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Video Partitioning by Temporal Slice Coherency

Chong-Wah Ngo, Ting-Chuen Pong, and Roland T. Chin

Abstract—We present a novel approach for video partitioning  [9]-[11], [13], [18], [19], [21], wipe detection include [2], [12],
by detecting three essential types of camera breaks, namely cuts,[16], and dissolve detection include [3], [10], [12], [19], [21].
wipes, and dissolves. The approach is based on the analysis of ttmyyjines and dissolves involve gradual transitions with no drastic

poral slices which are extracted from the video by slicing through h bet t tive f dh |
the sequence of video frames and collecting temporal signatures.C anges between two conseculive frames, and nence, are reia-

Each of these slices contains both spatial and temporal information tively difficult to identify. While cuts can be identified by com-
from which coherent regions are indicative of uninterrupted video paring two adjacent frames, wipes and dissolves require the in-
partitions separated by camera breaks. Properties could further vestigation of frames along a larger temporal scale.

be extracted from the slice for both the detection and classifica- . . .
tion of camera breaks. For example, cut and wipes are detected by | In general, most cut detection algorithms can segment a video

color-texture properties, while dissolves are detected by statistical INt0 shots accurately if the sequence has smooth within-shot
characteristics. The approach has been tested by extensive experi-frame transitions and abrupt between-shot spatial changes. The
ments. speed efficiency of these algorithms are normally improved by
Index Terms—Cut detection, color-texture segmentation, dis- either processing in the compressed domain (e.g., MPEG) [10],
solve detection, spatio-temporal pattern, spatio-temporal slice, [11], [19], [21] or sub-sampling of the spatial and temporal of

video partitioning, wipe detection. video frames [18]. Features extracted from the compressed do-
main are rich in both global and local properties and are ideal for
|. INTRODUCTION cut detection. On the contrary, the video sub-sampling scheme

depends on the spatial window size and the temporal sub-sam-

VIDEO can be partitioned into shots; a shot is an uninte ling rate. and has shown to be sensitive to object and camera
A rupted segment of video frame sequence of time, spagg,iions

and g_raph|cal configurations [5]. 'I_'he bogndary between two Although there exists many cut detection algorithms, there
shots s called a camera break (or video edit). Due to the advance . ; ; . .
are relatively few wipe- and dissolve detection algorithms pro-

of video production technology, various type of video edits cargl sed in the literature. Wat al. [16] proposed the projected

be easily created to indicate the change of space and time, of 10

ST X . gawwise difference deviation to detect wipes. However, it can
highlight important events. For instance, sport videos often uSe - ) .
nly handle very limited, yet simple, wipe patterns. Alattar [2]

a special-effect edit between the live footage and mstant-rep% : . : .
. e . ; oposed a more general wipe detection algorithm by analyzing
to intensify impression. Therefore, by detecting, as well as clds- - . . :
e statistical change in mean and variance of the wiped frames.

sifying, camera breaks, we can facilitate the content analyﬁ'-ﬁjwever, this statistical approach assumes that there is only

indexing, and browsing of video data, and in addition, redu% ight motion in shots, so that the beginning and ending of wipe

?g?:so retrieval problems to image (or key-frame) retrieval prc’tr)égions can be identified. As a result, it can not detect wipes in

. . . : videos with fast motions. Menet al.[10] and Alattar [3] pro-
Based on the transitional properties of video edits, there are . . ; ) .

. : . posed dissolve detection algorithms by looking for the parabolic
three major types of camera breakst, wipe, anddissolve A

: ; Lun(_:tlons of intensity variance in the dissolve regions. These al-
camera cut is an instantaneous change from one shot to another. . )
L . s orithms assume that dissolves are linear, and hence, can only
a wipe is a moving transition of a frame (or a pattern) acro

c?le_rate slight motions during the dissolve periods.

the screen that enables one shot to gradually replace anot| elfh this paper, we proposed to detect camera cuts, wipes, and

and a dissolve superimposes two shots where one shot gradu ls\:/: . : .
: . iSSolves based on a spatio-temporal slice model. The model is
appears while the other fades out slowly. Fig. 1 shows examp

es . . . .
of the three types of camera breaks. Since frames located at Hgt b)_/ co_nstructmg a spatlo-tempqral slice of the_ V|de_0 and

. : . nfalyzmg its temporal coherency. Slice coherency is defined as
boundaries of wipe or dissolve can not represent the content,0

R L he logical consistency of an event in a shot which is referred
a shot, in principle, it is necessary to separate those frames fr{)m o
shots. 0 as the common rhythm shared by all frames within a shot. A

. . . camera break is detected if there is a change of rhythm. Early
In the current literature, there are various algorithms for de-__ ™. . . . . .
. C ork in the temporal slice analysis is mainly on motion estima-

tecting camera breaks. Work on camera-cut detection include . .
tion [1], [14], [20], while our approach focuses on developing

algorithms to measure the change of rhythms for the cut, wipe,

Manuscript received October 18, 1999; revised May 11, 2001. This work Waj]d dissolve detections. Compared to other camera-break de-
supported in part by RGC Grant HKUST661/95E, Grant HKUST6072/97E, an ction alaorithms. our proposed algorithm handles fast motions
Grant HKUST6089/99E. This paper was recommended by Associate Editortﬁ. g ’ prop g

J. Zhang. and color changes within a shot. In addition, it is capable of de-
The authors are with the Department of Computer Science, The Hong Kolébting various Wipe patterns. The proposed dissolve detection

University of Science and Technology, Clear Water Bay, Kowloon, Hong Konﬁ_' hod is simil 101. 13 hat th istical

(e-mail: cwngo@cs.ust.hk; tcpong@cs.ust.hk; roland@cs.ust.hk). ethod Is similar to [ ]* [ ]' except that the statistical features
Publisher Item Identifier S 1051-8215(01)06531-4. are computed directly from the temporal slices.

1051-8215/01$10.00 © 2001 IEEE
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Fig. 1. Three types of camera breaks.

Fig. 3. Spatio-temporal slices of different rhythms. (a) Stationary scene.
(b) Fast motion.

homizontal slice dhagonal slice

weritigall slioe

Fia.2. Th tio-t [ vid lices taken f : | 1oRlg- 4. Samples of spatio-temporal_slices. (a) Three shots connected_by two
thlg tempor;?Zisr:r?:nlsoio(relmpora video siices taken from an image volume a Oc s. (b) Two shots connected by a wipe. (c) Two shots connected by a dissolve.

the spatio-temporal slice, while a shot with fast motion will
create oscillatory patterns.

Fig. 2 shows a video sequence arranged as a volume Witlgig. 4 shows three spatio-temporal slices. Each slice contains
(=,y) representing image dimensions antemporal dimen- seyeral spatially uniform color-texture regions, and each region
sion. We can also view the volume as formed by a set gfconsidered to have a unique rhythm. The boundary of regions
spatio-temporal 2-D slices, each with dimensjont) or (y, ), which shows a distinct change of rhythm indicates the presence
for example. Each spatio-temporal slice is then a collectigft a camera break. The shape and orientation of the boundary
of scans in the same selected position of every frame asfe affected by the types of camera breaks: a cut results in a
function of time. The spatio-temporal slice is used to extract ggrtical boundary line, a wipe results in a slanted boundary line,
indicator to capture the coherency of the video. In Fig. 3, Wend a dissolve results in a slow transition which shows a burred
show two spatio-temporal slices of different coherent rhythmggngary.

A shot without motion will have horizontal lines running across |+ pecomes obvious now that shot boundaries can be detected

1A scan is defined as a strip of an image. For example, it can be a row oﬁgd classified by ;egmenting a spatio-tempgral slice in.to_ re-
column in an image frame. gions each of a uniform rhythm. Compared with other existing

A. Concept of Temporal Slice Coherency
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approaches, our proposed approach offers the following adva
tages.

1) Camera-break detection is reduced to image segmen cut
tion. By selecting a small subset of spatio-temporal slice
for segmentation, the processing of the whole imag
volume is reduced to a few 2-D slices. wipe (7-to-I)

2) By analyzing the properties of regional boundaries, Wi || wipe (t-to-b)
can detect, as well as classify, various types of camel
breaks.

3) By locating the two end points of a regional boundary, we dissolve
can detect the start and end time of a wipe.

4) _Compared with the wipe detection algorlthms prOpo'SQ—ﬁjg. 5. Spatio-temporal slice patterns generated by various types of camera
in [2] and [16], our approach does not require performingreaks:-to-r (left-to-right); r-to-I (right-to-left); t-to-b (top to bottom);b-to-t
global motion compensation explicitly in order to distin{bottom-to-top).
guish between wipe and camera motion.

In this paper, we propose two different measures to detect the kity

Camera Break H Vv D

wipe (I-to-1)

wipe (b-to-t)

breaks between coherent shots in a video life. First, the change vi= Y apfu(p,i), wherek, = % )
of rhythm of a spatio-temporal slice due to a cut or a wipe is p=k1—j

measured by the change of color-texture properties of the slice. ity

Second, the change of rhythm due to a dissolve is measured by di= > apfac(p.it) 3)
the statistical changes in the temporal slices. Since the rhythm of p=i—j

the two adjacent shots are intertwined during a dissolve Wh%\r/ﬁ

. 2 < M or N j is the wi f f
the change in coherency cannot be easily distinguished bycol%r—ereq =P o< Mo andj is the wmdovyo support or
. e weighted projection of,. onto a scan line. The coeffi-
texture properties.

. . . . ientsa,, are selected weights of the linear projection where
This paper is organized as follows. Section Il presenﬁ “p 9 proJ

methods on the efficient computation of the three types éf 7 ~ 1. Whenj = 0, o, is set to 1 and the projection
. . . ) IS simply the scan which passes through the center of the
spatio-temporal slices. Section Il proposes a spatio-temporal
. : ) mage fa.. TO ensure smoothness of the scans, we select
slice model which captures the shape of regional boundary as" 1 to perform Gaussian smoothing on the dc data, where
a priort _knowledge_ and segments Fhe spatio-temporal S“. asp] = [0.2236,0.5477,0.2336] [4]. By cascading these scans
into regions. Sections IV and V discuss the cut and wipée . ) ; X
. . . ov?r time, we acquire a 2-D spatio-temporal sliEke (size
detection algorithms based on the proposed spatio-temp « T) formed by the horizontal scans, a 2-D image(size
slice model. Section VI describes a statistical approach F{f « T) formed b ythe vertical scans an;j a 2-D imapdsize
detecting dissolves. Section VII presents experimental resu % T) formed by diagonal scans Iéi 2 has shown the three
while Section VIII discusses the pros and cons of various tested y diag -9

algorithms. Section VIII concludes the paper Spatio-temporal slices of a video sequence.
9 ' paper. There are two questions associated with this approach: 1) the

number of spatio-temporal slices in a volume that should be
taken for analysis and 2) the strategy on how to select these
spatio-temporal slices. In principle, selecting more slices will
The size of a video sequence (the volume as in Fig. 2) is figaprove the detection results at the expense of computational
duced by replacing each full size image with dc imagehe cost. To be most efficient, two spatio-temporal slices of orthog-
dc sequence is obtained directly from an MPEG video witho@nal directions are necessary whéiecaptures the temporal
decompressich This offers two advantages: computational efeoherency in the horizontal direction aid models the tem-
ficiency, since the volume is reduced by 64 times, and the imageral coherency in the vertical direction. For our application,
volume is inherently smoothed. in order to detect and classify different camera breaks, three
Let 7’ be the number of images in a volume afid be adc slices #,V, D) are used to provide the necessary discrimi-
image of sizel x N. Our approach projects the 2-D imafije  natory power to resolve the various types of breaks. The three
vertically, horizontally and diagonally to three 1-D scans. Thgelected scans are chosen to be located at the center of the dc

Il. COMPUTATION AND PATTERNS OF SPATIO-TEMPORAL
SLICES

value of a pixel in a scan is computed by image for convenience. Fig. 4 shows a sample s€ibfV, D},
which will serve as models for the segmentation algorithm of the
katj N spatio-temporal slices.
hi= > apfac(i,p), wherek; = 5 1)
p=ka—j Ill. SPATIO-TEMPORAL SLICE MODEL

To effectively segment a spatio-temporal slice into coherent
A de o 4 by Using the first coefficient of el § discret regions, on one hand we need to extract features that represent
C Image Is ftorme Yy using the Ttirst coeificient or e Iscrete f
cosine transform (DCT) block. coherency, while on the other hand, we need to model the change

3The estimation of dc sequence from the P- and B-frames of a MPEG h%fs coherency at the regional boundaries. We .propose a model
been discussed in [17]. that extracts the color-texture features from slices and captures
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the shape and orientation of regional boundary (as shownWe empirically set¢ = {0°,—45°,45°}, v = v = 04
Fig. 5) as model energy. A regional boundary is detected whand fix the values of, ¢; ando;. As a result, the color-tex-
there is a violation of color-texture coherency in the spatio-terture feature at each pixel is a 12-D feature vector. For

poral slices extracted from a video sequence. instance, the feature vector of a pixel &k, is in the
For ease of understanding, the following mathematical notirm [Efg(i,t),Efg(i,t),Efg(i,t),Toh%g(i,t)], where
tions are used in the remaining paper: 6 = {0°,—45°,45°}.
YVH = [H.,H,,H,H)],V = [V,,V,,V,,V,] and

D = [D,,D,, Dy, D,] are denoted as the spatio-temB- Formulating Model Energy
poral slices in(r,g,b) color spacé andy luminance  The probability that a framé, is at the boundary of two shots
space. Eacli. (or V. or D.) is indexed by spaceand ¢ can be written &s
timet (H.(i,t) for instance), and € {r, g, b}.
2) he, v, andd, are defined as the scansH, V andD, p(fr €£|H,V,D)
respectively. Each scan is in fact one column of a slice =p(hy € &|H)p(v, € €| V)p(d, € €| D)
indexed by spaceéat timet. .
3) h.(i), which is a pixel in the scahy, is abbreviated ta; - Zp(hi € {1 H)p(v; € £ V)p(di € £|D). (8)
(similarly for v; andd;). ‘
4) ¢ € {cut, wipe} is defined as shot boundary arfdis Combined with the local characteristic of Markov random field
denoted as an image frame at timaVe write f, € £ if  [8], we can model the local spatio-temporal configuratioh of
f¢ is at the boundary of two shots. v;, andd; as
5) In spatio-temporal slices; is also referred to as the
boundary of two connected regions. In this case, we write P(ft € {|H,V,D)
hy € &€ (h; € &), for example, to indicate a scan (a pixel) - Zp(hi e &|Hy)p(v; € £\ Va)p(d; € £|Dy) (9)
is at the regional boundary. i

whereH y, Vy andDy are3 x 3 neighborhood systems that

) ] ] o will be described in Section IlI-C. Due to the Markov—Gibbs
The color edge information of a spatio-temporal slice is Comgquivalent [8], we can assume thath; € &|Hy), p(v; €

puted by ¢|' V) andp(d; € £|Dy) follow Gibbs distribution. Hence,

_ we have
Ej{g =G/yp* H. (4)

A. Computing Color-Texture Feature

1
. . — . . . h; € Hy)=— =U(h; 10
wherex is a convolution operato’,, 4 is the first derivative p(hi € E[Hy) A exp{=U(hi)} (10)

Gaussian along the directigngiven by where Z is a normalizing constant, arid is an energy func-

tion defined by the neighborhood systepi«; € £| V) and
p(d; € £|Dy) also have a similar formula as (10)). Substi-

_ tuting (10) into (9) and taking the logarithm on both sides, we
where = icos +tsinf and = —isinf +tcos. G,(i,t) = phave

exp{—(i? + t?)/(20?)} is a Gaussian filter controlled by a
smTohothing par?meter._ { based e Gabor d log{p(f; € ¢|H,V,D)}

e texture feature is computed based on the Gabor decom- _ Ulha) 4 Ulw:) + Ulds
position [7]. The idea is to decompose images into multiple = Z{ (hs) + Ulv) + U (d)}
spatial-frequency channels, and to use the real components of
channel envelopes to form a feature vector. The complex Gabor ~ L(ft € &) &< — Z{U(hi) +U(v) +U(d:)t (11)
images are ‘

Gloolist) = =5Cro(it), Goolist) = Goli',t) (5)

T

. whereL(f; € &) = log{p(f; € £|H,V,D)}. In other words,
T 0.6 = Goyo0 % Hy. (6) the likelihood of a camera break Atis dependent on the total

o R ) . energy of the scans at tinte
The Gabor filterG,, -, ¢(z,y) = Go, », (¢, 1) is expressed as

C. Segmenting Spatio-Temporal Slices

2 2
G, 0 (i,t) = <27T0i0t> eXP{—% <;—3 + %2)} From (11), we further classify the energy functigrto three
X exp{2mj Wt} ) types of energylicy;, Ugipe—» andUy;pe+, Where
where Usut = {Ufuer Ude Ul Ul }
Il/V : \/%; Uipe- = {U;ipe*vU VE\I/ipe*’l/vVl\)/ipe*7l/v E\J/ilde*}
(u,v) center of the desired frequency. Usipet = {U:\;il)e+’UV£\I/i1)e+’ UVZ\)/ipe*’ Ufnpe+} :

4Note that MPEG uses YCrCb color space. Our method converts the YCrCPH, V, andD are assumed independent since they are extracted from an
to RGB components. image volume through different orientations
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Fig. 6. Neighborhood system of a pixe] (or .(7)). (a) Spatio-temporal configuration. (b) Connected components.
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Fig. 7. Anillustration for the energy computation of (12). The connected components which cross both the region A and region B will have highér energy o
I'z, . than the connected component which is on the regional boundary. As a resultir1 (ayill have relatively low energy, in (b)) e will have relatively
Iow energy, and in (c)l)m -+ Will have relatively low energy.

Each energy type has four elements describing their color-texhere
ture properties ir(r, g, b) color space ang luminance space.

U, models the energy value of a vertical boundary line and L5 (hi) = cc[cffic‘;cﬁ} Lo (hi)
Usipet Models the energy value of a slanted boundary line 7, (hy) = min  [7(h)
of positive slope, whild/,,;,.- models the energy value of a N ee(Cs GG} ‘

slanted boundary line of negative slope. For simplicity, we onl . .
re th nn mponents with a n iv
describe the energy formulation &, U Ur. . The 2.5, Co) are the connected components with a negative

energy function of other slices are comp;‘a%ga 7|n ggfmﬂar waySIOpe while{Cs, C7, Cs} are the connected components with
a positive slopel’;. (h;) is a potential energy computed by the
The energy of a pixeh; is computed based on the configu b P ( i) P 9y P y

'sum of absolute feature values difference in the connected com-
ration of a neighborhood systeimas shown in Fig. 6. We de-

) ) - . ponentC;. Denoten = H,.(41,%1), andne = H,.(i2,t2) as the
I'r?e elg:wt C(innehcted fo.r;poréemﬁ - {Cl’CQt’ d "Ct?g mth neighbors ofh; such that{m, h;,n2} forms a connected com-

€ system fo characterizg. =ach component describes %onentC The potential energy which represents the edge in-
spatio-temporal relationship @f; with its neighboring pixels.

formation ath; in the color space is
Except forCy, which represents a horizontal boundary, the con- K P

nected components describe the shape of the regional boupd ‘EH it)— E" g(tl,tl)‘
aries of interest to our camera break detection.

Based on the neighborhood system, we define + ‘Ea alit) — E(fg(iQ, t2)| (13)
Ugut(h) Iy (hy) 0 1 17 [T% (h) wheref = 0° for Ucy, 6 = —45° for Uy, andd = 45°
mp _(hi)| =3 re(h) | -1 0 1 e, (hy) for Uyipe+ - When formulating the potential energy which rep-
ur. . (h:) re,(hy) 1 1 0 I, (h:) resents the texture information in the luminance spa¢#3) is

! , modified to
F1C4 (hz) - -
— | T, (he) (12) TY () = |Ty(ist) = T3 i, 1)
I'e, (hi)

+

i) — T (i, t2)| . (14)

Fig. 7illustratestheintuitive meaningof (12). Ononehand, neg-
6H v, V 5, Dy have a same neighborhood configuration. ative weights are giventothe potential energies of connected com-
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(@) (b)

Fig. 8. Computed energy for the spatio-temporal slices shown in Fig. &(@)of horizontal slices. (b}, Of horizontal slices.

pqnents_which crosstwodistinctregions, si_n_cethe_y consist ofr Compute the energy of H ] Compute the energy ofv] Compute the energy of D
atively high values; on the other hand, positive weights are giv /
to those components which are inside one region or along the ™~ l
gional boundaries. When all the potential energies are summ { Compute equation (21) and locate a suspected wipe region

ks ks ks 1 H
U.C“t’ Usipe- anngWipe+ willgive Iowepergyvalues whenthere- |
gional boundaries of the preferred direction are encountered.

Finally, the energies computed from the color and luminan: Compare the color histograms of block P and Q

. adjacent to the suspected wipe regions in
spaces are combined to form Had Vad D
Uilhi) = min Uby(hs) + Ub(hi)  (15) *

j€{r.g,b}
. no
R N = 3 J . Y . large diffference2Z> ——— No wipe detected
UVV11)87 (hl) - jCI[nrlélb} Uwipef (h’l) + Uwipef (hl) (16) ’

lfyvil)e+ (hz) = Inin lfj yes

. N+ UY ;
s, Uaper (1) & Uiy (h) - A1)

where the energy computed through color edge and texture f

tures are equally weighted. Fig. 8 shows the segmentation No wipe detected L
sults, the white lines which indicate the presence of low ener

run across the boundaries of connected regions. |
[ Detect the exact wipe range I

IV. CUT DETECTION Fig. 9. Wipe detection algorithm.

From (11), let the regional boundafy= cut andU = U,
we have wipe pattern

L(ft S Cut) X — Z{Ugut(hz) + Ucut(vi) + Ucut(dz)}(18)

suspected wipe region

It is obvious that cuts can be located by looking for scans pos-

sessing lower energy than a pre-defined threshold. Howevég, 10. P and Q are the blocks (formed by five scans) adjacent to the suspected

such a simple scheme will normally fail because it is difficult"P¢ 29

to find a threshold that can tolerate both false and missed detec-

tions. Therefore, cuts are detected by looking for the local minthe energy configuration ai( f, € wipe) can cover different

mals of energy value in our implementation. The idea is adoptadpe patternsL(f, € wipe) will pick up the lowest energy

from Ferman and Tekalp [6], which uses the temporal filteringhich best fits the wipe pattern under investigation. Wipe de-

techniques to enhance the values of local maximals. This ideation, in contrast to cut detection, can not be easily achieved

allows us to not perform shot pruning as proposed in [11]. by investigating the energy value of every scan independently.

Instead, the total energy in a group of five adjacent scans is

V. WIPE DETECTION summed when locating wipes. Fig. 9 depicts our wipe detection

(Iegorithm for a suspected wipe pattern illustrated in Fig. 10.

. . . . al
Detection of wipes is more complicated than cuts due to t}ﬁ starts by computing the energy of three spatio-temporal

vanety of wipe pgtterns (seeFig. 11). Letthe regional boundasr}fces, and then locates the suspected wipe regions. The color
& = wipe, we write (11) as

histograms of the two neighboring blocks (blocks P and Q, as

L(f, € wipe) shown in Fig. 10) of the_suspected_ wipe reg_ionanV and
5™ AUwipe(hi) + Usipe(:) + Usipe(di) } D are compared.If the histogram difference is larger than an
) Zg{lfcut(hi) + Ugipe(7) + Usipe(di) } empirical threshold, Hough transform [15] will _be perfor_r_ned
& —nn Zi’ {Usipe(hs) + Ues(v;) + Uipe(di) } to locate the boundary lines formed by the wipe transitions.
S AUwipe(hs) + Usipe(v;) + Uens(di) } These lines correspond to the local peaks in the Hough space.

(19) Only pixels whose values exceed 0.05% of the total values in
the Hough space are considered as peaks. If 10% of the total

where
"The sizes of the suspected wipe regiondinV andD are not necessary
to be equal, the sizes will be adjusted so that only the regions with low energy

_ 2 2
Usipe = Uwipe— + Uwipe+- (20)  vaiues ofwipo(+) Will be considered.
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VI. DISSOLVE DETECTION

A dissolve connects the boundaries of two shots smoothly; as
a result, the connected shots share a blurred boundary region in
a spatio-temporal slice. Globally, the slice is composed of two
regions with different visual appearances; locally, it exhibits a
smooth transition from one region to another. Our dissolve de-
tection algorithm is similar to [3], [10], except that it computes
the statistical characteristic of intensity values directly on three
spatio-temporal slices rather than individual frames.

DenoteDissolve(x, y, t) as the intensity function of a scan su-
perimposed by two shots having intensity functi¢hs$z, v, t)
with ¢ < ¢, and Sz (x,y,t) with ¢ > t; respectively, we can
model dissolve as

Dissolve(z,y,t) = (1 — a(t))S1(z, y, 1) + (t)S2(z, y, 1)
1 <t<ty (21)

wherea(t) = (¢t — t1)/(t2 — t1) varys linearly witht in the
range [0, 1]. Denotg(t) be the mean intensity of a scan during
the intervalt; < ¢ < ¢, then we can have

p(t) = 1 (8) + (2 (8) — 1 ()l ) (22)

where ;°7(t) is the mean intensity of a scan at time
t that belongs to shotj. Taking the first derivative
W/(t) = (dpi(t))/(dt), we have

B ) — i (1)

Pa— (23)

W)=
Assuming 2~ () and p°2(t) remain unchanged during dis-
solves,;/(t) is a constant value.
Similarly, leto(¢) be the variance of a scan during a dissolve,
then

o(t) = (6™ (t) + 0% (1)’ (t) — 20™ (t)a(t) + o™ (1)
() (m) ") (24)

Fig. 1%&) Laricus Y"ipe(")agf_itions- (%'gs found. (bz ')”;'_‘ shape. () Ra(ﬂi)ﬁl/hereasj (t) is the variance of a scan that belongs to shdt
wipe. ock wipe. (e) Flip over. piral box. (g) Zig-zag blocks. s S . .
Checker wipe. (i) Motion wipe. (j) Zoom wipe. (k) Barn door. (I) Band Wipe.g ' (t) ando _2 (t) remain ConStanb(t) IS a concave UPward
(m) Wipe. (n) Page turn. parabola during; < t < ..
Fade-in and fade-out are treated as special cases of dissolve,

either S1(z,y,t) or Sa(z,y,t) will be replaced by a constant

pixels are peaks,the suspected wipe regions are regarded ggagec (black image in most cases). For fade-in, (21) becomes
object or camera motiors.

The duration of a detected wipe range is obtained directly — Fadeln(z,y,t) = (1 — a(t))C + «(t)S2(z, y, 1),
from a peak with the highest value in the Hough space. Let the t <t <ts (25)
detected wipe range it as7" = [t},...,t}], Vast’ =
[t,...,t], andD asr? = [td, ... . If *nrvnrd # 0, the  Similarly, for fade out, (21) becomes
i iti i ¢ h qv 2d H
start of a wipe transition is detectedai(¢7', t7, t7), while the FadeOut(z, 4, ) = (1 — ()1 (2,1, ) + a(£)C,

end of a wipe transition is detected max(t", ¢¥,¢). A wipe
is also detected similarly if* N 7¥ # P or 7* N 7¢ % P or t <t<t (26)
7V N 7¢ £ (. In addition, two wipes are merged if they are |eSﬁ/(t)

than 15 frames apart.

remains relatively constant during fade-in and fade-out,
while o(t) becomes a semi-parabolic curve. In addition, there
are abrupt changes in scans at the beginning of fade-in and at
the ending of fade-out. The abrupt changes can be detected by
8The values 0.05% and 10% are empirically set. These values are set tqthe cut detection algorithm described in the previous section.
Il;))\/thglc?:/ ﬂ'igt?g',fiﬁqda‘ﬁﬁgtﬁg;f'”ce most of the false alarms have been pr“”eggsed on the above discussion, dissolves can be detected by
9This is because rigid object translation or camera panning (tilting) will usd@0King for periods whose mean derivative and variance behave

ally generate multiple feature lines in temporal slices. as (23) and (24). In the implementation, our approach detects
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TABLE | TABLE IV
CuT DETECTION ON THEMOVIE SACRIFICE.mpg OF 738 FRAMES CuT DETECTION ON THE NEWS PEARL.mpg OF 4300 RRAMES
(FIve CAMERA CUTS) (30 CAMERA CuUTS)
Approach D|F | M Approach D\F|M
Slice Coherency }} 5 | 0 | 0 Slice Coherency || 30| 1| 0
Color Histogram || 5 | 0 { O Color Histogram || 29 [ 0 | 1
Frame Difference || 5 | 0 | O Frame Difference |30 | 1 | 0
Step Variable 4101 Step Variable 291 4| 1
TABLE I TABLE V
CUT DETECTION ON THE TV STREAMS TOWEST.mpg OF CuT DETECTION ON THEMOVIE TUNGNIEN.mpgOF 11 247 RAMES
18954 RAMES (97 CAMERA CUTS) (17 CAMERA CuTS)
Approach DlF M Approach D{F M
Slice Coherency || 96 | 16 | 1 Slice Coherency || 17| 4 | O
Color Histogram | 91 | 13 | 6 Color Histogram || 17 | 0 | 0
Frame Difference || 97 {20 | 0 Frame Difference || 17 | 5 | 0
Step Variable || 95|31 | 2 Step Variable || 17]0 | 0
TABLE VI
TABLE Il RECALL AND PRECISIONMEASURES FOR THEFIVE TESTEDVIDEO
CuT DETECTION ON THE MOVIE SHUSHAN.mpg OF
9150 RAMES (119 CAMERA CUTS)
Approach Recall | Precision
Approach D |F | M Slice Coherency 0.99 0.83
Slice Coherency || 117 | 34 | 2 Color Histogram 0.91 0.88
Color Histogram || 102 | 21 | 17 Frame Difference | 0.99 0.75
Frame Difference || 117 { 67 | 2 Step Variable 0.96 0.75
Step Variable 113 152 6

in classi, and D; as the number of correctly detected frames in

. . classi. Then
a period {t1,t2] and15 < t; — t; < 45) that has an approxi-

mate constant mean derivative, and has a semi upward parabola recall; = Di (27)
curve of variance in any two spatio-temporal images as a dis- A;
solve. In prir_1cip|e, this statistical-based approach ca; only be precision, = D; (28)
tolerant to dissolves whose’ (t), 12 (t), o1 (t) and o> (t) B;

are constant over < t < t». For dissolves with motions, thesewherez‘ € {cut, wipe, dissolve}, recall; andprecision, are in

statistical measures will not be constant; however, they can sltp“e interval of [0, 1]. Low recall values indicate the frequent

demonstrate the parabolic shape of variance curve and the &fsrrence of missed detections, while low-precision values
proximate constant of mean derivative. show the frequent occurrence of false alarms. For instance, if

only 20 frames are detected for a dissolve of 30 frames, then

precision = 1 andrecall = 2/3, while if there are 40 frames
To evaluate the performance of the proposed approach, dgfected, theprecision = 3/4 andrecall = 1.

conduct experiments on news sequences, documentary filmd;or simplicity, we define/V' as the number of frames in a

movies, and TV streams. The size of an image frans&sx ~ sequence) as the number of correct detectiors;as false

240. We first examine the performance of the cut, wipe, andlarms; andy/ as missed detections.

dissolve detectors independently on the image sequences. We )

then activate all detectors on testing two image sequencedtoCUt Detection

demonstrate their capability on classifying camera breaks, andVe compare the performance of our proposed cut detection

their tolerance to false and missed detections. We employ recatlethod (namely slice coherency) with three other approaches:

precision to analytically measure the results. Denbtas the color histogram [13], [17], [21], frame difference [17], [21], and

number of frames in clags B; as the number of detected framestep variable [18]. The first two approaches work directly on the

VII. EXPERIMENTAL RESULTS
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TABLE VI
DETECTION RESULTS ONVARIOUS WIPE PATTERNS

Actual Detected Wipe Range
Wipe Pattern || Wipe Range || Slice Coherency | Statistical Approach
Iris round 80-109 79-103 none
Iris shape 80-109 88-111 none
Radial wipe 80-109 83-106 none
Clock wipe 80-109 86-106 none
Flip over 80-109 80-109 80-109
Spiral box 80-109 84-110 none
Zig-zag block 80-109 81-107 none
Checker wipe 80-109 82-95 none
Motion wipe 80-109 86-106 101-109
Zoom wipe 43-83 47-73 none
Barn door 34-63 32-57 34-72 82-89
Band wipe 31-45 29-44 31-93
Wipe 41-63 41-62 40-69 77-81
Page turn 54-73 55-65 61-66

dc sequence of MPEG videos, while the last approach workstowest.mpg has rich fighting and magical scenes, as a result,
the uncompressed image domain. The color histogram difféalse alarms and missed detections are arisen by all approaches.
Similarly, the shushan.mpg in Table IIl, which has rich special
cinematographical effects, also causes the same problems. In
Table 1V, the pearl.mpg is a news sequence with some sport

ence between two dc imaggsand /- are

HD(f1, f2) = D {115 (k) — Ry (k)| + ] (k) — h§(K)|
k=1

+ B3 (k) — Ry (k)| }

The frame difference is computed as

FD(f1, f>) = ZZ |f1(i,§) = fo(i, 5)-

Since the dc image is inherently smooth, it is less sensitiveg

camera and object motion compared to the full frame’s pixgke |owest precision rate. On the other extreme, color histogram

(29)

(30)

scenes with fast and large object motions. Although the color

histogram does not cause any false alarm, a miss has happened at

the location where there are two adjacent shots of a soccer field
whereh?, h{ and h? are the histograms corresponding to thgaken from two different view points. In Table V, the movie tung-
RGB components of a dc imagg. The histogram is set to 64 nien.mpg consists of both indoor and outdoor long-take skots.
bins since it has been shown to give sufficient accuracy [21]q one of the shots, there is an object moving in and out of the
screen abruptly; as a result, both the slice coherency and frame

difference approaches give rise to false alarms.

Table VI shows the recall-precision measures of all ap-

roaches for the five tested video. While frame difference
Rares with slice coherency the best recall rate, it suffers from

level difference [17]. In the implementation, a camera cutis dgzg the highest precision but the lowest recall rate. The results

tected if the corresponding difference is a local maximal.

are not surprising since frame difference can only model local

In contrast to other approaches operated in the compresgﬁgnges while color histogram can only handle global changes.

domain, step-variable [18] speeds up the processing time 8y nroposed approach acquires a better trade-off in terms of
subsampling video frames. Along the temporal dimension, Q.|| and precision mainly due to the presence of coherency
frames separated kytime units are compared; along the spggich provides useful information for cut detection. Although

tial dimension, only the predefined set of blocks in a frame agg .o coherency only processes partial information as the

compared. The value of= {1,2,4,8, 16, ...} is setadaptively gategies adopted by step-variable, it is comparatively tolerant
based on the scene activities. The mean value difference of eg¢lqth missed and false detections.

block in two compared frames is used to detect cuts.
Tables I-V show detection results of the four different afB. Wwipe Detection

proaches for five tested sequences. In Table |, the video >aCve compare the performance of our wipe detection algorithm

rifice.mpg consists of five shots taken in a scene. Non-adja- ; . I
L . namely slice coherency) with the statistical approach proposed
cent shots may have similar color-texture properties, as a re-

sult step-variable misses one of the shots. In Table Il, the videdOstationary camera with or without object motions.
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Fig. 12. Spatio-temporal images of various wipe patterns. Fig. 13. Computed energy for the spatio-temporal slices of various wipe

patterns.

by Alattar [2]. The statistical approach first detects the spikes in
the second derivative of the mean and variance of frames. Thgséhe center and grow outward (e.g., zoom wipe and barn door
spikes mark the end or the start and end of a potential wiggipe). Among the 14 tested wipe transitions, only four frames
The approach then investigates the average values of the fifstlock wipe, eight frames in motion wipe, and three frames in
derivative of the mean and variance of a suspected wipe regigage turn are not covered by the regional boundaries of the three
A wipe is detected if the average value is above a threshold. selected spatio-temporal slices.

We test these two algorithms with 14 different wipe transi-
tions which are shown in Fig. 11. All the tested videos consigf. Dissolve Detection

of two shots with slight to moderate motions. Table VII lists Table IX shows the experimental results of our proposed

the wipe transitions along the actual and detected wipe frames : . : .
P ) 9 ; P method on two tested videos. All dissolves involve slight
by these two algorithms. Our proposed algorithm shows a Slepe .
2 . motions and cross about 30 frames. For the detected dissolve
nificantly better performance than the statistical approach in ;
. . ; sequences, the number of undetected dissolve frames on
terms of recall and precision, as listed in Table VIII. The sta- . . )
- S . . verage are six frames. Fig. 14 illustrates an example of how
tistical approach fails in detecting some wipes because of the . .
. . ! . . dissolves are detected. The missed detections are due to the
absence of sharp spikes in the wipe regions. Moreover, it 1S : )
X ) A . _low value of variance between two shots; as a result, the shape
blind when marking the boundary of a wipe if there are motion : -
: ot the parabolic cannot be detected. The recall and precision
in two shots. In contrast, our approach successfully detect all . ;
: . values of the two tested videos are 0.90 and 0.88, respectively.
wipes except that few frames at the boundary of some wipes are

missed or over-estimated. We also test the cut detectors (color
histogram, frame difference and step-variable) as discussed’n
Section VII-A on the 14 wipe transitions. However, none of the In this section, we integrate the cut, wipe, and dissolve de-
wiped frame is detected by these three approaches since thetdittion algorithms to detect camera breaks. The dissolve detec-
ference between two adjacent wiped frames is small. tion is started after all the cuts and wipes are detected. The ex-
Fig. 12 shows the spatio-temporal slices created by the wiperimental results are summarized in Table X. Most of the de-
transitions in Table VII, while Fig. 13 shows the computed enected cut and wipe frames are classified correctly. The two false
ergy Uwipe Of these spatio-temporal slices. It is worth noticingilarms in cut detection are due to the sharp change of illumina-
that the regional boundaries of the three selected spatio-tdion. The only false alarm arisen in wipe detection is because
poral slices H, V, andD) cover most of the wipe transition of a large object that moves across the screen from bottom to
periods since most wipes start at one direction/corner and entlgit. The two missed wipes are due to the low contrast between
the opposite direction/corner (e.g., wipe and spiral box), or stéto connected shots and a long wiped period (about 90 frames).

Camera Break Detection
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TABLE IX TABLE X
DissOLVE DETECTION RESULTS CAMERA BREAK DETECTION RESULTS
Video Frames | D | F | M Tested | Total Cut Wipe Dissolve
Xpearl.mpg 2000 (110 1 Video |Frames | D | F | M {{ D | F | M\ D I F I M
XShuShan.mpg || 2280 |16 |0 | 1 bampg | 10170 46 [0 | O 1 2 10} O | 4|2 2
gfmpg | 10000 ||54 | 0| O | 4 |0] 0 41210
7000 y v T hampg | 15420 || 53| 2 | O 61112231216
6000 | - recall 1.00 0.75 0.76
precision 0.99 0.80 0.77
5000 |
[}
8
& 4000 E
: uf‘i
>
3000 V 1
2000 | k
1000 . L L
0 S0 100 150 200 @

() ©
detected detected z ! !
! ©) ®  ©

8 Fig. 15. Ashot of 30 frames (670th to 699th). Sample image frames: (a) 680th;
§ (b) 685th; (c) 690th; and (d) 699th. (e) Horizontal spatio-temporal slice. (f)
K Vertical spatio-temporal slice. (g) Diagonal spatio-temporal slice.
L)
4
- -
| l IE l I I l
|
0 50 100 150 200
slice number (a) (b) (c) (d)
Fig. 14. Detection of dissolves by looking for the parabolic curves of variance -r
and the approximate constant of mean derivative in a horizontal spatio-temporal J
slice.
.
Among the correctly detected wipes, the average number of over €) ® ©

detected wiped frames is five, and the number of missed dég. 16. A shot of 42 frames (8894th to 8935th). Sample image frames: (a)
tected wiped frames is two. The missed dissolves are due to ?ﬁéﬁth; (b) 8923rd; (c) 8928th; and (d) 8931st. (e) Horizontal spatio-temporal
. . . . . slice. (f) Vertical spatio-temporal slice. (g) Diagonal spatio-temporal slice.
long dissolve period (120 frames), and object motions during
dissolve periods. False dissolve detections are due to camera = ) )
motions which cause the mean derivative and variance of the ~ Significant changes of color, while other approaches raise
corresponding scans resemble a dissolve pattern false alarms, slice coherency successfully classifies it as
one shot. Figs. 16 and 17 further show two shots of fast

motion which have given rise to false alarms by other ap-

proaches, but however, induce no error by our proposed
To analyze the pros and cons of our proposed approach, we method.

summarize four main observations found in the experiments.  2) Presence of local informationUnlike the color his-

1) Presence of structural informatio@ompared with other togram, slice coherency can also capture local changes.
approaches, slice coherency can handle fast motions and In Fig. 18, the color histogram fails to detect the cut due
color changes within a shot. This is due to the presence to the similar color distribution between two adjacent
of structural information provided by the regional bound- shots; however, slice coherency succeeds as there is a
aries in spatio-temporal slices. The structural information  shift of spatial texture arrangements. Compared with
is not only exploited to classify cut, wipe and dissolve, but frame difference which can also detect the cut in Fig. 18,
is also employed to distinguish wipe, motion, and color our approach is more efficient since only partial informa-
changes. For instance, Fig. 15 shows a shot undergoing tion of dc images are used. A step variable, which also

VIII. DISCUSSION



952

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 11, NO. 8, AUGUST 2001

(a) (b) (©) (d) @ (b) (©) (d)

Fig. 17. A shot of 216 frames (3263th to 3478th). Sample image frames: (a
3330th; (b) 3334th; (c) 3338th; and (d) 3342nd. (e) Horizontal spatio-tempo

()

slice. (f) Vertical spatio-temporal slice. (g) Diagonal spatio-temporal slice.

Sample image frames: (a) 3650th; (b) 3657th; (c) 3658th; and (d) 3660th.
Horizontal spatio-temporal slice. (f) Vertical spatio-temporal slice. (g) Diagon

(b) ©

®
Fig. 18. Two shots of 100 frames (3600th to 3657th and 3658th to 3699taletection, handle various types of wipe transitions, and detect

)

spatio-temporal slice.

3

)

®

(e) (9)

Fig. 19. A shot of 88 frames (2600th to 2687th). Sample image frames: (a)
2660th; (b) 2663rd; (c) 2664th; and (d) 2670th. (e) Horizontal spatio-temporal
slice. (f) Vertical spatio-temporal slice. (g) Diagonal spatio-temporal slice.

In terms of speed efficiency, our proposed approach oper-
ates in real-time (30 frames/s). On a Pentium Il platform, our
camera break detection algorithm (include cut, wipe and dis-
solve detections) runs in the speed of 35 frames/s. Among the
three detectors, cut detector operates in 40 frames/s, wipe de-
ctor in 38 frames/s, and dissolve detector in 86 frames/s. The
most time-consuming part in the algorithm is the convolution of
Gaussian and Gabor filters with spatio-temporal slices, as dis-
cussed in Section IlI-A.

IX. CONCLUSION

We have presented a procedure for detecting and clas-
sifying cuts, wipes, and dissolves based on the analysis of
spatio-temporal slices. Our approach reduces video-segmen-
tation problems to image-segmentation problems, and in
addition, processes frames directly in the MPEG domain,
resulting in an efficient framework. The proposed algorithms
can compromise the recall and precision performace of cut

Fﬁbst linear dissolves, even though only partial data is analyzed.
fn the future, we will study a more sophisticated dissolve
detection algorithm and the possibility of estimating image and
motion features directly from the rhythm of shots for video

processes partial information, however, fails in detectinggiapase indexing and retrieval.

the cut.

Problems in dissolve detectiofhe statistical properties
discussed in Section VI are not unique to dissolve.
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