation Inferring
The representation learnt by the proposed model is a set of

distributions over layers conditioned on their adjacent layers. If
all the modalities are present, the element in joint repre-
sentation is inferred by Gibbs sampling as

(10)
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TABLE I
NUMBER OF NEURONS IN EACH LAYER OF OUR ENHANCED MULTIMODAL
DBM (E-MDBM). , , , AND REPRESENT THE VISIBLE
LAYERS, FIRST HIDDEN LAYERS, SECOND HIDDEN LAYERS, JOINT
REPRESENTATION LAYER OVER VISUAL FEATURES, AND JOINT
REPRESENTATION LAYER OVER VISUAL, AUDITORY, AND

TEXTUAL MODALITIES

where and bias term is omitted from
presentation. For full details of inference at each hidden layer,
please refer to Appendix.
There are two ways to generate the joint representation if

some modalities are not available. First we can directly gen-
erate the joint representation based on the existing modalities
only and leave the missing ones out. For example, if text is
missing, the joint representation will be computed by

. The second way is to infer the missing modali-
ties by alternating Gibbs sampling. Meanwhile, the joint repre-
sentation is updated with the generated data of missing modali-
ties. For example, assuming that the textual modality is missing,
the observed visual modality and auditory modality are
clamped at the inputs and all hidden units are initialized ran-
domly. Alternating Gibbs sampling is used to draw samples
from by updating each hidden layer given the
states of the adjacent layers. As reported in [23], the second
method achieves better performance than the first one, which in-
dicates that the mutlimodal DBM can generate meaningful rep-
resentations of the missing modalities.

C. Discussions

While the proposed architecture follows the principle [23],
the main novelty comes from the design of multiple visual path-
ways. Despite that the architecture may appear more compli-
cated than [23] at first glance, the design indeed simplifies [23]
by significantly reducing the number of hyper parameters. With
reference to Table I that lists the number of neurons in each
layer, the network contains 99,690,496 hyper parameters. While
this number is terribly high, it requires only 29% of that param-
eters in [23], for converting the input features from 20,651 to
2,048 dimensions. Furthermore, the design accelerates learning
by allowing parallel training of parameters on each pathway.
The locally connected hidden units in the pathways also speed
up the PCD learning at the second stage. In our experiments,
by using Tesla-K20 GPU, network learning completes in about
one week with around 1 million training examples. Given the
same amount of time, [23] is only able to train a network with
input features of 3,875 dimensions. In short, our proposed net-
work is more scalable in learning and effective in testing (see
Section VI) than [23].
Overfitting becomes an issue with large number of hyper pa-

rameters to be learnt in the network. As stated in [39], assuming
that each image contains 1,000 pixels, using 10,000 training ex-
amples to learn weights of a million parameters in one RBM

is quite reasonable. In the proposed network, the largest RBM
has or around 1.3 millions of parameters. Using
20,000 training samples, for example, is practically feasible for
learning this RBM. Since RBMs in the network are learnt in par-
allel, the chance of overfitting shall not be high even with only
around 20,000 training samples. In our case, there are close to
a million of training images and videos (see Section VI-A), and
we did not observe tendency of overfitting when learning the
parameters.

VI. EXPERIMENT: AFFECTIVE ANALYSIS

This section starts by introducing model training with unla-
beled images and videos sampled from social media websites
(Section VI-A). Two sets of experiments are conducted for af-
fective analysis (Section VI-B and Section VI-C), respectively
emotion prediction on YouTube videos and sentiment classifi-
cation on Twitter images.

A. Model Learning

We constructed two datasets, E-Flickr and E-YouTube, for
DBM learning. The images in E-Flickr are crawled from Flickr
by using the 3244 ANPs used in SentiBank [6] as keywards. On
average, there are 250 images being retrieved for eachANP. The
number of images per ANP is kept to about the same so as not
to bias any ANP during DBM learning. All these images, along
with their metadata (title, descriptions and tags), are included in
E-Flickr. Similarly for E-YouTube, ANPs keywords are issued
to YouTube for crawling videos. For each ANP, only top-100
ranked videos are considered, considering that videos further
down the ranked list are likely to be irrelevant. Among these
videos, lengthy videos with duration more than two minutes are
excluded from E-YouTube. Generally lengthy videos are more
likely to contain segments with no emotional content. Including
these videos into training will practically hurt the learning effec-
tiveness. Since tags are not available for download, each video
is crawled along with title and description only. On average, 50
videos are crawled per ANP and this number does not differ by
more than 10 across ANPs. To this end, E-Flickr and E-YouTube
include 830,580 images and 156,219 videos respectively.
The set of features extracted from the datasets are summa-

rized in Table I. For each video, keyframes are sampled at the
rate of one frame per second. Five different visual features, as
listed in Table I, are respectively extracted from the keyframes
and then averagely pooled to form feature vectors. Audio fea-
tures are extracted over every 32 ms time-window of audio
frames, with 50% overlap between two adjacent windows. Sim-
ilar as visual features, these features are averagely pooled across
time-windows. Among the set of audio-visual features, Dens-
eSIFT, HOG, SSIM and MFCC are further quantized into bag-
of-words representation. We followed the same settings as [1],
and the dimensions of different features are listed in the second
column of Table I. As for textual features, a total of 1,447,612
distinct words are extracted from E-Flickr and E-YouTube after
stopword removal and lemmatization using CoreNLP [42]. In
the experiments, only words with document frequency larger
than 800 are kept. Eventually, textual feature is in 4,314 dimen-
sions, with an average of 13 words per image and 8 words per
video.
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TABLE II
PREDICTION ACCURACIES FOR EACH EMOTION CATEGORY OF VIDEOEMOTION OBTAINED BY APPLYING LOGISTIC REGRESSION TO

REPRESENTATIONS LEARNED AT DIFFERENT HIDDEN LAYERS. THE HIGHEST ACCURACY OF EACH CATEGORY IS HIGHLIGHTED

Note that video-level metadata only describes a fraction of
video keyframes, and furthermore, feature pooling could pos-
sible introduce noise. In contrast, image-level metadata pro-
vides relatively more specific description of image content and
emotion. For this consideration, the learning of DBM is started
from using image samples followed by video sample. Audio-
pathway is left out during pre-training using E-Flickr images,
but turned on when E-YouTube videos are involved for fine-
tuning. During training, each dimension of visual and auditory
features is mean-centered and normalized to unit variance to
avoid the instability problem [39]. In addition, to avoid running
separate Markov chains for each word count to get sufficient
statistics for modeling distribution, all word count vectors are
scaled so that they sum to 5 [23].
In this section, we evaluate the performance of the joint rep-

resentation learnt using our multimodel DBM on affective anal-
ysis.We name our model as E-MDBM since the architecture has
been enhanced with more features and modalities.

B. Video Emotion Detection
The “VideoEmotion” dataset consists of 1,101 videos which

aremanually labeledwith eight emotional categories. Following
[1], the results are evaluated by accuracy. As the textual infor-
mation of the videos is not provided, we only have visual and
auditory modalities in this dataset.
Effect of exploring multimodal relations.We first evaluate the

capability of proposed model in learning non-linear relations
among different modalities. The input to the textual pathway
is missing and initialized to zeros. As described in Section V-B,
the model is allowed to update the state of the textual input layer
when performing mean-field update by alternating Gibbs sam-
pling. In this experiment, we run the mean-field update for 5
times [16], [23]. The final joint representations (up layer) are
drawn from and used for learning a logistic
regression model. For comparison, classifiers using the same
training data are learned with the representations extracted from
different hidden layers in Fig. 2.
We adopt the same settings for train-test splits in [1]. Ten

train-test splits are generated, each using 2/3 of the data for
training and 1/3 for testing. Table II shows the prediction re-
sults. We can see that the joint representation achieves the
best overall performance. It improves the accuracy over the joint
visual representation and the representation from second
auditory hidden layer by 8.02% and 41.26% respectively.
Although single modality may perform slightly better than the
joint representation for some emotions, the performance is not
consistent. For example, auditory feature is better to recognize

“Disgust”, but it performs poorly for emotion “Fear”. This is
because that “Fear” is not apparently conveyed in the audi-
tory signal. However, visual feature achieves the best result on
“Fear”. Another interesting observation is that the performance
using second hidden layer of each pathway is generally better
than that of the first hidden layer. As mentioned in Section III,
the E-MDBM model is a fully generative model. The neurons
of hidden layers will receive messages from both lower layers
and higher layers. By using this top-down feedback, the higher
hidden layers can deal with the impact from ambiguous inputs,
and thus are more robust. In addition, the joint representation
( ) on visual pathway leads to 2.5% improvement over the
best performance achieved in single visual feature. This indi-
cates that the proposed structure can preserve the capability
of learning correlation between different visual features, mean-
while reduce the complexity of the model learning comparing
to [23].
Fig. 3(a) further shows the confusionmatrix based on the joint

representation . Most categories are confused with the cat-
egory “Surprise”, where similar observation is also noted in [1].
Second, the category “anticipation” is confused particularly by
“Fear” and “Surprise”. As shown in Table II, almost all features
perform poorly on this category. We attribute this unsatisfac-
tory performance to the fact that neither audio nor visual can
concretely describe the emotion of “anticipation”, for example,
in a sport event. Facial expression seems to be the dominant
cue in conveying “anticipation”. This is probably the reason that
LBP, often being applied for face recognition, performs compar-
atively good for this category.
Impact of missing modality. There is no textual modality in

this dataset. We further evaluate the impact of missing certain
modality by using either only visual feature or auditory feature
as input, which are named as E-MDBM-V and E-MDBM-A re-
spectively. The input of missing modality is initialized with zero
and updated in the same way with the missing textual modality.
The results are showed in Fig. 4. We also show the result of

in Table II, which is named as E-MDBM-VA for consis-
tency. Additionally, the performance of SentiBank from [1] and
art features (AF) from [21] are also shown here for comparison.
In SentiBank, logistic regression model is trained on the scores
of the 1,200 ANP classifiers. For AF, 10 features are proposed
in [21] for representing 6 artistic principles (i.e., balance, em-
phasis, harmony, variety, gradation, and movement) and logistic
regressionmodel is learnt on these features. Although ourmodel
is able to fill in the missing modalities and integrate the infor-
mation into the final joint representation, E-MDBM-VA using
both visual and auditory inputs exhibits the best performance.
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Fig. 3. Confusion matrix based on (a) joint representation and (b) fusion results
on the VideoEmotion dataset.

Fig. 4. Prediction accuracies. SentiBank is the attribute feature proposed in
[6]. E-MDBM-V and E-MDBM-A represent the joint representation generated
by our proposed E-MDBM using only the visual or auditory signals as inputs.
Similarly, E-MDBM-VA indicates the joint representation using both visual and
auditory modalities.

This is not surprising since the filling of missing modalities gen-
erated some noises comparing to the real data. However, the
accuracy of E-MDBM-V is approaching that of E-MDBM-VA.
For category “surprise”, E-MDBM-V is even better. This in-
dicates that the missing data is somehow recovered using this
model. In addition, only visual features are used in SentiBank,
AF and E-MDBM-V. Our model outperforms SentiBank and
AF by 7.7% and 5.6% in accuracy respectively. This is be-
cause that our model embeds the information from all the three
modalities during unsupervised model training. Thus the corre-

lations between visual modality and other two modalities can be
jointly represented, especially the textual modality which helps
to explore the semantics in the videos. Comparing to SentiBank,
where the extracted semantics are limited to 1,200 predefined
ANPs, our model trained on wild Web data is expected to cap-
ture more complex semantics. AF, which comprises hand-tuned
features dedicated for art photos, still performs reasonably well
on the web video domain. This basically gives clue to the corre-
lation between art-based features and emotions. Interestingly,
AF even performs slightly better than SentiBank that prede-
fines the set of ANPs for emotion description. E-MDBM-V,
which learns features directly from examples while considering
multi-modality correlation, has better capacity in dealing with
diversities in user-generated videos compared to SentiBank and
AF.
We can also observe that the auditory information seems less

effective comparing to visual information. However, it works
better in “Disgust” and “Sadness” categories, where the visual
information cannot provide enough clues for emotion detection.
For instance, there is a video showing a cat, which is annotated
as “Disgust”. The visual appearance actually conveys no emo-
tional information. On the other hand, the background music,
which is very sharp and noisy, actually makes people feel un-
comfortable and disgust. The same situation exists in the “Sad-
ness” videos. There are only several common objects shown in
the video, such as faces and people hugs, whereas, woeful music
is used as background. In short, missing of modality will de-
grade the performance even using our proposed model. How-
ever, the joint representation can somehow capture the correla-
tions between different modalities, and is a good compensation
when certain modality is not available.
Comparison with state-of-the-arts. We compare our model

with the simplified version in [23]. For fair comparison, we
extend the model in [23] to handle three modalities by adding a
new pathway for textual input. This model is named as MDBM.
Same training data and settings described in Section VI-A are
employed for learning MDBM. We also show the results
reported in [1] here. These results can be considered as the
state-of-the-arts as they are produced through fine tuning on
the dataset. In [1], various auditory features, visual
features, attribute features, and their combinations are
evaluated. Table III shows the best one in each kind of the fea-
ture. Furthermore, the combinations of our joint representation
and other features are also included. In addition, the perfor-
mance based on the art features (AF) [21] is also reported.
We can see that E-MDBM consistently outperforms MDBM

either evaluated individually or combined with other features.
Specifically, E-MDBM leads to 9% performance improvement
over MDBM. This indicates that our design can better preserve
the unique property of each visual feature during the learning
in visual pathway by splitting the architecture into several
sub-pathways, each of which corresponds to one feature. In
contrast, all the features are concatenated into one feature vector
in MDBM, where some visual features may be overwhelmed
during the learning. However, performs better than
E-MDBM. This is probably because the pre-training of our
model is performed on Flickr images, while is tuned
on the Web videos in VideoEmotion dataset. The domain gap
may influence the learned joint representation. As stated in [1],
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TABLE III
PREDICTION ACCURACIES OF THE STATE-OF-THE-ARTS ON VIDEOEMOTION [1]. THE NOTATIONS ,

, AND REPRESENT VISUAL, AUDITORY AND ATTRIBUTE FEATURES RESPECTIVELY

this may also cause the performance degradation of attribute
features (e.g., SentiBank) which are extracted using concept
classifiers learned on Web images. Despite the domain gap,
E-MDBM consistently achieves better performance than Sen-
tiBank, either when being utilized individually or fused with
other features. While not performing better than hand-crafted
features, E-MDBM can complement these features well. When
average lately fused with features in [1], an improvement of
11.09% is attained. Further fusion with attribute features (i.e.,
SentiBank, Classemes and ObjectBank), an accuracy of 0.511 is
attained. The degree of improvement introduced by E-MDBM
is greater than that can be offered by MDBM. Fig. 3(b) shows
the confusion matrix based on fusion results of E-MDBM.
Compared with Fig. 3(a), four categories, especially “Trust”,
become less confused by “Surprise” after fusion. Nevertheless,
the performance for “Anticipation” remains poor.

C. Sentiment Analysis on Twitter Messages
To avoid the impact of domain shift, we further conduct ex-

periments on “ImageTweets” dataset [6], which includes 596
text-image Twitter messages. In this dataset, only textual and
visual modality are available. These messages are manually as-
signed to either positive or negative sentiment based on affec-
tion expressed in the text-image pairs.
We compare our model with several state-of-the-art methods

used in [6]. Besides the early fused low-level visual features
(“Visual”) and attribute feature (“SentiBank”) extracted from
images, a lexicon-based approach (“Lexicon”) used on textual
analysis is also selected as baseline. The text information is rep-
resented using the sentiment scores of words obtained from Sen-
tiStrength [43]. The art features (AF) [21] is also adopted as
one baseline. The classifiers for textual feature and visual fea-
tures are Naive Bayes classifier and logistic regression model
respectively. MDBM [23] is utilized on this dataset with visual
+textual input. For our proposed E-MDBM, we consider three
features E-MDBM-V, E-MDBM-T amd E-MDBM-VT corre-
sponding to visual input, textual input and visual+textual input
respectively. For fair comparison, logistic regression model is
used upon these joint representations.
In [6], the dataset is equally split into five subsets. In our

experiment, each classifier is trained on four subsets and tested
on the other. This process is repeated five times. Fig. 5 shows
the average results. We first consider the case of single modality
input. We can see that Lexicon performs much worse than other
methods. This is not surprising since Twitter messages are
usually sparse and lack of emotion signals. In comparison, with
the same input, our joint representation E-MDBM-T achieves

Fig. 5. Prediction accuracies on the ImageTweets. E-MDBM-V and
E-MDBM-T are the classifiers trained on the joint representation generated by
using only the visual or textual information through E-MDBM. E-MDBM-VT
is trained on the joint representations over both visual and textual modalities.
MDBM represents the joint representations over both visual and textual modal-
ities but based on the architecture proposed in [23]. Meanwhile, SentiBank
represents the classifiers trained on the scores of the concepts classifiers in [6].
Lexicon represents the Naive Bayes classifiers trained based on SentiStrength
[43]. AF represents the classifiers trained on the art features proposed in [21].

Fig. 6. Examples of video queries. The caption for the first example (top left)
describes a disabled kitten, but the video expresses a “joy” emotion with an
audio-visual effect. The two videos in the second row show counter examples.
The video on the left has a spider but is not mentioned by the caption, as op-
posed to the video on the right where the spider is mentioned in caption but does
not appear in video. The query (top right) expresses consistent emotion and se-
mantics across visual, auditory, and textual modalities.

43.49% improvement over Lexicon. Again, this demonstrates
that the common space embedded in the E-MDBM preserves
the correlations from multiple modalities with different emo-
tional signals. Thus the sparsity problem can be addressed
using the information from other modalities by mapping from
textual input to the joint space. For the visual modality, dif-
ferent from the results in Table III, SentiBank and E-MDBM-V
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TABLE IV
MEAN AVERAGE PRECISION@20 OF TEXT-BASED, VIDEO-BASED, AND MULTIMODAL QUERY FOR RETRIEVING EMOTIONAL VIDEOS

perform much better than low level visual features (Visual)
on image dataset. This is because that both our model and
attribute feature represent the semantics in the images, which
can narrow down the gap between low-level features and high
level human perceptions. In addition, AF achieves a similar
performance to SentiBank, indicating that the Tweet images
also partially follow the artistic principles. Again, E-MDBM-V
improves over SentiBank and AF by 4.14% and 3.11% in
accuracy respectively. We then compare the performances of
different methods using multiple modalities. For comparison,
we also show the result of lately fused Lexicon and SentiBank
(SentiBank+Lexicon) features. We can see that E-MDBM-VT
exhibits the best results, which leads to 8% and 5% improve-
ments over SentiBank+Lexicon and MDBM respectively.
Finally, similar to the conclusion made on VideoEmotion
dataset, the performances of E-MDBM-V and E-MDBM-T
are worse than that of E-MDBM-VT, which also indicates that
there are some noises in the generated missing modalities.

VII. EXPERIMENT: RETRIEVAL

This section experiments the feasibility of the proposed
model for video retrieval (Section VII-A) and cross-media
retrieval (Section VII-B). A new dataset including 1,139 refer-
ence videos was constructed using 23 ANPs in [6] as queries.
Both videos and their surrounding metadata are downloaded
from YouTube. With this dataset, we can perform Web video
retrieval using different types of queries. In specific, we ran-
domly select 50 videos covering all the eight emotions in [1]
as queries. In some of the queries, the content and emotion
in different modalities are not always aligned. Fig. 6 shows
some examples of queries. The selected 23 ANPs include
18 emotion words1 and 16 general concept words.2 We first
annotate all the test and query videos for the 34 words. A video
is considered to be relevant to the query if they share at least
one emotion category or concept. In other words, two videos
can be semantically or emotionally relevant. In this way, we
can generate ground-truth for each query. Note that as emotion
words are extracted from ANPs, their categories are inferred
from which the ANPs belong to.

1List of emotion words: cold, broken, fantastic, curious, classic, fat, crazy,
lazy, creepy, haunted, clear, bright, natural, heavy, dirty, adorable, shiny, tasty

2List of concept words: morning, chair, fence, architecture, bird, spider, cat,
tree, castle, moon, spring, rain, dog, star, food, body

TABLE V
CROSS-MODAL RETRIEVAL: MEAN AVERAGE PRECISION@20
ON FOUR DIFFERENT TYPES OF QUERIES AGAINST FOUR

DIFFERENT VERSIONS OF DATASETS

A. Video Retrieval
Three sets of experiments are conducted by using the text,

video and multimodal (text+video) queries. For each query, a
joint representation is extracted using the proposed E-MDBM.
Note that there are missing modalities for text or video queries.
For the reference videos, we assume that all the three modal-
ities are available when extracting the joint representations.
The baselines used in the experiments depend on the modality
of queries. For text query, we compute Jaccard coefficient
between the word count vector of a query and the surrounding
text of a reference video. For video query, we select two
baseline methods that utilize visual and auditory information
by fusing low level visual feature and SentiBank respectively
with auditory feature. For multimodel query, the two baselines
are further augmented using textual feature. In this way, for a
given type of query, the compared methods leverage same set
of input features.
Table IV shows the results of video retrieval on eight different

categories of emotions in terms of mean average precision
(MAP). E-MDBM achieves consistently better performances
than the baselines in all three types of queries. As baseline
methods consider only matching the modalities of same type
during similarity measure, reference videos with the searched
content or emotion exists in a modality different from the type
of query cannot be retrieved. For example, although the top-left
video in Fig. 6 shows a “joy” emotion with a dog befriends a cat,
text-only query is misled by the word “disable”. For this par-
ticular example, the performance is poor even for multimodal
query with late fusion strategy. Similarly for the two queries
shown in the second row of Fig. 6, where there are mismatches
between the concepts in captions and video content. Late fusion
of multiple modalities helps little for these example queries. In
contrast, by non-linearly projecting all the reference videos into
a joint space, E-MDBM has generated features that inherently
capture the complex relationship among different modalities
of videos. Hence, cross-modal matching between queries and
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TABLE VI
CROSS-MODAL RETRIEVAL: MEAN AVERAGE PRECISION@20 FOR EIGHT EMOTION CATEGORIES UNDER

DIFFERENT SCENARIOS. THE BEST PERFORMANCE FOR EACH CATEGORY IS HIGHLIGHTED

reference videos are implicitly performed during retrieval. For
the examples in Fig. 6, E-MDBM shows improvement in large
margin, for example, the AP for the top-left query achieved by

and are 0.193 and
0.247 resepctively. In contrast, our joint representation exhibits
much better AP with 0.394. Finally, it is worth mentioning that
using E-MDBM, each video is represented as a feature in 4,096
dimensions, in contrast to 28,965 dimensions of hand-crafted
features. The compact feature representation will greatly save
time and space in video retrieval.

B. Cross-Modal Retrieval

We further evaluate our method on cross-modal retrieval. Dif-
ferent from the experiment in VII-A where the feature extracted
for database videos adopts all the three modalities, cross-modal
retrieval assume that query and the candidate data have different
form of media types. Many applications can benefit from the
cross-modal retrieval. For example, given a video without text
description, the retrieved textual documents are helpful for au-
tomatically understanding the videos. Comparing to traditional
semantic concept detection, which aims at recognizing some
general concepts from visual appearance or auditory signals,
the generated description using cross-modal retrieval would be
more comprehensive.
Using the same dataset as Section VII-A, we generate four

different versions of datasets, where each with one or two
modalities of reference videos being purposely omitted. The
four datasets are named as DB-X, with X-only modality being
generated by the joint representation, where X includes T
(text), V (visual), A (audio) and VA (visual-audio) modalities.
During experiments, E-MDBM-X is experimented to search
on a dataset without modality X. For example E-MDBM-T
(text-only query) is searched against the dataset DB-V where
the text and audio signals of all videos are ignored. Table V sum-
marizes the results of cross-modal retrieval for 50 queries. As
can be observed, the performances are very encouraging. For
example, E-MDBM-T can achieve MAPs of 0.366 and 0.371
on DB-V and DB-A respectively when metadata of reference
videos are ignored. These results are better than text-based
query using word count ( ) when the metadata
are involved in similarity comparison, as shown in Table IV.
Using E-MDBM-V (visual-only query) against DB-T can
attain MAP of 0.437, which is fairly impressive given that
only the metadata of reference videos are kept for similarity
measure. The result is close to SentiBank ( ), which
compares similarity with reference videos directly based on
visual modality.

We further detail the results for each emotion category
in Table VI, where every column corresponds to a different
cross-modal retrieval scenario. For example, means
the use of text-based query for searching against videos with
only visual and audio modalities. Interestingly, query-by-vi-
sual often exhibits better performance even though the visual
modality of reference videos is not considered. In addition, vi-
sual seems to be correlated better with text than audio modality,
resulting in better performance in 7 out of eight categories
for . The only exception is the category “Trust”. This
is because many videos expressing the trust emotion in this
dataset are about trust test with laughing and cheering sounds.
Comparing Table VI with Table IV, which can be considered
as the up-bound of cross model retrieval, there is still a per-
formance gap. However, considering that we are matching the
data from different modalities with different statistic properties,
basically the results in Table V can demonstrate the ability of
our method for modeling the joint representations.

VIII. CONCLUSION AND FUTURE WORK

We have presented a deep model for learning multimodal sig-
nals coupled with emotions and semantics. Particularly, we pro-
pose a multi-pathway DBM architecture dealing with low-level
features of various types and more than twenty-thousand di-
mensions, which is not previously attempted to the best of our
knowledge. The major advantage of this model is on capturing
the non-linear and complex correlations among different modal-
ities in a joint space. The model enjoys peculiarities such as
learning is unsupervised and can cope with samples of missing
modalities.
Compared with hand-crafted features, our model generates

much more compact features and allows natural cross-modal
matching beyond late or early fusion. As demonstrated on Im-
ageTweets datasets, the features generated by mapping single-
modality samples (text or visual) into the joint space consis-
tently outperform hand-crafted features in sentiment classifica-
tion. In addition, we show the complementary between deep
and hand-crafted features for emotion prediction on VideoE-
motion dataset. Among the eight categories of emotion, nev-
ertheless, the categories “anticipation” and “surprise” remain
difficult either with learnt or hand-tuned features. For video
retrieval, our model shows favorable performances, convinc-
ingly outperforms hand-crafted features over different types of
queries. Encouraging results are also obtained when applying
the deep features for cross-modal retrieval, which is not possible
for hand-crafted features. Compared to SentiBank, our model
has the edge of not limiting to a predefined set of vocabularies.
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Hence, the learning is fully generative and the model is more ex-
pressive, as we show in the experiments that our model is able
to perform better than SentiBank in both classification and re-
trieval tasks. Finally, our model also consistently outperforms
the early version of MDBM [23] in all the experiments con-
ducted in this paper.

APPENDIX

The conditional distributions over different layers, using
“DenseSIFT” and “Textual” pathway as example, is inferred as
follows:

(11)

where is the logistic function. When
inferring the distributions, the observed modalities are clamped
at the inputs and Gibbs sampling is performed for updating the
states of each layer. As mentioned in Section V-B, mean-field
update is adopted for state updating. Since each hidden layer is
influenced by its higher and lower layers, alternating sampling
is conducted for update all the necessary states to approximate
the distribution.
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