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Video Summarization and Scene Detection
by Graph Modeling

Chong-Wah Ngo, Member, IEEE, Yu-Fei Ma, Member, IEEE, and Hong-Jiang Zhang, Fellow, IEEE

Abstract—In this paper, we propose a unified approach for video
summarization based on the analysis of video structures and video
highlights. Two major components in our approach are scene mod-
eling and highlight detection. Scene modeling is achieved by nor-
malized cut algorithm and temporal graph analysis, while high-
light detection is accomplished by motion attention modeling. In
our proposed approach, a video is represented as a complete undi-
rected graph and the normalized cut algorithm is carried out to
globally and optimally partition the graph into video clusters. The
resulting clusters form a directed temporal graph and a shortest
path algorithm is proposed to efficiently detect video scenes. The
attention values are then computed and attached to the scenes,
clusters, shots, and subshots in a temporal graph. As a result, the
temporal graph can inherently describe the evolution and percep-
tual importance of a video. In our application, video summaries
that emphasize both content balance and perceptual quality can
be generated directly from a temporal graph that embeds both the
structure and attention information.

Index Terms—Attention model, normalized cut, scene modeling,
video summarization.

1. INTRODUCTION

ECENTLY, techniques for automatic video content sum-

marization have attracted numerous attention due to its
commercial potential especially for home video applications. A
concise video summary, intuitively, should highlight the video
content and contain little redundancy while preserving the bal-
ance coverage of the original video. A video summary, neverthe-
less, should be different from video trailers where certain con-
tents are intentionally hidden so as to magnify the attraction of
a video.

Techniques in automatic video summarization, in broad, can
be categorized into two major approaches: static storyboard
summary [1], [3], [5], [23] and dynamic video skimming [4],
[9], [10], [19]. The former is a collection of static keyframes
of video shots, while the latter is a shorter version of video
composed of a series of selected video clips. Static storyboard
allows nonlinear browsing of video content by sacrificing the
temporal evolution of a video. Dynamic video skimming, in
contrast, preserves the time-evolving nature of a video by
linearly and continuously browsing certain portions of video
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content depending on a given time length. For both approaches,
the appropriate selection of video segments plays a major role
in maximizing the entropy information and perceptual quality
of a video summary.

To date, compared with static storyboard summary, there are
relatively few works that address dynamic video skimming.
Nonetheless, due to the advance and popularity of audio-visual
capturing tools, effective techniques for dynamic video skim-
ming is highly in demand. Imagine that most people will be
bored by an unedited and long-winded home video that lasts
for hours. A tool that can automatically shorten the original
video while preserving most events by highlighting only the
important content would be greatly useful to most users.

Techniques for dynamic video skimming include applying
expectation maximization (EM) [17], singular value decompo-
sition (SVD) [4], motion model [12], [22], utility framework
[21], attention model [13], and semantic analysis [9], [19]. Most
techniques are based mainly on visual information except ap-
proaches like [9], [19] where audio and linguistic information
are also incorporated in order to derive semantic meaning. In
[9], audio and motion signals are used to detect emotional dia-
logues and violent scenes for summarization. However, this ap-
proach can only be applied to certain videos, and the resulting
summaries may not be useful in revealing the content coverage.
In [19], the InfoMedia system was developed to generate the
short synopsis of a video. Language understanding techniques
are applied with the aid of audio and visual features. Neverthe-
less, this text-driven approach could not generate satisfactory re-
sults when speech signals are noisy, which happens frequently
in life video recording.

Recently, SVD emerges as an attractive computational model
for video summarization [4]. However, this approach is compu-
tationally intensive since it operates directly on video frames.
In [10], a hierarchical tree that consists of events, activities,
actions, and shots is constructed to represent the video con-
tent. Then a summary is generated by randomly removing sub-
trees at different levels to meet the output video length. In [21],
the rules of cinematic syntax are utilized to give the syntac-
tical-based reduction schemes for summarization. Utility func-
tions are derived to maximize the content and coherence of sum-
maries based on the audio-visual information. Besides [4], [10],
and [21], other sophisticated mathematical models include [17]
and [22]. However, these models are only applied to a single
video shot. It is unclear how to extend their works to summa-
rize an entire video.

Most existing approaches emphasize either content coverage
[4], [21], [10] or perceptual quality (highlight) [9], [12], [13].
In this paper, we propose a unified approach for dynamic video

1051-8215/$20.00 © 2005 IEEE
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skimming that emphasizes both content coverage and perceptual
quality and is capable of reducing content redundancy. Our pre-
vious works in video skimming can be found in [12] and [13].
In [12], skimming is achieved by modeling and detecting the
motion-attended regions in videos. Specifically, summaries are
generated by gluing together those video segments that contain
high confidence scores in the motion-attended regions. In [13],
the attention model in [12] is further generalized by considering
the static, face, and audio information. One limitation of [12]
and [13] is that the structural information such as the intershot
relationship is not exploited for video skimming. As a result, a
video summary is solely a collection of video highlights that do
not take into account the content coverage. Similar highlights
may be repeatedly shown in a summary.

In this paper, we propose approaches to tackle the problems
in [12] and [13]. The major contributions in this paper are as
follows.

* A unified approach is proposed to capture both the video
structure and attention values for video summarization.

* To maintain content balance and reduce redundancy, a
video is structured according to scenes, clusters, shots, and
subshots in a hierarchical tree. Two major techniques are:
normalized cut algorithm for the decomposition of a video
into clusters and temporal graph analysis for scene change
detection.

» To measure perceptual quality, an attention model is em-
ployed to model human’s attention when viewing a video.

* The selection of video clips for summarization is based
jointly on the probability of subtrees and their attention
values.

In the remaining two subsections, we will first describe the basic
approaches (e.g., shot detection and keyframe construction) that
we adopt for structuring video content. Then, we present an
overview of our approach for video summarization and scene
detection.

A. Video Structure

A video usually consists of scenes, and each scene includes
one or more shots. A shot is an uninterrupted segment of video
frame sequence with static or continuous camera motion, while
a scene is a series of shots that are coherent from the narrative
point of view. These shots are either shot in the same place or
they share similar thematic content. Clusters can be viewed as
intermediate components between shots and scenes. Basically,
each cluster contains one or more shots with similar visual con-
tent.

To structure videos, we adopt the approaches in [14]-[16]
to temporally partition videos into shots and then into sub-
shots. These approaches are based on the analysis of motion
patterns extracted directly from three-dimensional (3-D) spa-
tial-temporal image volumes. In addition, we apply the adaptive
keyframe selection and construction scheme proposed in [15]
to select/construct one keyframe for each subshots, as shown in
Table I. These keyframes are used for shot similarity measure
by the proposed normalized cut algorithm to decompose videos
into clusters. The similarity measure is based on the video
representation techniques given in [15].

TABLE 1
VIDEO REPRESENTATION THROUGH KEYFRAME SELECTION
AND CONSTRUCTION

Action

Motion Type

static select one frame
pan or tilt construct a panoramic image
Zoom select the first and last image

multiple motion segment and construct

foreground and background scenes

indeterministic select one frame

Video

| shots

motion field

Attention Modeling

l attention value

undirected
weighted graph

Video Decompostion by
Normalized Cut

l clusters

[Temporal Graph Generation)

directed graph

(Scene Modeling and DetectiorD

scenes

Summarization,

video summary

Fig. 1. Proposed approach.

B. Overview of our Approach

Fig. 1 illustrates the flow of our proposed approach. The
whole process is carried out in MPEG compressed domain.
Initially, a video is temporally partitioned into shots based on a
spatio-temporal slice model in [14]. The model extracts three
temporal slices horizontally, vertically, and diagonally from
an image volume. These slices are basically two-dimensional
(2-D) images with one dimension in space and the other in time.
We employ jointly the color, texture, and statistical information
to segment the slices into regions that are originally connected
by cuts, wipes, or dissolves. Each region basically corresponds
to one shot after video partitioning. Based on these shots, a
complete undirected weighted graph, with shots as its nodes
and with shot similarities as its edges, is constructed to model
the similarity among all pairs of shots in a video. We employ a
global criterion, normalized cut [18], to optimally decompose
the graph into subgraphs (clusters). Normalized cut criterion
takes into account the total dissimilarity among clusters and the
total similarity within clusters for graph partitioning. Ideally,



298 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 15, NO. 2, FEBRUARY 2005

(

R

//’ \\\
4 \
' | — — — —
A\ &
—

OO OO
/ @\
LB
o (o) =(s) 1—.‘__,{_

N

II \\
(‘Q} start state @ end state

Fig. 2. Examples of temporal graphs.

(

=
=

(

o
~

g‘@

shots in a cluster will share similar video content after the
partitioning.

Meanwhile, a motion attention model is utilized to compute
the perceptual attention of video shots based on the MPEG
motion vector flow field. The computed attention values and
the partitioned subgraphs form a directed temporal graph. This
graph captures both the attention value and the occurrence
probability of every cluster and, most importantly, describes
the scene structure of a video. As a result, a simple approach
based on the shortest path algorithm is proposed to analyze
and detect scene transitions. Once scene changes are detected,
video structure is constructed hierarchically in the form of
scenes, clusters, shots, subshots, and keyframes. A summary
is then generated in the hierarchical top-down manner. In our
approach, the video structure provides useful hints for main-
taining the content balance of a summary, while the attention
values captured in a temporal graph facilitate the selection of
useful video clips.

The concept of temporal graph is similar to scene transition
graph in [23]. Fig. 2 shows several examples of temporal graph.
Each circle represents a cluster of shots. Intuitively, a temporal
graph is utilized because of its capability in describing the nar-
rative flow of a video. For instance, in Fig. 2, (a) shows a pro-
gressive story line, (b) shows the detailed description of two

events, (c) shows the interaction of different clusters (e.g., di-
alogue), while (d) shows the description of several events an-
chored by a center clusters (e.g., news). The inherent structure
of a temporal graph provides important cues to model and de-
scribe the scene composition. For instance, B; — Bs and D1 —
D3 in Fig. 2(b) can be viewed as two different scenes. In our
approach, scenes are detected by segmenting a temporal graph
into subgraphs where each subgraph corresponds to one scene.
For Fig. 2(a)—(c), these subgraphs can be easily obtained by
removing the edges that along the shortest path from the start
state to the end state. In Fig. 2(d), subgraphs can be obtained
by removing all edges connecting the start state. Scene decom-
position has been actively studied in [5], [15], [20], and [23].
Previous attempts are mostly based on the time-constraint clus-
tering or grouping algorithms. Our approach is different in that,
instead of depending on a time-constrain threshold, normalized
cut is employed to optimally obtain clusters while the shortest
path algorithm is utilized to efficiently detect scenes.

The paper is organized as follows. Section II describes video
decomposition by normalized cut algorithm. Section III presents
the construction and properties of temporal graphs. Section IV
proposes an approach for modeling scene decomposition, while
Section V presents a computational attention model based on
motion information. Finally, Section VI combines both scene
modeling and attention computation for video summarization.
Section VII shows our experimental results, and Section VIII
concludes this paper.

II. VIDEO DECOMPOSITION

A video is initially represented as a weighted undirected
graph that composes of shots. Let G = (V, E) denote a graph,
where the vertices V are the feature points of shots and edges
E connect every pair of vertices. The weight on each edge
w(1, 7) is a function that measures the similarity between shots
¢ and j. In our approach, the normalized cut algorithm [18] is
adopted to recursively bipartition G into clusters (disjoint sets)
of shots. Normalized cut can optimally partition a graph G into
two disjoint sets A and B (A U B = V) by removing edges
between A and B. Mathematically, we have

cut(A, B)
assoc(A, V)

cut(4, B)
assoc(B, V)

Ncut(A, B) = (H

where cut(A, B) 2icajenw(i,j) is a cut value, and
assoc(A, V) = 37, 4 ey w(i, ) is the total connection from
the vertices of a set to all vertices in G. The optimal biparti-
tioning of G is the one that minimizes /N cut. Equation (1) can
be transformed into a standard eigen system

DD - W)D Y%z = Az )

where D is a diagonal matrix with > w(i, j) on its diagonal
and W is a symmetrical matrix with w(z, §) as its elements. The
eigen vector that corresponds to the second smallest eigen value
can be utilized to find sets A and B.

The detailed algorithm for video decomposition consists of
the following steps.
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scene A

Cluster on the shortest path

Fig. 3. Temporal graph and scene change detection.

e Partition a video temporally into shots, and set up a
weighted graph G = (V, E). The weight w(i, j) on the
edge connecting shots ¢ and j is

—k x|fj = fil

utid) =esp { s} @)

which takes into account the color similarity,! Sim(z, j),
and temporal frame distance, | fi—fi |, between two shots
1 and j. The parameter k is used to emphasize the impor-
tance of temporal distance. Intuitively, the similarity be-
tween two shots should be inversely proportional to their
temporal distance. In our experiment, % is set to 8. The
normalization constant T is the total number of frames in
a video.

* Solve (2) and employ the eigen vector that corresponds
to the second smallest eigen value to bipartition G. The
value O is used as the splitting point to divide the eigen
vector into two parts. The algorithm is run recursively for
the two partitioned subgraphs and terminated when the
similarity between all pairs of shots in a subgraph is lower
than an adaptive threshold 75 = u + o, where p and o
are, respectively, the average and standard deviations of
shot similarity between all pairs of shots in a given video.

By recursively decomposing G into two subgraphs, in fact,
we form a binary tree that could be utilized directly for hierar-
chical video browsing. In our case, only the leaves of the binary
tree are used to form the clusters of a video.

IThe similarity between two shots s; and s; is based on the color similarity
among the keyframes in s; and s;. The similarity measure between a pair of
keyframes is based on the histogram intersection in hue, saturation, and intensity
(HSV) color space. The exact details can be found in [15].

Start state

End State

III. TEMPORAL GRAPH GENERATION

Once G is partitioned into subgraphs, a set of clusters that
consists of temporally adjacent or nonadjacent shots is obtained.
The temporal relationship among these clusters can be con-
structed to form a temporal graph TG = (V,E) by adding
the time order information of video shots. TG is a directed
graph, with clusters as its nodes V, and the transition proba-
bilities among clusters as its edges E. If we order the shots as
{...,8i,Si+1,- ..} in time order, a directed edge is added from
a cluster C,, to another cluster C,,, if there is a shot s; in C,, and
another shot s;41 in Cy,. In other words, C,, transits to C,, if
there exists a pair of shots that are temporally adjacent.

The temporal graph is basically a state transition diagram (or
Markov chain) that models the evolution of a video from states
to states. In this context, a state is equivalent to a cluster. See
Fig. 3 for an illustration of a temporal graph. Each cluster is
modeled by two parameters: its prior probability P.(C,,) and
attention value A(C,,). Every pair of clusters can be further
modeled by a transition probability P,(C,,|C),). Mathemati-
cally, they are computed by

1
P(Cn)= D, 1 @

5,€C,

PT(OmICn)zﬁ o> Ti-) ©)

5;€CH, s;€C,

where N is the total number of shots, |C,, | is the number of shots
in C,, s; is the ith shot ranked in time order, and 7 (z) = 1
if £ = 1, otherwise 7 () = 0. The probability of a cluster
P.(C,,) is directly proportional to the number of shots in C,,,
while the probability of transitions P, (C,,|C,,) is directly pro-
portional to the number of temporally adjacent pairs of shots
from C,, to C,,.
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Fig. 4. Motion attention detection. (a) I. (b) Cs. (c) Cs. (d) M A.. (e) Original video frame with the attention area marked by the bounded box.

IV. SCENE MODELING

A temporal graph can be partitioned into scenes by analyzing
the interconnectivity among clusters. Fig. 3 illustrates the tem-
poral graph of a video that can be segmented into four scenes.
Two important observations are: ) two different scenes are con-
nected by at most one edge and 2) each scene contains at least
one cluster that locates along the shortest path from the starting
scene to the ending scene.

Based on these observations, we can easily detect scene
boundaries by the following steps:

e Compute the shortest path from the cluster that contains
the first shot in a video to the cluster that contains the last
shot. The weight of an edge is set to 1. Dijkstra’s algorithm
is employed to find the shortest path (C1,C,. .., Ch).

* Disconnect the edge from C; to C ifi =5+ 1 If there
does not exist any path that can traverse from C; to é'j or
vice versa, C’L and C’j belong to two different scenes.

The proposed approach is simple yet effective. It allows us
to quickly discover and decompose the structure of a temporal
graph. In fact, the clusters along the shortest path could be uti-
lized directly for video skimming and summarization.

The idea of detecting scene changes in a temporal graph is
similar to the idea of finding story units in a scene transition
graph (STG) [23], except that the adopted algorithms are dif-
ferent. Since we adopt Dijkstra’s algorithm [2], the time com-
plexity of our approach is O(n + ¢), where n = [V| is the
number of nodes (or clusters), and ¢ = |E| is the number of
edges in a temporal graph TG. In [23], the algorithm is not
based on the search of the shortest path, but the analysis of a
“label sequence” which is composed of a series of shots marked
with their class labels. The time complexity is O(2 x N), where
N is the total number of shots in a video. The relationship
among n, e, and Nisn —1 < ¢ < N — 1. When the number of
clusters is equal to the number of shots, we have e4+1 = n = N.
Since most shots in a video are highly correlated (e.g., shots in
a dialog scene), the numbers of clusters and edges in a temporal
graph will usually much smaller than the number of shots, i.e.,
n € N, e < N. Thus, our algorithm is considered more effi-
cient.

V. MOTION ATTENTION MODEL

Attention is a neurobiological term. It means the concentra-
tion of the mental powers upon an object after close or careful
observation or listening. Computational attentional models have
been studied in [7] and [8]. Motivated by these studies, we em-
ploy the motion attention model in [12] to compute the attention
of humans when viewing videos. The model is based upon the
manipulation of motion vector field (MVF) [11] that describes

the spatial-temporal layout of motion vectors extracted directly
from MPEG video streams. If we consider MVF as the retina of
the eyes, the motion vectors can be the perceptual response of
optic nerves. We assume that MVF is composed of three types
of attention inductors: intensity inductor, spatial coherence in-
ductor, and temporal coherence inductor. When the motion vec-
tors go through these inductors, three maps (images) are gener-
ated to describe the responses of intensity, spatial, and temporal
coherency. These maps are fused as a saliency map to model
human attention.

A. Attention Inductors

Based on our assumption, there will be three inductors for
each macro block in MPEG video frames. The intensity inductor
I induces motion energy or activity. Denote (7, j) as the index
of a macro block I is defined as

V422 + Ay

1(i,j) = +—F— (©)

where (dz; j, dy; ;) represents the motion vector in the macro
block and Z is the maximum magnitude in MVF [11].

The spatial coherency inductor Cg and the temporal co-
herency inductor Cy are computed, respectively, by measuring
the entropy of spatial and temporal phase distribution of mo-
tion vectors. For each macro block indexed by (i, 5), a phase
histogram SHX[]/- with a spatial window of size W x W is
generated for Cy (i, j), while a phase histogram T'H}; with a
temporal window of I frames is generated for Cg(4, 7). Based
on the phase histograms, Cs(%, j) and C¢(4, j) are computed as

Z P.(k)log(Ps(k)) (7
Za ) log (P (k) ®)
where
SHY
Py(k) = 70— ©))
l; SHY (1)
THE
Py(k) = 54— (10)
;1 THY()

and n is the number of histogram bins. The three inductors,
I, Cq, and Cq, together compose a motion perception system
for attention modeling. Fig. 4(a)—(c) shows the outputs of three
inductors on an image sequence.
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B. Saliency Map

The outputs of the three inductors reciprocally characterize
the spatio-temporal attributes of motion in a particular way. By
observing the relationship between motion vectors and the at-
tended motions, we have drawn some conclusions as follows.
First, generally speaking, the motion with high intensity always
attracts human attention. However, this may not be true for cer-
tain camera motions since they can also induce high intensity for
I inductor. For instance, when a camera pans rapidly to track an
object, the human probably pays attention to the tracked object
only, even if this object sometime appears still when both the
camera and the object move. Although I is not sensitive to the
motion with lower energy, we can take advantage of the other
inductors to compensate for the negative effects. Second, the
spatial phases consistency provides us two cues. One is that the
phases of motion vectors in a moving object tend to be consis-
tent. The other is that, if the phases of motion vectors are disor-
dered and the magnitudes of them are evidently large, it implies
that the motion information is not reliable. Usually, the Cg in-
ductor is sensitive to motion with lower intensity. Finally, since
camera motion is generally more stable than object motion over
a longer period of time, Cy can effectively exploit this property
to discriminate object motion from camera motion. Based on
these observations, we integrate and fuse the three inductors to
form the motion attention model MLA as

MA =1IxC;x(1-1IxCy). (11)
MA is represented as a saliency map, as shown in Fig. 4(d). Ba-
sically, a macro block with a high value of M A indicates that
it locates at a high activity region induced by object motion. In
principle, this model can highlight regions with object motion
after the implicit compensation of camera motion through en-
tropy information. In Fig. 4(d), the computed motion-attended
regions are due to object motions.

After computing MA, the regions of attention in a saliency
map are located consecutively by histogram balance, media fil-
tering, binarization, region growing, and region selection [12].
The number of located regions in each frame is restricted to at
most three since it is hard for humans to focus on more than
three objects simultaneously. Fig. 4(e) shows the located mo-
tion-attended region.

In our application, the attention value A of a frame is defined
as the average value of MLA in the located regions. The attention
value of a shot (subshot) is defined as the average .4 of frames
belong to that shot (subshot). Similarly, the attention value of a
cluster (scene) is defined as the average A of shots (clusters) in
that cluster (scene).

VI. VIDEO SUMMARIZATION

Summarization can be viewed as a process of selecting video
segments based on the given criteria (e.g., entropy and percep-
tivity) and constraint (e.g., skim ratio). In our case, a video sum-
mary is generated directly from a temporal graph by exploiting
its structural, entropy, and perceptual hints. The structural infor-
mation provides a hierarchical way of selection, the entropy in-
formation inferred from prior probabilities provides cues on the

selection of scenes and clusters, while the perceptual hints in-
ferred from attention values facilitate the selection of the desired
scenes, clusters, shots and subshots. In our approach, we adopt
a top-down methodology to hierarchically summarize videos
from the scene level, cluster level, shot level up to subshots level.
Let R as the skim ratio of an original video. Our strategy is
to discard approximately 1 — R percentage of video frames by
looking into their contribution, at each hierarchy, toward the en-
tropy and perceptual importance of a final output video.

In our formulation, the entropy and perceptual information
will jointly define the qualities of scenes and clusters, while the
perceptivity will define the qualities of shot and subshot. The
summarization is actually carried out by selecting the desired
segments at each level, based on the constraint R, in a recur-
sive manner. The summarization terminates whenever the de-
sired skim ratio R is attained. The detailed algorithms at dif-
ferent levels of hierarchies are carried out as follows.

A. At Scene-Level

e Let Q; denote the quality of a scene S;, where Q; is com-
puted as

1

Q;, =Q(5;) = N, Z P (

C;€S;

Cj) X A(Cj) (12)

where P,.(C;) and A(Cj) is, respectively, the prior prob-
ability and attention value of a cluster C;, and N; is the
number of clusters in S;. We discard those scenes whose Q;
is smaller than @ x p x (1 — R), where p is the average Q;
of all scenes, and « is a parameter to control the number of
selected scenes. In the experiments, we set « = 0.01 in order
to retain most scenes, except those scenes with very low Q;.
If the skim ratio is equal to R, the algorithm will terminate.

* Sort the selected scenes for summarization in ascending
order according to their value Q;.

B. At Cluster-Level

* Based on the sorted order of scenes, one scene S; is picked
up at a time.

* Let QC; be the quality of a cluster C;. For each .S;, sort its
clusters in descending order according to

P (Cj) x A(C))

oC; = 7

(13)
where Z =} cg. Pr(Ck) x A(Cy). Based on the sorted
order, a subset of clusters in .S; whose accumulated value
satisfies

(5:)
C% QC’_ZQ(Sk)+R

_Q(S:) 1)

=(1+R) x EQ(Sk)

(14)

will be selected while the remaining clusters will be dis-
carded. The number of clusters selected in a scene is in-
deed directly proportional to its normalized scene quality,
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TABLE 1I
DETAILS OF TEST VIDEOS

No. Video Genre | Sound Track | Scene | Shot | Time
1. docon.mpg Carton Yes 14 209 | 11:41
2. c¢m1002.mpg | Commercial | Yes (incl. music) 14 165 | 8:59
3. hvl.mpg Home video No 29 98 | 20:14
4. hv2.mpg Home video No 56 220 | 17:05
5. hv3.mpg Home video No 44 127 | 10:40

Total - - - 157 | 819 | 68:39

ie., Q(S:)/(>) Q(Sk)), where ), Q(Sy) is the summa-
tion of quality over all scenes. Here, to ensure robustness,
we add an offset R x (Q(S;)/(3_, Q(Sk))) in (14) so that
a few more clusters can be selected.

e If the skim ratio is equal to R, the algorithm terminates.
Otherwise, we pick up the next scene for investigation until
all scenes are visited.

C. At Shot-Level

¢ Based on the sorted order of scenes and clusters, one cluster
C; is picked up at a time. For each cluster C;, sort its shots
s; in descending order according to their attention values
A(s;). Based on the sorted order, a subset of shots whose
accumulated value satisfies

7 A(sj) > (1+R) x QC;

s;€C;

(15)

will be selected while the remaining shots will be discarded.
Similar to (14), the number of shots selected in a cluster is
directly proportional to its cluster quality QC; plus an offset
R x QC;. If the skim ratio is equal to R, the algorithm termi-
nates. Otherwise, we pick up the next cluster for investigation
until all clusters are visited.

» Sort all of the selected shots in ascending order according to
their attention values. Pick one shot at a time and only keep
the subshot that has the largest attention value. If the skim
ratio is equal to R, the algorithm terminates. Otherwise, we
pick up next shot until all shots are visited.

D. At Subshot-Level

¢ Based on the sorted order of shots, we discard one subshot
at a time until the desired skim ratio is reached.

The aim of this algorithm is to maintain the content balance of
scenes according to their probability of occurrence and attention
values, while on the other hand, to hierarchically trim off those
segments, from scenes down to subshots, that are comparatively
less attended in order to achieve the desired skim ratio.

VII. EXPERIMENTS

We conduct experiments on five videos as shown in Table II.
The first two videos that consist of sound tracks are from
MPEG-7 video collection while the last three are home videos.
We evaluate the performance of our proposed approach based
on the results of scene detection and video summarization.

Since the results of scene modeling can affect summarization,
the first experiment assesses the recall and precision of the
detected scene boundaries. The correct scene borders are man-
ually identified by human subjects. Basically, a scene border
is identified if there is a change of shooting site or story flow.
The second experiment is based on subjective evaluation. Since
the quality of a video summary is subject to human perception,
we carry out a user study experiment to quantitatively evaluate
the informativeness (content coverage) and the enjoyability
(perceptual quality) of each machine-generated summary.

A. Scene Change Detection

We employ recall precision as the measure for performance
evaluation. Let N, be the number of correctly detected scenes,
N,,, the number of detected scenes by our approach, and Ny, the
number of scenes annotated by human subjects. The recall and
precision is defined as

N

Il =—

recall =

. N
recision =—".

p N,

The values of recall and precision is in the range of [0, 1]. A
high recall indicates the capability of locating correct scenes,
while a high precision indicates the capability of avoiding false
matches.

Table III shows the experimental results of scene change de-
tection. We compare the proposed approach with the method
in [15]. Both approaches adopt the same algorithms for video
partitioning and keyframe construction. For scene detection, the
approach in [15] employs a time-constraint grouping algorithm
to group similar shots. Basically, shots in one scene are progres-
sively grouped until there is no similar shot found within a tem-
poral distance. As shown in Table III, the proposed approach, on
average, outperforms [15] in terms of recall and precision. One
major deficiency of [15] is that the temporal distance parameter
are set to a fixed value and used throughout a video. We found
that this parameter, to be effective, should be adaptive from time
to time depending on the content of a video. The proposed ap-
proach in this paper does not suffer from this problem since the
temporal distance is embedded as part of the similarity measure
as indicated in (3). The results of scene detection are dependent
mainly on the accuracy of normalized cut and scene modeling.

Overall, the normalized cut algorithm and scene modeling
based on the temporal graph generation perform satisfactorily.
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TABLE III
RESULTS OF SCENE CHANGE DETECTION. C: CORRECT DETECTION, M:
MISSED DETECTION, F: FALSE ALARM

Proposed Approach Approach in [15]

No.| C M F | Recall Precision | C M F | Recall Precision

1. 14 0 2 1.00 0.88 10 4 3 0.71 0.77

2. 14 0 5 1.00 0.73 1 3 3 0.79 0.79

3. 25 4 2 0.87 0.93 27 2 10| 0.93 0.73

4. 45 11 4 0.80 0.92 34 22 18 0.61 0.65

5. 36 8 4 0.82 0.90 29 15 9 0.66 0.76
Ave | - - - 0.90 0.87 - - - 0.74 0.74

By manually browsing all shots in the clusters that are con-
structed by the normalized cut, we found that most shots in-
side the same clusters are visually similar. Few exceptions occur
when shots share similar color content but different semantic
objects. The oversegmentation of clusters happens when there
are changes of camera viewing angles and distances. Neverthe-
less, by analyzing the interconnectivity among clusters, our ap-
proach, in most cases, can correctly identify and group these
clusters under same scene.

As indicated in Table III, our proposed scene detection
approach achieves 100% recall for both videos docon.mpg
and cml002.mpg. In these two videos, the false alarms are
mainly due to the changes of lighting conditions, shooting
angles, and shooting distances in scenes. For instance, when
the shooting distance changes from a long take shot (normally
this is a master shot) to a close-up shot, the similarity between
the two shots is small even though they are shooting the same
site. These circumstances happen frequently especially for
the commercial video cm1002.mpg; as a result, only 73% of
precision is attained. For the last three home videos, besides
the changes of lighting, shooting angles, and distances, false
alarms are also due to the instability of camera motion which
causes errors when keyframe construction is performed [15]. In
addition to false alarms, the missed detections in home videos
are mainly due to the similar color content of different outdoor
scenes. As a result, different scenes are grouped together under
one scene. Fig. 5 shows the 16 detected scenes of the video
docon.mpg. Each image shown in the figure represents a scene.
These images are selected from the shots with the highest
attention values.

B. Video Summarization

To quantitatively investigate the performance of video sum-
marization, two criterions, informativeness and enjoyability,
are used for evaluation. Informativeness accesses the capability
of maintaining content coverage while reducing redundancy.
Enjoyability accesses the performance of the motion attention
model in selecting perceptually enjoyable video segments for
summaries. In this experiment, we generate ten summaries.
Each tested video has two associated summaries, one with
10% of the original video length and the other with 25% of the
original length. We invited 20 students to access the quality of
these video summaries. The students watched the videos from
high to low skim ratio, i.e., 10%, 25%, and then the original
video (100%), in turn controlled by our evaluation tool. No fast

Fig. 5. Sixteen detected scenes in docon.mpg. Each image represents a scene.
These images are selected from the shots with the highest attention values.

TABLE IV
PERFORMANCE EVALUATION OF VIDEO SUMMARIZATION FROM 20 STUDENTS

Enjoyability Informativeness
No. 10% 25% | 100% 10% 25% | 100%
1. 68.35 77.85 | 93.10 64.55 77.35 | 92.85
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forward or backward function is provided by this tool. After
watching a video, a student is requested by the tool to assign
two scores ranging from O to 100, in terms of informativeness
and enjoyability, to the video before he or she can watch another
video. To be fair, the students are also requested to give scores
to the original videos in case they think that these videos are
not informative or enjoyable. After watching an original video,
the students are also given chance to modify the original scores
assigned to the two associated summaries.

Table IV shows the experimental results. Each nonshaded
score is the average scores of 20 students, while each shaded
score is the average of scores that are normalized by the scores
assigned to the original video. The overall average scores shown
at the bottom of the table are based on the mean of the normal-
ized scores. As indicated in Table IV, the average scores for en-
joyability are 70.44% and 80.93%, respectively, for video sum-
maries of 10% and 25% skimming ratio. The average scores
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TABLE V
STANDARD DEVIATION OF SCORES IN TABLE IV FROM 20 STUDENTS

Enjoyability Informativeness
No. || 10% | 25% | 100% | 10% | 25% | 100%
1 4.82 | 4.59 | 5.09 4.40 | 4.64 | 5.60
2 5.02 | 4.67 | 4.85 4.59 | 4.72 | 4.97
3. 4.37 | 4.86 | 4.74 4.23 | 4.77 | 4.96
4 4.77 | 4.38 | 4.67 4.48 | 4.25 | 4.59
5. 4.21 | 3.60 | 5.10 4.14 | 4.21 | 4.68

for informativeness are 70.34% and 82.50%, respectively. Com-
pared to the scores given to the original videos, the enjoyability
scores drop 29.56% and 19.07%, while the informative scores
drop by 29.66% and 17.5%, respectively. Table V further shows
the standard deviation of these scores for each tested video.
The experimental results are indeed encouraging. By
reducing 90% of the original video content, the overall enjoy-
ability and informativeness of a summaries drop only around
30%. By reducing 75% of the video content, the enjoyability
and informativeness drop only around 20%. In overall, the
scores of videos with sound track are higher than that of videos
without sound track. This is not surprised since audio provides
extra information, and most users feel enjoyable when the
sound effect can appropriately simulate the visual rhythm
effect. In this experiment, the scores of informativeness and
enjoyability are fairly close. This result is interesting since it
can be an indication that both criterions are closely correlated.

C. Speed Efficiency

Because all of the video analysis and processing are carried
out directly in MPEG compressed domain, the proposed ap-
proach is reasonably fast. On a Pentium III platform, currently
our motion attention model can run in real time. Excluding the
time to detect shot boundaries and construct keyframes, our pro-
posed approach took approximately 23 min to generate ten sum-
maries for the five tested videos of approximately 69 min. In
fact, most of the computational time is spent computing the
adaptive threshold T; mentioned in Section II by measuring the
similarity among all pairs of shots. The normalized cut algo-
rithm, which is traditionally slow when applied for image seg-
mentation, however, is computationally efficient for our appli-
cation. This is mainly because the number of shots in a 1-h video
is typically less than 1000, far less than the number of pixels in
an image.

VIII. CONCLUSION

We have presented a novel approach for video summariza-
tion. On the one hand, the structure of videos is exploited in
order to maintain the content coverage of summaries. On the
other hand, a motion attention model is adopted to compute the
perceptual quality of video segments for content highlight se-
lection. Information for both video structure and highlight are
then effectively encapsulated in a temporal graph. By modeling
the evolution of a video through a temporal graph, the proposed
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approach can automatically detect scene changes and generate
summaries.

In the future, we will focus our research on the video attention
model. Besides motion, multimedia information such as audio,
music, and video captions will be taken into consideration for
a more effective selection of video segments. Automatic video
editing techniques will also be developed for the composition of
the selected segments for video summarization.
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