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a b s t r a c t

Hierarchical classification (HC) is a popular and efficient way for detecting the semantic concepts from
the images. The conventional method always selects the branch with the highest classification response.
This branch selection strategy has a risk of propagating classification errors from higher levels of the hier-
archy to the lower levels. We argue that the local strategy is too arbitrary, because the candidate nodes
are considered individually, which ignores the semantic and context relationships among concepts. In
this paper, we first propose a novel method for HC, which is able to utilize the semantic relationship
among candidate nodes and their children to recover the responses of unreliable classifiers of the candi-
date nodes. Thus the error is expected to be reduced by a collaborative branch selection scheme. The
approach is further extended to enable multiple branch selection, where other relationships (e.g., contex-
tual information) are incorporated, with the hope of providing the branch selection a more globally valid,
semantically and contextually consistent view. An extensive set of experiments on three large-scale data-
sets shows that the proposed methods outperform the conventional HC method, and achieve a satisfac-
tory balance between the effectiveness and efficiency.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

With the increasing demand for organizing the large-scale
image data effectively, image classification, a problem of labeling
a target image with a set of predefined semantic concept label (s)
[1,2], has received intensive studies in the last decade. The task
is usually simplified as a binary classification problem, in which
a binary classifier is learnt for each concept and used on-the-fly
to determine the semantic content of the target image. The binary
classification scheme, even has been popularly employed and dem-
onstrated encouraging performance, is impractical when facing
large-scale datasets (e.g., ImageNet [3] which includes 21,841 con-
cepts with each of them associated with 1000 images), because all
classifiers have to be called at runtime for every image.

To tackle the scalability issue, hierarchical classification is com-
monly adopted. Instead of applying all classifiers to a target image,
hierarchical classification organizes concept classifiers into a hier-
archy (e.g., Fig. 1) according to the semantic relationship among
concepts, and only selects a small set of classifiers for testing.
The selection procedure usually starts from the root of the hierar-
chy and proceeds in a top-down manner that, for each node under

investigation, hierarchical classification first applies the classifiers
of the child nodes to the target, and then selects the child node(s)
with the highest response(s) on its (their) classifier(s) as the next
node(s) to investigate. The procedure repeats recursively and
results in a path (paths) from the root to a leaf node (e.g., Ani-
mal-Fish-Salmon), on the basis of which all the concept labels on
the path will be assigned to the target image.

By reducing the number of classifiers to be visited, hierarchical
classification significantly improves the efficiency of multiple con-
cept detection, and thus has been widely employed (e.g., web cat-
egorization [4,5] and gene function prediction [6]). However, as
pointed out by Bennett et al. [5], the improvement is paid at the
price of sacrificing effectiveness of the classification. More specifi-
cally, the top-down classification procedure will make the classifi-
cation errors included at the higher levels of the hierarchy be
propagated to the lower levels, and in turn significantly degrades
the accuracy of those leaf nodes. We argue that the major cause
of the error propagation is the arbitrariness of the branch selection.
It is well known that the performance of visual concept detectors is
still not satisfactory in a general sense, and thus selecting a branch
under a unreliable node may seriously ruin the classification pro-
cedure follows. In addition, the branch selection strategy is lack
of global perspective, in the way that the classification only focuses
on the local responses of the nodes to be investigated, but never
verifies if these responses are valid or globally consistent to other
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related concepts. With Fig. 1 as an example, assuming that a target
image includes a fish, the classification will be led to the branch
under Dog if the classifier for Dog is unreliable and outputs higher
response than that of Fish. When deciding next node to move on,
the classifiers of the Pug Dog and Hunting Dog (if reliable enough)
will output low responses. Globally speaking, this is conflicting to
the semantic relationship in the hierarchy, in the sense that a par-
ent node is with high response while all of its child nodes are with
low responses. However, the procedure will never ‘‘doubt’’ the
decision at the node Dog and continue to select between Pug
Dog and Hunting Dog, resulting in further error propagation.

In this paper, we propose a novel branch selection scheme to
address the arbitrariness of the branch selection. Instead of select-
ing the node(s) with the highest response(s), we introduce an error
recovery scheme which first verifies the consistency between the
observation of the candidate node and those of its semantically
and contextually related concepts, and then adjusts the output of
the node accordingly. The decision of which branch to go will be
delayed when the verifications of all candidate nodes are finished,
and the decision is made only when more observations are avail-
able and it is ‘‘confident’’ to do so. Compared with the highest-
response-first strategy, this is more reliable because the proposed
branching decision is made collectively by investigating the
responses of the candidate node and its relatives instead of that
of the candidate node alone. In the example mentioned above,
the scheme is able to detect the inconsistency among the observa-
tion of Dog and those of its children nodes, and thus increase the
chance of leading the classification to the correct branch (i.e., that
under Fish in this example).

The main contribution of this work is the proposal of collabora-
tive error reduction method for addressing the issue of error prop-
agation in hierarchical classification, which is a problem rarely
studied in the literature. The employment of proposed approach
for both single-branch and multi-branch hierarchical classification
methods is also demonstrated. Particularly, multiple concept rela-
tionships are novelly encapsulated in provision of a more globally
consistent branch selection procedure. Eventually, a satisfactory
balance between effectiveness and efficiency can be achieved.

2. Related works

Although image classification has been intensively studied for
more than one decade with numerous methods proposed, the
majority of the efforts have been put on improving the effectiveness
(i.e., how to construct effective learning mechanisms for building
the classifiers [7–11]). Only until recently when the task is chal-
lenged by the scalability issue raised by the overwhelming growth
of concepts and images, the attention starts shifting towards how
to utilize inter-concept hierarchical relationship for improving
the efficiency [12–16], which is also the focus of this paper.

Therefore, we mainly review the works following this trend in this
section. According to how a hierarchy is learnt, we roughly catego-
rize these methods into two groups: pre-defined hierarchy and
data-driven hierarchy.

Given the fact that there are many hierarchies developed for lin-
guistic studies or information retrieval (e.g., WordNet1), borrowing
these pre-defined hierarchies is popular in image classification [17–
19]. Such a hierarchy is usually organized according to the semantic
relationships (mostly ‘‘is-a’’ relation) among concepts, resulting in a
tree-liked structure with the general concepts (e.g., vehicle) in the
higher levels and the specific concepts (e.g., bus) in the lower levels.
Marszalek et al. [18] perform the conventional hierarchical classifi-
cation on a hierarchy extracted from WordNet according to two rela-
tionships (i.e., ‘‘is-a’’ and ‘‘is-part-of’’). In [17], the authors propose a
method for learning hierarchy aware classifiers. Instead of using 0–1
loss as in conventional method, they utilize a loss function which
assigns a lower loss for mis-classifying a training instance to a con-
cept closer to the target concept. The hierarchy is used for measuring
the distance between concepts. In [19], Deng et al. propose a selec-
tive flat classification framework, which only outputs classification
results for classifiers that are the most informative concepts and
with satisfactory accuracies. The hierarchy is used for measuring
the specificity of a concept (because more specific a concept is, more
informative it is).

Representative examples of pre-defined hierarchies include
Enzyme Commission [20] and the Gene Ontology [21] for gene
function prediction, Yahoo! Directory2 for text categorization, and
Caltech256 [22] hierarchy for image classification. The advantage
of pre-defined hierarchy is that it is easy to obtain, and the structure
is consistent to human perception, which makes the analysis of the
classification results can be carried out intuitively, because it is easy
to check whether each of the branch selections is correct. However,
due to the semantic gap, the disadvantage of the pre-defined hierar-
chy is that the semantic relationships of some concepts may not be
consistent to their visual relationships in the feature space, which
makes the branch selection at a node with visually similar children
(e.g., ‘‘Paris daisy’’ and ‘‘Easter daisy’’) lack of discriminative-ness
and be random.

In methods using data-driven hierarchy, the concept hierarchy
is constructed by top-down [23–28] or bottom-up [29,30] hierar-
chical clustering with all the target concepts as leaf nodes. The
inter-concept distance is generally defined on the distribution dis-
tance of their training examples in the low-level feature space (e.g.,
BoW [27,26,28]), and used as the metric for the clustering. The
advantage of using data-driven hierarchy is that the resulting hier-
archical structure has encapsulated the low-level relationships
between concepts (i.e., how their visual appearances are similar
or different from each other) and thus is able to provide a handy
discriminative power for the classification. This is especially useful
for filtering out the irrelevant concepts during the branch selection
effectively and efficiently. However, the data-driven hierarchy may
work awkwardly for a leaf node with diverse visual appearances
(e.g., ‘‘vehicle’’), because the node can only be linked to the branch
representing one type of its visual characteristics (e.g., ‘‘car’’) and
thus examples (e.g., ‘‘boat’’) with visual appearances varying from
this branch will always be directed to other leaf nodes. Further-
more, the automatically generated inner nodes for a data-driven
hierarchy are usually not associated with any semantic meanings,
which makes the analysis of the classification results less intuitive.

By using either pre-defined or data-driven hierarchy, as afore-
mentioned, the top-down branching process will impose error
propagation. However, as one of the open questions for

Fig. 1. An example of image concept hierarchy. Instead of brute-force search of the
best classifier, hierarchical classification performs search by traversing the hierar-
chy in a top-down manner, resulting in significance speed up but with the price of
sacrificing classification accuracy.

1 http://wordnet.princeton.edu/.
2 http://dir.yahoo.com/.
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hierarchical classification, it is rarely addressed in the literature.
Two works we found from very few examples are [4,5]. In [4],
Xue et al. address the problem by selecting only a small number
of nodes from the original hierarchy to construct a simplified hier-
archy for classification. Therefore, the chance of error propagation
will be reduced because the classification path from root to leaf
node is significantly shortened. In [5], when building the set of
negative instances for training each node, Bennett et al. also
include the false positive instances which have been misclassified
at its ancestor nodes, in the hope that those instances can be
rejected by current classifier and the mis-classification errors will
not be further propagated to the lower level nodes. Even those
methods are able to improve the accuracy of hierarchical classifica-
tion, the optimization schemes employed still have not addressed
the arbitrariness of the branch selection which is the core issue
of the error propagation.

In this paper, we argue that the arbitrariness of the branch
selection is caused by the local view of the decision making, in
which the concepts are investigated individually with its relation-
ship to other concepts being ignored. Therefore, we propose a col-
laborative branch selection scheme which makes decision by
further utilizing the semantic and contextual consistency of the
concepts under investigation. The idea is primarily studied in
[31], which only supports single branch selection that assigns an
image only to one leaf node in the hierarchy, with the assumption
that all the leaf nodes are exclusive to each other. The assumption
is popularly employed in the existing methods (e.g., [24–28]) to
ease the problem solving. However, in a real application, an image
always contains several concepts that may not in the same branch
because they are not necessarily being semantically related (e.g.,
car and road). In this paper, we extend the method to enable multi-
ple branch selection.3 Furthermore, we have incorporated the con-
textual relation among concepts into branch selection for a more
reasonable decision making process. In the following sections, we
first present the basic framework of the proposed method in Sec-
tion 3 with its application to singe branch selection. In Section 4,
we further extend the framework to enable multiple branch
selection.

3. The basic framework

In this section, we describe the basic framework of the proposed
method under the scenario of single branch selection. Instead of
considering only the candidate nodes, we also involve their chil-
dren and siblings to form a committee for decision making. In prac-
tice, before deciding which branch to go, we adjust the response of
each candidate node to be semantically consistent with those of
other nodes in the committee, with the hope that the unreliable
response of a candidate can be fixed if it is conflicting with those
of its relatives in the hierarchy. Therefore, making decision on
the adjusted response is with a more global view and can avoid
the arbitrariness of the branch selection with the highest-
response-first local strategy.

3.1. Problem formulation

Given an instance (image) x and a node (concept) ct as the cur-
rent node in a hierarchy, we denote the branch to go at next
moment as a node ctþ1, so that

ctþ1 ¼ arg max
c2NðctÞ

f̂ cðxÞ; ð1Þ

where NðctÞ is a set of child nodes of ct , and f̂ cðxÞ is the adjusted
response of c to x. Further denoting the original response of c as
fcðxÞ, we can formulate the highest-response-first local strategy by
replacing f̂ cðxÞ with the original response fcðxÞ. Moreover, our
committee for decision making is T ¼

S
c2Nðct Þ

�NðcÞ, where
�NðcÞ ¼ N ðcÞ [ fcg. In other words, T is a union of ct ’s children and
its grandchildren. The problem to solve is then how to define the
adjusting function f̂ cðxÞ with respect to both the semantical
relationship and the observations of the nodes in the committee T .
Let us denote the semantical relationship among nodes as UT and
compose the observations of the committee T into a vector
fT ðxÞ ¼ ½fc1 ðxÞ; fc2 ðxÞ; fc3 ðxÞ; . . .� where c1; c2; c3; . . . 2 T , the problem
can be formulated as

f̂ cðxÞ ¼ PðcjUT ; fT ðxÞÞ: ð2Þ

3.2. Committee-based response adjustment

Once the hierarchy is known, there are a lot of priori can be uti-
lized for modeling f̂ cðxÞ. For example, in the single-label hierarchy as
shown in Fig. 1, the siblings are semantically exclusive. If all the
classifiers are reliable, the response for a candidate node (e.g.,
‘‘Fish’’) should be approaching 1 if those of its siblings (e.g., ‘‘Dog’’)
are all with responses close to 0. In addition, a parent node repre-
sents a union of the instances of its child nodes, so that the response
for a candidate node (e.g., ‘‘Dog’’) should be close to 0 if those of its
child nodes (e.g., ‘‘Pug dog’’ and ‘‘Hunting dog’’) are all with
responses close to 0. In brief, confined by the semantic relationship
UT , the responses of nodes in a committee should always follow cer-
tain patterns. Unreliable classifiers will produce responses conflict-
ing to the patterns within the nodes of committee. Therefore, we can
use the observations of the committee T to predict that of a candi-
date node so as to implement the response adjustment.

Intuitively, this can be simply modeled by logistic regression,
where we use the observations of the committee T as predictors
for estimating a reasonable output for a candidate node c. The
impacts of semantic constraints UT on predicting the response is
then modeled by a set of weights (i.e., a weight vector
wc ¼ ½w1;w2; . . .�) associated with the predictors (nodes in T ). A
weight given to a predictor reflects the ability of the predictor to esti-
mate the output of the candidate node. By further expanding the
logistic regression to all the candidate nodes, we can learn their
weights at the same time by multi-class regression (MCR), resulting
in a weight matrix W. It is worth mentioning that learning the
weights together not only brings convenience for the learning but
also makes the inter-concept relationship among candidate nodes
be modeled during the learning. Thus the adjusted responses would
follow the specific patterns embedded in the hierarchy. By replacing
the semantic relationship UT with W, Eq. (2) can be implemented
with MCR as

PðcjfT ðxÞ;WÞ ¼
exp wT

c fT ðxÞ
� �

P
ck2N ðctÞ exp wT

k fT ðxÞ
� � ; ð3Þ

where wk is the weight vector for the corresponding candidate node
ck 2 NðctÞ. Eq. (3) takes the responses of committee as input, and
computes adjusted responses for the candidate nodes.

Given a set of training instances X ¼ fx1; x2; . . .g with each of
them associated with a class label yi 2 NðctÞ, an optimal weight
matrix W� can be obtained by

W� ¼ arg min
W

�
X
xi2X

log PðyijW; fT ðxiÞÞ þ kkWk2
; ð4Þ

where the second term is a regularizer used to control the model
complexity, and k is regularization parameter. Eq. (4) is referred

3 In [32], singe branch selection is termed as single-label classification while
multiple branch selection is termed as multi-label classification. We change the
terminology in this paper, because multi-label classification is easy to be confused
with the multiple label assignment in singe branch selection where concepts along
the resulting branch are all assign to a target image.
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to as L2-regularized MCR. This problem can be efficiently solved by
Quasi-Newton method. In the experiment, we adopt the package
released by Mark Schmidt.4 The proposed method for hierarchical
classification with single-branch selection is summarized in
Algorithm 1.

Algorithm 1. Error Reduction HC with Single Branch Selection
(ER-SHC)

Input:
I Testing instance x.
Initialization:
I Set t ¼ 1 and current node ct as root node.
I Initialize the detected set of classes as C ¼ U.
Hierarchical classification

1. Set ct ’s child nodes NðctÞ as candidate nodes.
2. Construct a committee T ¼ fN ðctÞ;

S
c2NðctÞN ðcÞg, which

consists of ct ’s child and grandchild nodes.
3. Compute the responses of the classifiers in committee T .
The responses are composed into a vector
fT ðxÞ ¼ ½fc1 ðxÞ; fc2 ðxÞ; fc3 ðxÞ; . . .�.
4. Get the adjusted responses of candidate nodes by using
MCR model in Eq. (3).
5. Select a node c from the candidate nodes for further
investigating using Eq. (1). Update the prediction results
C ¼ C [ fcg.
6. If c is not a leaf node, set ct ¼ c; t ¼ t þ 1 and return to
step 1.

Output
The prediction results C.

3.3. Verification and recovery

Since the labels given to each instance always follow certain
patterns which reflect the inter-concept semantic relationship in
the hierarchy, the resulting weight matrix W⁄ in Eq. (4) is also
embedded with those relationship which can be used to verify if
a set of responses is consistent to those patterns, in the way that
it results in larger response in Eq. (3) when it is consistent and
smaller response otherwise. Note that, during learning, we put
the candidate node itself in the committee, with the hope that
the resulting weight can also reflect the classification reliability
of the candidate node. According to the principle of MCR, if a can-
didate node is with an unreliable classifier, it will be assigned with
a small weight to weaken its impact to the final results (i.e., the
adjusted response Eq. (3)), and the predication for its label will
mainly rely on the responses of other nodes in the committee. By
contrast, if the node is a reliable classifier, it earns a large weight
so its impacts will dominate those of others. This also explains
why we put the candidate node itself in the committee. Therefore,
the proposed method fulfills the semantic relationship verification
and error recovery at the same time by MCR.

3.4. Complexity analysis

One may argue that the Error Reduction HC proposed in this
paper is less efficient than the conventional HC, because an addi-
tional error recovery process is included. However, we will show
that this is not a critical issue. In this section, we provide a theoret-
ical analysis on the time complexity of the conventional HC and the
Error Reduction HC. A more comprehensive empirical study will be
given in Section 6.

First, let us define the TC ¼ 1� #model
#concept, where #model and

#concept denote the number of activated classifiers and the num-
ber of concepts respectively. TC is the saved computational cost
compared to standard one-vs-all approach. We further assume that
a hierarchy is a binary tree with 2Lþ1 � 2 nodes (or L levels). It can
be easily calculated that 2L and 4L� 2 classifiers will be activated
by the conventional HC and our method respectively. Therefore,
the TCs of the two HC methods are 1� L

2L�1
and 1� 2L�1

2L�1
. We will

see that the percentage of saved computational cost by using our
method is still significant for large hierarchy with many levels. This
is consistent with the results in Fig. 3, which shows the TCs using
conventional HC and our method on hierarchies with different lev-
els. We can see that the advantage of both approaches is more
obvious for larger hierarchy in terms of efficiency. Furthermore,
the two curves are closer for larger hierarchy. Thus the advantage
of hierarchical classification can be maintained at large scale by
using our proposed error reduction approach.

4. Extension to multiple branch selection

In Section 3, to simplify the description, the basic framework is
built only for supporting single branch selection (Single-BS). We
will extend the framework to enable multiple branch selection
(Multi-BS) in this section so as to increase its generalizability.
The difference between Single-BS and Multi-BS is shown in
Fig. 2. In Single-BS, we assume the sibling nodes are semantically
exclusive, and the classification result is thus a single path from
root to leaf. For example, in Fig. 2(b), the test image is annotated
with ‘‘vehicle’’, ‘‘wheeled vehicle’’ and ‘‘car’’. However, Single-BS
will cause missing labeling when some of the related concepts like
‘‘road’’ are also in the concept set. To address this problem, as
shown in Fig. 2(c), in Multi-BS, we select multiple branches, which
result in a more comprehensive labeling for the target image with
both semantically and contextually related concepts.

4.1. Combining semantic and contextual relations for multi-BS

The most intuitive way for combining the semantic and con-
textual consistency into the framework is to add the concepts
that are contextually related to the target node into the commit-
tee, so that the weight matrix W, after being learnt, will carry
both semantic and contextual relationships between the commit-
tee members and the target concept. Therefore, two questions
needed to be answered are (1) how to find contextually related
concepts? and (2) how to use the new committee to select multi-
ple branches?

4.1.1. Selecting contextually related concepts
Contextual relationship has been intensively studied in litera-

ture (e.g., [15,33,34]), resulting in a lot of metrics to measure the
contextual similarity between two concepts. To select the contex-
tual relatives for a given concept from a candidate concept set,
we can simply use any of the existing measures to calculate its
contextual similarities to the candidate concepts and select the
top-k concepts with the largest similarities (or similarities
exceeding a threshold). In this paper, we adopt Flickr Context
Similarity (FCS) [35] for this purpose. It estimates inter-concept
contextual similarity based on the statistics derived from tags
associated with the images in Flickr. FCS is defined as:

FCSðci; cjÞ ¼ e�NGDðci ;cjÞ=q; ð5Þ

where

NGDðci; cjÞ ¼
maxflog hðciÞ; log hðcjÞg � log hðci; cjÞ

log N �minflog hðciÞ; log hðcjÞg
: ð6Þ

4 http://www.di.ens.fr/�mschmidt/Software/code.html.
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Here NGD stands for Normalized Google Distance [36], hðciÞ is the
number of Flickr images associated with concept ci;hðci; cjÞ is the
number of images associated with both ci and cj, and N is the num-
ber of images indexed by Flickr. The function h is computed by que-
rying Flickr API. According to [35], the parameter q is empirically
set as average NGD among a set of randomly selected words. The
contextually related concepts can then be selected based on their
similarities with the target concept measured by Eq. (5).

4.1.2. Multiple branch selection
With the new committee generated using both semantic and

contextual relationships, we can use similar process as in Sec-
tion 3.2 to adjust the output for each candidate concept. In Sec-
tion 3.2, the adjustments for all the candidate concepts are
conducted simultaneously within the framework of MCR because
the candidate concepts are assumed to be exclusive to each other.
In this section, we have to conduct the adjustment for each candi-
date concept individually, since the assumption of exclusion is no
longer valid. To this end, a binary regression model (LR) is learnt
for each concept ctþ1 under current node ct by using responses of
its committee concepts as predictors. That is

Pðctþ1jwctþ1 ; fT ðxÞÞ ¼
exp wT

ctþ1
fT ðxÞ

� �

1þ exp wT
ctþ1

fT ðxÞ
� � ; ð7Þ

where the relationship constraints UT is modeled by weight vector
wctþ1 . Consequently, we can select the branch where the adjusted
response of the candidate concept exceeds a threshold [16,4,5].
The selection criteria is

Pðctþ1jUT ; fT ðxÞÞ > thctþ1 ; ð8Þ

where Pðctþ1jUT ; fT ðxÞÞ is the adjusted response based on all the
observations of committee members, and thctþ1 is the threshold
for the new response. The proposed method with multi-branch
selection is summarized in Algorithm 2.

Algorithm 2. Error Reduction HC with Multiple Branch Selection
Incorporating Contextual and Semantic Relationships (L-ER-MHC)

Input:
I Testing instance x.
Initialization:
I Put root node into a list L.
I Set the detected class set C ¼ U.
Hierarchical classification

1. Dequeue one node ct out of L. Set ct ’s child nodes NðctÞ
as the candidate nodes.
2. Generate a committee T for each candidate node using
its child and grandchild nodes, as well as the contextually
related nodes according to Eq. (5).
3. For each candidate node, compute the responses of the
nodes in its committee T by calling corresponding
classifiers. The responses are composed into a vector
fT ðxÞ ¼ ½fc1 ðxÞ; fc2 ðxÞ; fc3 ðxÞ; . . .�.
4. Get the adjusted response for each candidate node by
using Eq. (7).
5. Put the candidate nodes, which satisfy Eq. (8), into the
prediction results C. Then, put the non-leaf nodes from the
selected candidate nodes into L for further investigating.
6. If L is not empty, return to step 1.

Output
The prediction results C.

4.2. Exclusion-aware multi-BS

In this section, we have to release the mutually exclusive
assumption among candidate concepts to allow multiple branch
selection. It is worth mentioning that this may impose errors for
the selection when the selected candidates are with (either seman-
tically or contextually) exclusive relationship. For example, both
‘‘indoor’’ and ‘‘outdoor’’ might be assigned to the image in
Fig. 2(c), even these two concepts rarely appear in the same image.
We believe that using the prior knowledge on the exclusive rela-
tion to remove this type of conflicting selections could help lead
the classification to correct branch. Thus we propose an exclu-
sion-aware Multi-BS method, where the exclusive relationship is
explicitly considered. In specific, for the candidates with exclusive
relationship (e.g., ‘‘indoor’’ and ‘‘outdoor’’), only one candidate can
be selected according to Eq. (1). Otherwise, Eq. (8) is adopted for
selecting multiple nodes (e.g., ‘‘vehicle’’ and ‘‘location’’) to
investigate.

5. Experimental setup

5.1. Datasets

The three image datasets are Caltech256 [22], ILSVRC1K [3] and
NUS-WIDE [37]. Caltech256 consists of 256 labeled concepts for

(a) Test Image (b) HC with Single-BS (c) HC with Multi-BS

Fig. 2. Given a test image (a), the hierarchical classification results with (b) single branch selection (Single-BS), and (c) multiple branch selection (Multi-BS). Single-BS assigns
the concepts on a single path to the image, and Multi-BS labels the image with multiple paths. Correct and wrong assignments are marked as black and gray respectively.

Fig. 3. The saved computational costs of conventional HC and ER-SHC compared to
one-vs-all approach on binary hierarchies with different number of levels.
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object annotation. In [22], a concept hierarchy is pre-defined using
the 256 concepts as leaf nodes. ILSRVC1K is a subset of ImageNet,
where the concepts are organized by WordNet. Starting from the
1,000 concepts in ILSRVC1K, a hierarchy is extracted from the Ima-
geNet hierarchy. These two datasets are designed for Single-BS,
and each image is only labeled with one leaf class. The third data-
set used in this paper is NUS-WIDE, which is one of the largest fully
annotated image datasets. NUS-WIDE is composed of 269,648
Flickr images, which is divided into a training set (161,789 images)
and a test set (107,859 images). It is manually labeled with 81
semantic concepts covering a wide range of topics from object to
event. Starting from the 81 concepts, we extract a concept hierar-
chy by following the ‘‘is-a’’ relationship from WordNet. The con-
structed hierarchy supports multiple branch selection. Table 1
lists the statistics of three datasets and hierarchies. We follow
the train/validation/test split in ILSRVC1K. For Caltech256, the
instances of each concept are split to train/val/test by 50%–25%–
25%. For NUS-WIDE, we split the original test set to a validation
set and a test set by 50%–50%.

5.2. Implementation details

Each image is represented using Locality-constrained Linear
Coding (LLC) with densely sampled SIFT features [38]. We employ
a visual vocabulary of 4,000 visual words, and three level spatial
partitions (1� 1;2� 2 and 3� 1). Consequently, the dimension
of feature vector is 32,000. For each node ci, a classifier fci

ðxÞ is
learnt using linear SVM [9] on training set. In addition, the logistic
regression model used in our method is learnt on the validation
set. The thresholds of local classifiers and LR models for Multi-BS
are tuned by performing 5-fold cross-validation. Following the
method in [16,5], we choose the threshold which optimizes F1
score (i.e., score-cut optimization [39]).

5.3. Evaluation criteria

In HC with Single-BS, the test instances are all from leaf nodes
which are mutually exclusive. Thus classification performance is
usually measured using global accuracy among leaf nodes (Acc)
[26], which is defined as the ratio of correctly classified instances.
An instance is correctly classified when the annotated leaf node
hits the ground-truth. In HC with Multi-BS, we adopt the standard
F1 measure by jointly considering the recall and precision. F1 score
is defined as:

F1 ¼ 2� Recall� Precision
Precisionþ Recall

; ð9Þ

where

Precision ¼ #True Positives
#Predicted Positives

;

Recall ¼ #True Positives
#Actual Positives

:

ð10Þ

Furthermore, the overall performance on several categories can
be measured by using either macro-averaged or micro-averaged F1
scores (denoted by Macro-F1 and Micro-F1 respectively). Macro-F1

averages the F1 scores computed separately for each class. Micro-
F1 is calculated using the binary predictions of all classes. For
example, classifying m instances to n classes produces m� n binary
predictions, from which Micro-F1 can be computed with Eq. (9) and
Eq. (10). Macro-F1 and Micro-F1 have been two standard evaluation
criteria for classification [16,5,39]. In [40], they compare the two
metrics in detail, and point out that Macro-F1 tends to emphasize
rare classes, while Micro-F1 emphasizes common classes. In this
paper, both Micro-F1 and Macro-F1 are used. Note that F1 score
can be used for both single-branch and multi-branch HC, while
Acc is only suitable for single-branch scenario.

Similar to [26], where the efficiency of HC is measured using
one-vs-all approach as baseline, we evaluate the efficiency using
percentage of saved time cost compared to one-vs-all approach.
Since we adopt linear SVM, the time cost is linear with the number
of involved classifiers. Thus the efficiency is evaluated using the
saved time cost TC defined in Section 3.4. In this case, TC of one-
vs-all approach is 0. We further define MTC as the average saved
cost over all test instances.

6. Results and discussions

This section discusses the experimental results. The proposed
methods for HC with single and multiple branch selections are ver-
ified respectively.

6.1. Performance of HC with single-BS

We compare the following approaches for performance
evaluation.

� Flat: standard multi-class SVM for single-label classification.
Note that concept hierarchy is not leveraged. Flat exhibits the
near-optimal performance that an HC method can achieve, con-
sidering that the classifiers of leaf nodes will be activated for
testing.
� SHC (baseline): the standard HC with Single-BS that employs

the highest-response-first strategy.
� ER-SHC: our proposed error reduction HC for Single-BS.
� SIB-ER-SHC: a simplified ER-SHC by using only the candidate

nodes to form the committee (i.e., only sibling relationship is
considered).
� SHC-Ref [5]: local classifiers are learnt using informative nega-

tive instances. In specific, the instances, which are easily mis-
classified to the branch of a target concept, will be included in
its negative training set, so that the error can be blocked prop-
agating to lower levels.

The results on two datasets supporting Single-BS are summa-
rized in Table 2. Note that Acc is computed among leaf nodes,
and F1 scores are averaged over all the nodes. We can see that
SHC saves more than 90% of computational cost compared to Flat
at the expense of classification accuracy. In contrast to Flat, which
traverses all the classifiers in a brute-force manner to achieve the
highest possible accuracy, SHC suffers from the problem of error
propagation. This is more obvious for ILSRVC1K, where the concept
hierarchy has more levels. On the other hand, our proposed
method can recover the errors to certain degree, and thus the effec-
tiveness of hierarchical classification can be improved. In specific,
for Caltech256, ER-SHC improves the baseline by 14% Acc, 18.5%
Macro-F1 and 7.2% Micro-F1. By only taking the sibling relationship
into account, the improvements of SIB-ER-SHC are marginal with
respect to the three metrics. This result demonstrates the advan-
tage of a larger committee, which postpones the decision making
until more observations are available and it is more confident to

Table 1
Dataset statistics: number of leaf nodes (#Leaf) and internal nodes (#Int), depth of
the hierarchy (#Dep), average number of instances of each concept for training
(#Trn), validation (#Val) and testing (#Tst) respectively.

Dataset #Leaf #Int #Dep #Trn #Val #Tst

Caltech256 256 62 6 58 29 29
ILSRVC1K 1000 645 13 1261 50 150
NUS-WIDE 73 44 10 3722 1248 1250
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do so. Additionally, although local classifiers are trained with some
informative negatives, SHC-Ref utilizing highest-response-first
local strategy only achieves slight performance improvements over
baseline. In terms of efficiency, ER-SHC sacrifices more computa-
tional cost than those of other three HC methods, but the saved
cost by 67.1% from the one-vs-all approach is still considered sig-
nificant, an indication that ER-SHC achieves a better balance
between computational cost and accuracy. Similarly, for ILSRVC1K,
ER-SHC outperforms SHC and SIB-ER-SHC by 19% and 16.6% in
accuracy respectively, while remaining satisfactory in efficiency
by saving 88.9% computational cost. We can see that the advantage
of ER-SHC on ILSRVC1K is more obvious than that on Caltech256.
The observations are consistent to the analysis in Section 3.4. This
is due to the fact that the hierarchy of ILSRVC1K is in a larger scale
which includes 1,327 more concepts than Caltech256. Therefore,
the SVM models for the nodes at higher levels of the ILSRVC1K
hierarchy are with much more complex or vague decision bound-
aries than those in Caltech256. This is because more offspring con-
cepts are attached to each higher level node, bringing the instances
with more variances of visual appearances, and finally making the
resulting classifier less reliable. In this case, the semantic relation-
ship verification and error reduction embedded in MCR model of
ER-SHC are more necessary, because the error propagation is more
serious.

To grasp more insights of the methods, we plot the performance
at each hierarchy level on the two datasets in Fig. 4 and Fig. 5
respectively. Acc is computed among the concepts at the same level
as they are exclusive. For Macro-F1 and Micro-F1 at i-th level, we
adopt the way used in [16] by averaging F1 scores of concepts at
top i levels. It shows the trend of performance when more rare con-
cepts from lower level are included. We can see that the error
propagation becomes more serious with the increase level of
depth, resulting in drop of performance. ER-SHC has demonstrated
consistent superiority over other methods, confirming its ability to
address the issue of error propagation. Surprisingly, the perfor-
mance of SIB-ER-SHC seems better on ILSRVC1K than on Cal-
tech256. This again confirms our analysis that the advantage of
employing a committee for decision making over the arbitrary
highest-response-first strategy will be more obvious when the

classifiers of individual nodes are weaker. It seems that involving
some informative negatives is not that helpful as the decision
boundary itself is complex for a node with many offspring con-
cepts. Thus SHC-Ref is less effective at the first few levels on

Table 2
Performance comparison of Flat and four HC methods with Single-BS on Caltech256 and ILSRVC1K. Classification performance is measured by global accuracy (Acc), Macro-F1 and
Micro-F1. The testing efficiency is measured by average saved time cost (MTC). The performance gain over baseline is shown in the parentheses.

Dataset Flat SHC (baseline) SIB-ER-SHC ER-SHC SHC-Ref

Caltech256 Acc 0.376 0.267 0.270 (1.0%) 0.305 (14.0%) 0.279 (4.49%)
Macro-F1 0.336 0.232 0.235 (1.3%) 0.275 (18.5%) 0.245 (5.60%)
Micro-F1 0.556 0.485 0.489 (0.8%) 0.520 (7.20%) 0.501 (3.29%)
MTC (%) 0 91.5 91.1 67.1 90.8

ILSRVC1K Acc 0.201 0.094 0.096 (2.0%) 0.112 (19.0%) 0.099 (5.32%)
Macro-F1 0.237 0.096 0.102 (6.2%) 0.122 (25.7%) 0.105 (9.37%)
Micro-F1 0.473 0.325 0.38 (16.9%) 0.397 (22.6%) 0.352 (8.30%)
MTC (%) 0 98.1 98.3 88.7 97.9

Fig. 4. The performance of different HC methods with Single-BS on Caltech256 at each level measured by (a) Accuracy, (b) Macro-F1 and (c) Micro-F1.

Fig. 5. The performance of different HC methods with Single-BS on ILSRVC1K at
each level measured by (a) Accuracy, (b) Macro-F1 and (c) Micro-F1. The sub-figure
on the right is a zoom-in from level 8 to level 13.
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ILSRVC1K. On the other hand, the improvement of SIB-ER-SHC over
baseline is much more obvious on ILSRVC1K (Fig. 5(c)) than on Cal-
tech256 (Fig. 4(c)) with respect to the Micro-F1 at each level. This is
because SIB-ER-SHC significantly improves the nodes with weaker
classifiers at first few levels on ILSRVC1K. These nodes are all com-
mon classes, of which the performance is emphasized by Micro-F1.
Eventually, SIB-ER-SHC improves over baseline by 16.9% Micro-F1
at level 13 on ILSRVC1K.

6.2. Performance of HC with multi-BS

We further evaluate our method for Multi-BS. The following
methods are discussed in this section.

� Flat: standard multi-label SVM, where a testing instance may
be assigned multiple labels by thresholding technique. Note
that concept hierarchy is not leveraged.
� MHC (baseline): the standard HC with Multi-BS (MHC), where a

candidate node is selected by thresholding its original response.
� ER-MHC: our proposed error reduction HC for Multi-BS using a

committee same with ER-SHC (i.e., sibling nodes and their child
nodes).
� CHI-ER-MHC: a simplified ER-MHC by only including the candi-

date node and its child nodes in the committee.
� MHC-Ref [5]: the refined hierarchical classification method

with multi-branch selection.
� L-ER-MHC: the extension of our proposed method for Multi-BS

by enlarging the committees using both semantic and contex-
tual relations.
� EXC-SIB-MHC: our proposed exclusive-aware MHC, where the

branch selection for sibling nodes with exclusive relation
adopts highest-response-first strategy.

� EXC-ER-MHC: exclusive-aware ER-MHC, where the LR model is
replaced with MCR model for adjusting responses of candidate
nodes with exclusive relationship.
� EXC-L-ER-MHC: similar to EXC-ER-MHC, we implement exclu-

sive-aware L-ER-MHC by replacing LR model with MCR model
for adjusting responses of candidate nodes with exclusive
relationship.

Table 3
Performance comparison of Flat and four HC methods with Multi-BS on Caltech256, ILSRVC1K and NUS-WIDE. Classification performance is measured by Macro-F1 and Micro-F1.
The testing efficiency is measured by average saved time cost (MTC). The performance gain over baseline is shown in the parentheses.

Dataset Flat MHC (baseline) CHI-ER-MHC ER-MHC MHC-Ref

Caltech256 Macro-F1 0.248 0.171 0.187 (9.3%) 0.191 (11.6%) 0.185 (8.18%)
Micro-F1 0.497 0.450 0.467 (3.8%) 0.478 (6.2%) 0.470 (4.44%)
MTC (%) 0 92.9 72.3 65.7 90.6

ILSRVC1K Macro-F1 0.122 0.077 0.088 (14.2%) 0.095 (23.3%) 0.083 (7.79%)
Micro-F1 0.277 0.191 0.229 (19.9%) 0.241 (26.1%) 0.221 (15.7%)
MTC (%) 0 94.1 89.4 83.7 93.4

NUS-WIDE Macro-F1 0.297 0.204 0.212 (3.9%) 0.241 (18.6%) 0.220 (7.8%)
Micro-F1 0.591 0.430 0.485 (12.7%) 0.532 (23.7%) 0.475 (10.4%)
MTC (%) 0 86.4 70.2 63.8 85.1

Fig. 6. The performance of different HC methods with Multi-BS on Caltech256 at each level measured by (a) Macro-F1 and (b) Micro-F1.

Fig. 7. The performance of different HC methods with Multi-BS on ILSRVC1K at
each level measured by (a) Macro-F1 and (b) Micro-F1. The sub-figure on the right is
the zoom-in from level 8 to level 13.

86 S. Zhu et al. / Computer Vision and Image Understanding 124 (2014) 79–90



We first show the performance of ER-MHC and CHI-ER-MHC,
where only the semantical consistency is verified in the response
adjustment. Note that Multi-BS methods are applied on Caltech256
and ILSRVC1K by ignoring the prior knowledge of exclusive rela-
tionship among sibling nodes. The results on three datasets are
summarized in Table 3. Similar to the observation in Table 2, com-
pared to Flat, the effectiveness of MHC is sacrificed at the expense
of efficiency. On the other hand, compared to baseline which only
involves candidate node for branch selection, committee-based
method CHI-ER-MHC performs better on all the three datasets with
respect to both Macro-F1 and Micro-F1. With larger committee by
including more relatives, ER-MHC achieves the best result. There
are two benefits to involve siblings and their children in the com-
mittee. Firstly, the exclusive relationship between sibling nodes is
implicitly exploited. It helps to correct the misclassified instances
which actually belong to other sibling nodes, and meanwhile
avoids propagating the errors to lower levels. This is particularly
important for hierarchy with exclusive relationship (i.e., Cal-
tech256 and ILSRVC1K). Secondly, compared to MHC and CHI-ER-
MHC, more responses of classifiers in a larger committee provide
more clues for identifying and blocking the false positives which
are misclassified at higher level. Thus ER-MHC significantly
improves over both MHC and CHI-ER-MHC on NUS-WIDE, where
exclusive relationship may not exist. Similar to the observations
in Section 6.1, the advantage of ER-MHC is more obvious for large
hierarchy. It makes more improvements (23.3% Macro-F1 and
26.1% Micro-F1), and saves more computational cost (83.7%) on ILS-
RVC1K. While MHC-Ref archives some improvements over base-
line, compared with ER-MHC, there is still a performance gap.
The advantage of our method is more obvious on larger hierarchy,
where local branch selection strategy, which is adopted by MHC
and MHC-Ref, may cause severe error propagation.

We further plot the Macro-F1 and Micro-F1 of each method on
three datasets by level in Fig. 6, Fig. 7 and Fig. 8 respectively. As
shown in Fig. 6, it seems that the improvement of ER-MHC is not
obvious at higher level on Caltech256. The main reason is that Cal-
tch256 is a relatively small dataset which only includes 7400 test
images. The common concepts at higher level can easily achieve
a very high performance (e.g., 0.807 Macro-F1 and 0.845 Micro-F1
at first level). However, with the increase level of depth, error is
amplified. With error reduction methods, improvements at lower

levels are thus more noticeable than at higher levels. We can
observe more improvements on ILSRVC1K (Fig. 7) and and NUS-
WIDE (Fig. 8), where the hierarchies have more levels than Cal-
tech256. Rather than optimizing for a specific hierarchy, our
method works well on different kinds of hierarchies. In general,
the improvement is more obvious on larger datasets, which either
include many instances (e.g., NUS-WIDE) or have many concepts
organized in a larger hierarchy (e.g., ILSRVC1K). These are two
common cases in many real world applications.

We further verify the performance of L-ER-MHC combining
semantic and contextual relations. The experiment is conducted
on NUS-WIDE, where there are 59 nodes in the hierarchy having
contextually related concepts, and thus their committees can be
enlarged. For comparison, we average the F1 scores of error reduc-
tion MHC methods on the 59 nodes. As shown in Table 4, L-ER-
MHC shows improvement over ER-MHC by 9.7% Macro-F1 and
15% Micro-F1 respectively. This indicates that the consistency ver-
ification of responses among contextually related nodes results in a
more reasonable branch selection strategy. In addition, while L-ER-
MHC needs to activate more classifiers, the computational cost
introduced by large committee is small (7.6% of MTC). This is
because only the top most contextually related concepts (5.6 on
average) are considered in the enlarged committee. Thus our
method maintains the advantage of efficiency.

Comparing the results in Table 3 and Table 2, we can see that
MHC performs worse than SHC on Caltech256 and ILSRVC1K with
respect to Macro-F1 and Micro-F1. The main reason is that the
exclusive relationship is ignored in the standard MHC. While ER-
MHC implicitly uses this relationship by incorporating siblings in

Fig. 8. The performance of different HC methods with Multi-BS on NUS-WIDE at each level measured by (a) Macro-F1 and (b) Micro-F1.

Table 4
Performance comparison of two error reduction MHC methods on NUS-WIDE. ER-
MHC only consider semantic relation, and L-ER-MHC adopts a larger committee by
combining semantic and contextual relations. F1 scores are averaged on 59 nodes
with large committees. The performance gain of L-ER-MHC over ER-MHC is shown in
the parentheses.

ER-MHC L-ER-MHC

Macro-F1 0.216 0.237 (9.7%)
Micro-F1 0.393 0.452 (15%)
MTC (%) 63.8 56.2

Fig. 9. The results of multi-branch HC methods with and without using the prior
knowledge of exclusive relationship. F1 scores are averaged over 32 nodes which
are exclusive to their siblings
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the committee, the baseline of SHC still achieves a better result on
both Caltech256 and ILSRVC1K. In other words, when the exclusive
relationship is explicitly utilized by allowing only one candidate
node to be selected, a better performance is achieved. To further
confirm the merit of using this prior knowledge, we evaluate the
proposed exclusion-aware Multi-BS methods (i.e., EXC-SIB-MHC,
EXC-ER-MHC and EXC-L-ER-MHC) on NUS-WIDE. The exclusive
relationship among sibling nodes is derived from the ground-truth
of the training dataset. In specific, the sibling nodes are considered
to be exclusive if they have no shared positive instances. Eventu-
ally, there are 32 nodes in NUS-WIDE hierarchy, which are exclu-
sive to their sibling nodes. The F1 scores averaging on the 32
nodes is shown in Fig. 9. We can see that EXC-SIB-MHC improves
over MHC by 14.3% Macro-F1 and 21.5% Micro-F1 respectively. In
addition, EXC-ER-MHC outperforms ER-MHC by 7.9% Macro-F1
and 14.9% Micro-F1. Similarly, EXC-L-ER-MHC improves over
L-ER-MHC by 7.3% Macro-F1 and 12.2% Micro-F1. The results

confirm our suspicion that prior knowledge of mutual exclusion
is indeed helpful. The less improvements of EXC-ER-MHC and
EXC-L-ER-MHC compared to EXC-SIB-MHC are due to the fact that
exclusive relationship has been implicitly exploited by ER-MHC
and L-ER-MHC, where the sibling (exclusive) concepts are included
in the committee. Furthermore, our proposed collaborative branch
selection scheme (EXC-L-ER-MHC), which jointly considers multi-
ple relationships, achieves the best result.

To verify the performance of different methods is not by chance,
we further conduct significance test using randomization test [41]
suggested by TRECVID [42]. The target number of iterations used in
the randomization is 100,000. At 0.05 significance level, error
reduction HC is significantly better than conventional method for
both single-branch and multi-branch selection methods. In addi-
tion, exclusive-aware approaches are all significantly better than
the corresponding methods without considering the prior knowl-
edge of exclusion. Finally, EXC-L-ER-MHC using all the concept

Fig. 10. Example images in NUS-WIDE, and the classification results using different methods. Each method generates multiple branches, on which we only show the most
specific concepts at the deepest level.
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relationships is significantly better than all other Multi-BS
methods.

To grasp the insight of how the multiple relationships affect the
label assignments, we show some examples and the corresponding
classification results using MHC, ER-MHC and EXC-L-ER-MHC
respectively in Fig. 10. Note that each method outputs multiple
branches. Here we only show the most specific concept at the
deepest level for each branch. We can see that ER-MHC generates
more accurate labels than MHC, and the result is further improved
by EXC-L-ER-MHC. For example, MHC misclassifies image 1 to
‘‘train’’. This error is identified by ER-MHC, and recovered by lead-
ing to the branch ‘‘vehicle’’. Then the instance is further classified
to ‘‘plane’’. However, we found that ‘‘cars’’ under ‘‘vehicle’’ is also
assigned. This problem is addressed by EXC-L-ER-MHC using the
exclusive relationship between ‘‘cars’’ and ‘‘plane’’. The exclusive
relationship is particularly useful for discriminating the sibling
concepts which are visually similar, such as ‘‘cow’’ and ‘‘elk’’ in
image 6 and image 7, as well as ‘‘fish’’ and ‘‘whales’’ in image 8
and image 9. In addition, our proposed method is able to detect
the false positives from higher level. For example, image 4 is
wrongly labeled with ‘‘rock’’ by both MHC and ER-MHC, which is
caused by the wrong decision made at the parent node ‘‘nature
object’’. In EXC-L-ER-MHC, this error is identified by exploiting
the responses of concepts which are contextually related to ‘‘rock’’,
such as ‘‘mountain’’, ‘‘sky’’. Finally, the error is blocked at node
‘‘natural object’’ and will not be propagated to lower level. On
the other hand, we observe two representative failure cases. First,
the exclusive relationship among concepts, which are derived from
the ground-truth of training set, may be violated in the testing
dataset. Explicitly utilizing this relation for branch selection may
cause incomplete results. For example, ‘‘bridge’’ in image 13 and
‘‘toy’’ in image 14 are missed by EXC-L-ER-MHC. Second, incorrect
decision may be made by incorporating contextual relationship.
For example, image 15 is misclassified as ‘‘car’’ by EXC-L-ER-
MHC, as the high response from concept ‘‘road’’ misleads the
decision making. Similarly, ‘‘road’’ is also detected in image 16 by
EXC-L-ER-MHC. In brief, although few exceptions may be intro-
duced, collaborative consideration of multiple relationships in
general results in a more accurate and complete label set.

7. Conclusion

We have presented a novel and effective approach, which is
named as collaborative error reduction hierarchical classification,
to utilize the semantic and contextual relationships encapsuled
in the concept hierarchy for addressing the error propagation prob-
lem of conventional hierarchical classification. Furthermore, the
approach is extended for a more general case: multiple branch
selection. In particular, the semantic and contextual relations
between concepts are embedded in an enriched committee, based
on which the branch can be selected in a globally valid, semanti-
cally and contextually consistent view. In addition, an exclusion-
aware method is proposed to explicitly integrate exclusive rela-
tionship in the branch selection, which is ignored in conventional
multi-branch HC. Extensive experiments on three datasets show
that the proposed methods significantly and consistently outper-
form conventional methods for both single-branch and multi-
branch HC, while maintaining a satisfactory balance between effec-
tiveness and efficiency.
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