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Video Event Detection Using Motion Relativity and Feature Selection

Feng Wang, Zhanhu Sun, Yu-Gang Jiang, and Chong-Wah Ngo

Abstract—Event detection plays an essential role in video
content analysis. In this paper, we present our approach based on
motion relativity and feature selection for video event detection.
First, we propose a new motion feature, namely Expanded
Relative Motion Histogram of Bag-of-Visual-Words (ERMH-
BoW) to employ motion relativity for event detection. In ERMH-
BoW, by representing what aspect of an event with Bag-of-
Visual-Words (BoW), we construct relative motion histograms
between different visual words to depict the objects’ activities or Fig. 1. Difficulty in keyframe based event recognition. fejplane Takeoff
how aspect of the event. ERMH-BoW thus integrates bothwhat or Airplane.Landing? (b) Running Dancing or Walking? (c) Throwing or
and how aspects for a complete event description. Meanwhile, Catching
we show that by employing motion relativity, ERMH-BoW is
invariant to the varying camera movement and able to honestly . . . )
describe the object activities in an event. Furthermore, compared annotated video corpus is provided to researchers for detecting
with other motion features, ERMH-BoW encodes not only the a set of predefined concepts. Besides the static concepts
motion of objects, but also the interactions between different ob- sych asBuilding and River, some event-based concepts are
jects/scenes. Second, to address the high-dimensionality problema|SO included, such as/alking RunningandPeople-Marching

of the ERMH-BoW feature, we further propose an approach . . .
based on information gain and informativeness weighting to AIthou.gh g_reat success has been achieved for video semantic
select a cleaner and more discriminative set of features. Our detection, in the SIN task, researchers focus more on the

experiments carried out on several challenging datasets provided detection of static concepts, while little attention has been paid
by TRECVID for the MED (Multimedia Event Detection) task  tg event detection.

demonstrate that our proposed approach outperforms the state- G I i t b ded ti
of-the-art approaches for video event detection. enerally speaking, an event can be regarded as a semantic

Index Terms—Video event detection, motion relativity, feature concept. However, in contrast to static concepts, event has
selection. its own nature, i.e. the dynamic nature. As a result, event
detection is limited by the keyframe-based approaches that are
widely used for the static concept detection. Without viewing
. . ) ) the dynamic course of an event, human frequently encounter

With more and more multimedia data being captured {§ic ities in event annotation. Figure 1 shows the difficulty in
record the event occurrences in the real world and Wide frame based event annotation and detection. For instance,

available from diff_erent sources su.ch as the web, the me}H'Figure 1(a), by looking at the keyframe only, even for a
agement and retrieval of multimedia data has been aCt'V‘ﬂMman, it is difficult to judge whether the airplane is landing,

researched in the past few decades, where multimedia cont[gmng off or just standing by in the lane. Event detection

analysis serves as a fundamental and essential step. CONiGRE s from the incomplete representation of the keyframe for
analysis of multimedia data, in nature, is event analysis, i.2qynamic event. Thus, in order to achieve better performance,
to detect and recognize events of user interest from differgnig necessary to employ the sequence information in event-

modalities such as video streams, audio and texts. A lot k%sed concept detection instead of the keyframe only
efforts have been put to event-based video analysis includingRecently more efforts have been paid to video event de-

unusual event detection [3], [5], human action classifi_c_atiqgction Since 2010, TRECVID has provided a new task of
Hi} [[fg]] [[223?]] [5’51]]’ [£1287]]’[[531?]’ [40], and event recognition multimedia event detection (MED) for researchers to evaluate

In the past decade, video semantic detection has attract ! %rj ?Epégjglrllestr([;?(]a. d S;snIfrbitr?arwd(e:l(;sggir:;?i%tn de:sgltg;"
lot of research attentions. In the video semantic indexing (Sl L en a targetyevene video clips a>;e labelled as Sositive '

task of annual TRECVID workshop [55], a benchmark o : . )
samples where is present or negative ones wheres absent.

Copyright (c) 2013 IEEE. Personal use of this material is permite®VM (Support Vector Machine) is widely adopted for the

However, permission to use this material for any other purposes must B ssification. Some attempts are made to adapt SVM to the
obtained from the IEEE by sending a request to pubs-permissions@ieee.

g. . .. .
F. Wang is with the Department of Computer Science and Technology, E§§quent|al CharaCt?”St_'CS of event [48]' _leferent features that
China Normal University, 500 Dongchuan Rd, Shanghai, 200241 China. TBlave proven effective in concept detection are also employed

(86Z) ZSlL;r?Ailgl\lla?r?ltlﬁeEg:g;%a;r?t@ofsé§ﬁ1n;ﬁte(gruécc?énce and Technology, E.'L\rs] event detection such as color, texture, audio, and local
China Normal University, Shanghai, China. ' Siiterest point (LIP) [22]. Compared with the keyframe based

Y.-G. Jiang is with the School of Computer Science, Fudan Universitgpproach, the frame sequence is investigated during the feature
Shgngwhaklg%hliza\}viltzhmt?]t )E/)%gfrltjr?ﬁae?teg?ggmputer Seience, City UnivergEXtraction for event detection. Besides, volumetric and spatio-
of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hon’g Kong. Emaili./empOral features are also explored [17], [23], [47], [8], [46],
cwngo@cs.cityu.edu.hk. [11], [38], [52].

I. INTRODUCTION



IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, XX 2

4 S

&

Fig. 2. Motion relativity in event detection. Both two video clips contain the eVeaiking Although camera movements are different during video capture,
similar relative motion betweepersonandbuilding can be observed in both clips.

In this paper, we focus on extracting effective featurdhe same event. Thus, the relative motion is suitable to cope
from video sequences for event detection. In a video clipsith camera movements for event description and detection.

an event is usually described from two aspectswijatare  pye to its ability to honestly describe the object activities
the objects/scenes that participate in the everd, people, in an event, in this paper, we employ motion relativity for
objects, buildings, etc; iinow the event evolves in temporaleyvent detection by proposing a new motion feature, namely
domain, i.e. the course of the event. The former consists R&|ative Motion Histogram of Bag-of-Visual-Words (RMH-
the static information and answers the questions like whgoW)_ Figure 3 illustrates the procedure for our feature
what, where, and when. These facets can basically be obtaigggtaction. Considering that object segmentation and semantic
from static images. The features to descnifeat aspect have annotation remains extremely difficult in unconstrained videos,
been intensively studied, including global features (color mye employ Bag-of-Visual-Words (Bow) with SIFT (Scale
ment, wavelet texture, edge histogram), local features (SIRfvariant Feature Transform) which has been proven effective
ColorSIFT), and semantic features (concept score). The lat{grconcept detection to represent the presence of different
contains the dynamic information of the event and answeggjects/scenes, i.evhataspect of an event. In BoW, a visual
the question ofow, e.g.the motion of the objects and theyocabulary is first constructed by grouping a set of local
interactions among different objects/scenes. This informatiaypoint features using-means. Then, a given video frame
can only be captured by viewing the whole frame sequeng@n be represented as a histogram of visual words by mapping
Motion is an important cue in describing the event evolutiofg keypoints to the visual vocabulary.

Various motion features have been developed to capture th“?/\/ith BoW capturing the objects in the videos, we then

motion informgtion in the sequence such as motion histogrq{Bmpute the motion of keypoints to estimate the motion of
[12] and motion vector map [18]. To completely ,descr'bgb'ects for event detection. This is based on the assumption
an gvent, thesg two_aspects shogld be .closely mtggra t in different video samples, the objects of the same
For instance, Figure 2 shows two video clips containing tr1’,'%1tegory should contain similar image patches/keypoints, and

Zventyt\)/_alk\l/r\l/g"lntmtglely, mo(';u'\)/ln of persor;] Is Important in Similar motion patterns of these keypoints could be observed if
escribingWalking PersonandMotion are the two aspects of o same event is present. These patterns can thus be discoverd

this event, which can be captured by the static features (g, sed to detect the event occurrences. In our approach,

cplor moment, SIF.T) and the dynam_lc fea‘gures (eg. MOUGN order to eliminate the motion distortion caused by the
_hlstogram) respect!vely. However, _nelther single one of theE'&mera movement, we employ the relative motion between
is enough to describe the evemalking visual words to capture the activities and interactions between
In our preliminary work [44], we have pointed out anothedifferent objects. For instance, as illustrated in Figuré)g,,
problem during the extraction of motion features in the vide@,2 and Qy1, Qv2 are the keypoints lying on persons and
sequence, i.e. the observed motion in the video clip is distortedildings respectively. Although in both clips, the two persons
by the varying camera movement, and cannot depict the reallk in the similar way,Q,1 is moving while Q)2 remains
object activities and interactions in an event. For instance, still due to different camera movement. On the other hand,
the second clip of Figure 2, the camera follows the persdny investigating the relative motion betweél),; and Qy; in
when he walks through the yard. No motion of the person catip 1, and betweer@),, and Q2 in clip 2, similar motion
be detected by the traditional motion estimation. Therefongatterns can be observed to describe the motion relativity
the motion calculated in the frame sequence with referencelietweenPersonand Building for detecting the everitvalking
the moving cameras cannot honestly present the real activithes shown on the left of Figure 3, given a video clip, the
of the person. However, in both two clips, we can see that theypoints are tracked in neighboring frames and the relative
relative position betweeersonand the background scenemotion is calculated between every two keypoints. Given
(Building) is changing, and similar relative motion patternswvo visual words, a relative motion histogram (RMH-BoW)
can be consistently observed in different videos containig constructed by accumulating the motion vectors between
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event. Based on this observation, in this paper, we extend our
previous work in [44] by further proposing two approaches
to select the informative features for ERMH-BoW in event
detection so as to alleviate the curse of dimensionality. This
is achieved by weighting the importance of the features in
detecting different events and removing the less useful ones.
The remaining of this paper is organized as follows. Sec-
tion Il reviews some related works especially the existing
features used in video event detection. Section Il proposes
and describes in detail the ERMH-BoW feature. In Section 1V,

Visual word ontol ) .
sualwore ontology we present the feature selection approach for reducing the

\
Rolal . a dimensionality of the ERMH-BoW feature. Section V studies
elative motion . . . . .
histogram of BoW ® 5 different strategies and settings in feature representation and
PN _Z'ﬁ event detection with the ERMH-BoW feature. Experimental
v d/@\ }‘?f\ ‘:?4 results are presented in Section VI. Finally, Section VII
, PO b ncl hi r.
: E' E‘ ? ? gooe concludes this pape
: E‘; Il. RELATED WORKS
Vi E‘ E' Visual relatedness Me_lny eve_nts can be repr_esented as the opject activities
Expanded relative motion - Vi Vo Vs Ve and interactions (spch as/alking and_AwpIanaFIymg)., and
histogram of Bow Vi show different motion patterns. Motion is thus an important
V2 cue in describing the course of an event. A great deal of

efforts have been devoted to extracting effective features to
capture the motion information in the video sequences. In
some early works, motion features are used for video retrieval
and classification. In [2], motion vectors extracted from MPEG

compressed domains are used for video indexing. Segmen-
Fig. 3. Our proposed feature extraction framework for video event detectid@tion and labeling are carried out based on motion vector

With visual words capturing what are involved in an event, the local mOtiC’@Iustering Videos can then be indexed based on either global
histogram of visual words describes bethatandhowaspects effectively for ’

a complete representation of an event. Motion relativity and visual relatedn&sSegmentation features. In [30], a motion pattern descriptor
are employed to cope with the distortion by camera movement and the visn@mely motion texture is proposed for video retrieval and the

word correlation problem. classification of simple camera and object motion patterns.
In [18], motion vectors are extracted from MPEG encoded

K . d1to th d vel videos and compressed to form a motion image. SVM is then
every two keypoints mapped to the two words respectively. T 4 o event recognition. By experimenting on a small set of

gIIeru\':/l\t/e the We|:1—knOWE visual ‘?’md,am?'glf'ty groblerg [15bvents, the feature is shown to be useful in recognizing events
In BoW approach, we then employ visual relatedness betWegpy, gitferent motion distribution patterns. In [13], spatio-

y|sual words [.21] to expand the motion of a visual wor(_j t(t)emporal interactions between different objects are expressed
its nearest neighbors or correlated visual words to derive the predicate logic for video retrieval. This algorithm

new feat_ure called Expanded Relative .Mot|.on Hlst.ogram Assumes the objects are correctly detected and located during
Bag-of-Visual-Words (ERMH-BoW; detailed in Section llI). video preprocessing. In [12], Motion History Image (MHI) is

In summary, the effectiveness of ERMH-BoW in describinga|culated over a frame sequence to describe the characteristic
an event occurrence lies in three aspects: i) It closely integraggsthe human motion. Recognition is achieved by statically
both the static (BoW with SIFT) and the dynamic informatiormatching MHIs. This approach is applied to well-segmented
(motion) of an event in one feature; ii) It is invariant tohyman figures for recognizing several predefined actions. In
the varying camera movement and thus able to discover t[lgg], an event is treated as a space-time volume in the
common motion patterns in the videos containing the saRleo sequence. Volumetric features based on optical flow are
event; iii) It depicts not only the motion of the objects, bugxtracted for event detection. This approach is used in videos
also the interactions between different objects/scenes whichyjgh single moving object (human) and action. In [39], a
important in describing event occurrences. similarity measure is proposed to search for two different video

Since ERMH-BoW computes the relative motion betweesegments with similar motion fields and behaviors. During
each pair of visual words, the dimensionality of the resultindpe extraction of low-level visual features for event detection,
feature is usually very large. This brings much difficulty to thenotion has become the most important information to describe
feature storage and the classifier training. An event can usudilyw an event evolves in the temporal dimension, e.g. the
be described by the interactions between few objects/sceredivities of objects and the interactions between different
and an object/scene can be captured by only a small sbjects/scenes.
of keypoints or visual words. Thus, only very few elements As discussed in Section I, neither single aspect (the static
in the ERMH-BoW feature are useful for detecting a targetor the dynamic information) can completely describe an

Va

Vg




IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, XX 4

event. Thus, it is important to integrate both aspects intmn. In [53], a long-duration complex activity is decomposed
one feature. Inspired by the success of local image featuresp a sequence of simple action units. Probabilistic suffix tree
in [25], Laptev and Lindeberg extend the notion of spatias proposed to represent the Markov dependencies between
interest points into the spatio-temporal domain and detdbe action units. In [48], a video clip is represented as a
space-time interest point (STIP) as a compact representatimay of descriptors from all of the constituent frames. EMD
of video data to reflect the interesting events. This is builEarth Mover's Distance) is applied to integrate similarities
on the idea of Harris and Forstner interest point operatamong frames from two clips, and TAPM (Temporally Aligned
and detect local structures in space-time domain where tRgramid Matching) is used for measuring the video similarity.
image values have significant local variations in both space aBMD distance is then incorporated into the kernel function of
time dimensions. Scale-invariant spatio-temporal descript@¥M framework for event detection. This kind of approach
are then computed to construct video representation in teaims at discovering patterns of event evolution along the
of labeled space-time points and classify events. In [54], Evetesnporal dimension.

et al. propose Color STIPs by further considering a number

of chromatic representations derived from the opponent colpy. E xpANDED RELATIVE MOTION HISTOGRAM OF BoW
space to improve the quality of intensity-based STIP detectors (ERMH-Bow)

and descriptors. In [8], MoSIFT feature is proposed to capture|, ihis section, we propose to employ motion relativity for

the local information in both spatial and temporal domaing, . ; :
eveloping an effective feature, namely Expanded Relative
SIFT is employed for the spatial domain and the optic% ping Ll

f id i d he local : MoSIF otion Histogram of Bag-of-Visual-Words (ERMH-BoW) for
ow pyramid IS use to compute t € loca mo_t|_on. 0 T/ideo event detection. In our approach, Bag-of-Visual-Words
feature descriptors are constructed in the spirit of SIFT oW) features are employed to capturiat aspect of an

be ro.bust. to small deformanc_)ns .‘hT"“gh grid gggre_gann. vent. For the construction of the visual vocabulary, keypoints
[46.]’ |nsp|red by dense sampling in image classification, deng detected on a set of training images using Difference of

computed based on '.“”0“0” boundary h|stograms_ which dﬁbulary, where each cluster is treated as a visual word. Given
robu_st to camera motion. In [11], the orlenFated hlstograr(%skeyframe extracted in the video, by mapping the detected
of dlfferentla_ll optlcal_ flow are use_d for moUo_n coding an eypoints to the visual vocabulary [19], we can represent the
combined with the histogram of oriented gradient appearantntent of the keyframe as a vector of visual words with its

dgticrlptqrs o datect stznglngl;( and dmov_ll_rrn]g pefopl;a in vide ights indicating the presence or absence of the visual words.
with moving cameras and backgrounds. These fealures encoag,, gy capturingwhat is present in a given video, we

bOth th? appearance informatior) in spatial domgin and tﬂ?en extract the motion information to capturew an event
motion .|nformat|on n temporal dimension. According to th%volves along the video sequence. First, we construct a motion
evaluation reported in [41], they have demonstrated to R%togram for each visual word (MH-BoW) by capturing

robust for event detection in open video sources and achie\fﬁg local motion information of the keypoints. Second, to

encouraging results. employ motion relativity, we modify MH-BoW by replacing

For feature representation, Bag-of-Words (BoW) approaﬁh‘e motion vectors with the relative motion between different

has demonstrated to be surprisingly effective for most ?XiSt.iQ/%ual words (RMH-BoW). Finally, to alleviate the mismatch
features. In BoW approach, a feature vocabulary is fir Foblem [15], [21] existing in the BoW approach, we expand

constructed by quantizing the descriptor space with cluster He motion histogram by considering the correlations between
A BoW histogram is then computed by counting the preseng@c ant visual words (ERMH-Bow)

of different words in the video volume to represent the video

content. In [22], BoW approach is used to encode different ) _

features extracted from both static frames and video sequenfedviotion Histogram of Visual Words (MH-BoW)

such as SIFT, spatio-temporal interest points and MFCC. Inin this section, we construct a local motion histogram for
BoW approach, event occurrences are detected based onetheh visual word in BoW. To be efficiens, keyframes are
presence of some specific static or motion features. Beside®nly sampled every second in the video. Our motion features
BoW approach, in some other works [14], [48], an event &re extracted between every two neighboring keyframes. Given
viewed as a temporal process over the feature spaces. Featar&syframe, keypoints are first detected by DoG [28] and
are first extracted from each keyframe (or sub-clip) of a givefiessian-Laplacian detectors [33]. We then employ the algo-
video, and the video is then represented as a sequenceithim in [29] to track the keypoints in the next keyframe. For
feature vectors to encode the static/motion information at eagaich keypoint that can be successfully tracked, we calculate
moment along the temporal dimension. In [14], visual evenits motion vectorm, between these two frames. Different
are viewed as stochastic temporal processes in the semafmtim other motion histograms that are the sums of motion
space. The dynamic pattern of an event is modeled througgctors over spatial regions, our motion histogram of BoW
the collective evolution patterns of the individual semantiMH-BoW) is constructed by summing up motion vectors of
concepts in the course of the visual event. HMM (Hiddeall keypoints mapped to the same visual word. For each visual
Markov Model) is employed for event modeling and recognivord, we construct d-directional histogram. For this purpose,
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the motion vectorm,. is decomposed into four componentwisual words. Since the visual words in BowW captuvbat

D;(m,), wherei = 1,2,3,4 are corresponding to the fouraspect of an event, RMH-BoW can be used to describe
directions: left, right, up and down, and;,(.) projectsm, to the activities and interactions between different objects and
thei—th direction. For a visual word, the motion histogram scenes in an event. Intuitively, different events are presented

is calculated as as different object motion patterns and intensities, while video
_ clips containing the same event show similar motion patterns
Hi(v) = Z Di(my), i=1,2,3,4 (1) and intensities between specific objects or scenes. RMH-BowW

pEN,

can thus be used in supervised learning to discover these
where N, is the set of tracked keypoints that are mapped t®mmon patterns in different clips containing the same event
the visual wordv. for effective detection.

By Equation 1, we get af-dimension feature vector called

Motion Histogram of BoWw (MH-BoW), where5' is the size C. Expanding RMH-BoW with Visual Word Relatedness
of the visual vocabulary, and each element is-airectional (ERMH-BoWw)

go\%)_n dhlst(;)gramdforbth;hc?rredsr?ondmg V;SU?I word. l\/_lH- When BoW is used to represemthat aspect of an event,
ovvindeed encodes bownhatandhowaspects of an eventin o, e \isyal words may be correlated (i.e. depicting the same

a single feature. Each histogram is corresponding to a Specglﬁect category), but are treated as isolated to each other [15],

\r/]'.st'al wor((jj W.h'tc hthdescripewheg aspecé, .V\;h'le.tthe fr;]]Ot'angAl]. This will cause feature mismatch problem between events
IStogram depicts the motion pattern and Intensity OTthe VISU hiaining the same object. In this section, to address the

W.°rd to captgrehow aspec_t. Since the chal motion of thP\/isual word correlation problem in RMH-BoW, we expand
visual words is employed in MH-BoW, different events Cathe relative motion histogram based on visual relatedness. The

be represgnt_ed as certain _motion patterns of specific visg@ ansion is conducted by diffusing the motion histograms
words depicting different objects. across correlated visual words.

B. Relative Motion Histogram between Visual Words (RMI—P1 Visual Relatedness
BoW) The visual relatedness is a measurement of visual word
In MH-BoW, the motion is calculated as the movement O§!m|lar|ty. In this paper, we employ the approach in our pre-
. . . vious work [21] to estimate the relatedness between different
keypoints with reference to the camera which can be easily . - . .
sual words in a similar way as we estimate the semantic

distorted by the camera movement as illustrated in Figurer atedness of textual words using aeneral ontology such as
Furthermore, it just captures the motion of each isolated obj : 99 rology
ordNet. Based on the visual vocabulary, a visual ontology

and ignores the interaction between different objects/scene§ . . .
D 2 . o S turther generated by adopting agglomerative clustering to
which is important in describing an event occurrence. Ta

. lerarchically group two nearest visual words at a time in
address these problems, we propose to employ motion rela; % ) .
. . . -the bottom-up manner. Consequently, the visual words in the
ity between different objects and scenes for event detection. . : : .
. . . N .vocabulary are represented in a hierarchical tree, namely visual
As discussed in Section | and observed in Figure 2, motion . ;
L : . . i L ontology, where the leaves are the visual words and the internal
relativity remains consistent for different clips containing the o . . )
des are ancestors modeling tlsea relationship of visual

. Q
same event regardless of varying camera movement. In oth&f

words, it is able to honestly describe the real object activitigvords' An example of the visual ontology is shown on the right

and interactions in an event. Based on this observation, \(/)v?eFlgure 3. In the visual ontology, each node is a hyperball

mody M-BOW in Secton I1-A ith the refaive moton {1 (1° KO €21 Shace, T s (urber f ke
histograms between visual words. yp 9 P '

: ) . . : Similar to the semantic relatedness measurements of text
Given two visual words: and b, the relative motion his- . : ;
) words, the visual relatedness can also be estimated by consid-
togram between them is calculated as . . )
ering several popular ontological factors based on the visual
Ri(a,b) = E : D;(m, —my) 2) ontology. We directly_apply a text linguistic measurement,
rENL LEN, JCN, to estimate the visual relatedness. Denctedb as two
visual words, JCN considers the ICs (Information Content) of

wherer andt are keypoints mapped to visual wordsand their common ancestor and the two compared words, defined

b respectively,m, — m; is the relative motion ofr with s

reference ta, andD;(.),i = 1, 2, 3,4 decomposes the relative 1

motion vector to the four directions as in Section IlI-A to JCN(a,b) = 3

generate d-directional histogram between visual wordand (o) IC(a) +1C(b) — 2 - IC(LCA(a, b)) ©

b. By Equation 2, the motion information in a video clip isvhere LCA is the lowest common ancestor of visual watds

represented as a#ix S matrix R, where each elemeit(a,b) andb in the visual ontology. IC is quantified as the negative

is a relative motion histogram between the two visual wardslog likelihood of word/node probability:

andb. We call this feature matrix Relative Motion Histogram 1C(a) = —log p(a) @)

of Bow (RMH-BoW).
As seen in the derivation process, RMH-BoW depicts thehere the probability(a) is estimated by the percentage of

intensities and patterns of relative motion between differek¢ypoints in the visual hyperbadl.
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C.2 Expanding RMH-BoW can be captured by a small set of visual and motion words.

Based on the visual relatedness calculated by JCN, WBUS, many words in ERMH-BoW feature are useless and even
expand RMH-BoW by diffusing the relative motion histogram80iSy in detecting given events. Based on this observation,
between two visual words to their correlated visual words. TH reduce the dimensionality of ERMH-BoW feature by

Expanded Relative Motion Histogram of Bow (ERMH_Bow)measuring the importance of motion words for event detection
is calculated as and removing the less useful ones. In our approach, a two-

step approach is employed. First, we filter those words that are
E(a,b) = R(a,b)+ Y _ JON(sq, a) x R(sq, ) x JCN(s,b)  useless in discriminating different event classes and generating
SasSt (5) a universal set of words for all events. This is achieved
. by employing the information gain approach used in text
where {s,} and {s,} are the sets O.f visual wqrds that aret‘:ategorization to measure the discriminative ability of each
correlated to the words andb respectively. The aim of RMH- word. Second, in the remaining words, we then measure the

Bow expansion 1S to.iallewate the p.roblem_ of visual Worﬂ'lformativeness of each word for detecting a given event. This
correlation. More specifically, the relative motion between WQsuits in a specific set of words for each event

words are diffused by the influence of other words that are
ontologically related to them. The diffusion inherently results
in the expansion of RMH-BoW to facilitate the utilizationA. Information Gain

pf word—to.—wor_d correIaFion for video clip comparison. For |n¢ormation gain (IG) is frequently employed to measure
instance, in Figure 2, if the two keypoin®,1 and @p2  the goodness of features in machine learning, and has shown

lying on Personare assigned to different visual words, 8y 1, pe one of the best approaches for feature selection in text
and v, respectively, this will cause mismatch in RMH-BoWw,

X ) ) categorization [49]. In our approach, we employ IG to select
With ERMH-BoW, given that, andv, are highly correlated, 4100 words that are important in discriminating different

their corresponding motion histograms will be diffused t@yants Let{e,; } denote the set of categories in event detection.
each other, and thus can be matched with higher similarity,o information gain of a word is defined to be

as expected. In our experiments, for each visual word, we

with more visual words does not promise better performance.
Similar to BoW feature representations, we call each ele-
ment in the ERMH-BoW feature motion wordwhich encodes
the relative motion pattern between two visual words. The
resulting ERMH-BoW feature counts the presence of different In Equation 6, the |G value of measures the information
motion words in the given video clip. In the following sectionspbtained for categorizing different events by knowing the
for the ease of presentation, we denote the ERMH-BoWesence or absence ofin a video. In the training video

feature matrix with a feature vector by concatenating all ro@®rpus, we compute the information gain of each word in
in the matrix together. Given a videq the resulting feature ERMH-BoW and remove those with the IG values lower than

vector is represented as, = (2,1, Tp2, -, Tpn)- a threshold. The determination of the threshold is discussed in
our experiments (Section VI-A).

empirically choose the five most similar words for diffusion Glv)= - ZP(ei)IOg P(e;)
in Equation 5. On one hand, this guarantees the efficiency of i
the RMH-BoW expansion process; on the other hand, diffusing + P(v) Z P(ei|v)log Ple;|v) (6)

+ P(v) Z P(e;|v)log P(e;|v)

IV. FEATURE SELECTION FORERMH-BoW

In RMH-BoW, to employ the motion relativity for eventB. Event-Specific Feature Selection
description, the relative motion between each pair of visual With information gain, we mainly remove the motion words

words is computed. This results in a sparse matrix Withgay are yseless or even noisy in categorizing different event
high d|menS|on_aI|ty. By word expansion, the problem becom%%sses. The computation of information gain is relatively fast.
even worse since the sparsity of the feature is reduced, ever feature selection is disconnected from the classifier
Eventually, it is space-consuming to store the ERMH-BOW.5ning process. Furthermore, IG approach generates a uni-
features and time-consuming to train and test classifiers dug 9./ <et of words for the detection of all events. Actually,

the curse of dimensionality. In this section, we reduce the higm‘ferent motion words are not equivalently important in
dimensionality of ERMH-BoW by removing the less usefuljgiecting a specific event. A word which is important for

motion words. detecting one event may not be useful in the detection of

Feature selection has been intensively studied in text calgiyiher event. The similar problem has been discussed and
gorization. In video semantic indexing, s.|r.n|Ia.r attempts ha\_@ddressed in video concept detection by constructing concept-
been made to capture the concept-specific visual mformatlgaeciﬁc visual vocabulary. In [43], we propose to weight the

by Telecting the informativeh visual words ar}d removing tnﬂformativeness of visual words for detecting specific concepts
useless ones [24], [43]. The ERMH-Bow feature actually, gy kernel optimization. In this paper, we revise the

captures all possible motion patterns between different Vis"éf'ﬂproach in [43] for feature selection of ERMH-BoW.
words. However, an event can usually be presented as certain

activities or interactions between few objects/scenes, whiBtl Problem Formulation
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Event detection is usually treated as a binary classificatiohere N’ = 3 _ «, - a4 Eventually the problem of
problem, where SVM is widely adopted. The performandaformativeness weighting for motion words is formulated as
of SVM is largely dependent on its kernel. Here we onlgearching for an optimal weight vectar?! such that the KAS
consider the detection of a specific evemtAs discussed scoreT defined by Equation 12 is maximized.
above, different motion words are not equally important for , , o
detecting eveng. To measure the importance of motion word$-2 CGradient-based Weight Optimization
we assign different weights to them. Here we take- RBF In our approach, we weight the importance of motion words
kernel as an example for discussion. Similar approach canlye adopting a gradient-descent algorithm to maximize the
easily applied to other kernels. Originally — RBF kernel KAS score in Equation 12. We calculate the partial derivative

is defined as of T' to the weightw; as
Kyq = exp(—o - d(zp, 7)) (7 oT _ T 0Ky, (13)
- (Tpi — xqi)Q ow; 0K, Ouw;
d(wp, wg) = Y =T (8) P
=1 Lpi + Lqi 8qu - K (_0_ 6d(xp7 xq) ) (14)
wherex,, z, are the feature vectors for two video samptes dw; - ow;

andg. As can be seen in Equations 7 and 8, all motion words Based on Equations 13 and 14, we iteratively update the
are treated equally for detecting different events. By assignimight vectorw of motion words so as to maximize the
different weights to motion words, Equation 8 is rewritten agerne| alignment score defined by Equation 12. Below is the

n

(Tpi — Tq:) algorithm for optimization:
d(zp, 7q) = le R ©) 1) Initialize w; = 1fori = 1,2, - - -, n. Calculate the initial
wherew; measures the importance of ti#h word for detect- 2) Sﬁc?af: OJVeZ;g%){Si?uilogili' sign(2L) . §,, where
ing evente. An optimal weight vectow = (wq,wa, - -, wy,) 11 Zif £ 0 Owi
can be estimated by maximizing the discriminative ability of sign(t) = 0 if t=o0
the SVM kernels. 1 ifteo

In this paper, we employ the Kernel Alignment Score (KAS)
[10] to measure the discriminative ability of SVM kernel,
which is defined as

3) Calculate the new kernel alignment scdfé using the
updated weights. I?T;T < thres, stop; otherwiseT" =

T’ and go to step 2.
T — Zp,q qu ’ lp : lq (10)

= —N~ \/ﬁ In step 2, the weight vector is updated by a valyg

pa-pa for each iteration. In our implementation, to be efficieft,

wherel,, is the label ofp, I, = +1 (or —1) if p is a positive (or is set to bel, i.e. stepwise weights are used for different
negative) sample, andy is the total number of samples. Themotion words. After the optimization process, we remove
KAS score computed by Equation 10 measures how well #mse motion words with weights less than a threshold which
actual kernel is aligned with an optimal kernel [10] in whichs empirically determined in Section VI-A. Finally, an event-
the distance between samples of different classes shouldspecific set of motion words are selected. By feature selection,
maximized and the distance between samples of the sathe dimensionality of ERMH-BoW feature is reduced, while
class should be minimized. Generally, a kernel with highéne discriminative ability of SVM is improved.
KAS score is better at discriminating samples of different
c:ass$_5, tz?md can potentially achieve better performance for \; \/\peo EVENT DETECTION WITH ERMH-BoOW
classification.

Equation 10 assumes the two classes are balanced. Howevef! this section, we employ the proposed feature ERMH-
this is not the case for most current datasets in video event W for video event detection. In most existing systems, two
tection, where there are usually many more negative exampqié@ere_nt approa_ches are employed for feature representation.
than positive ones. This may bias the resulting KAS towardd'® first one is Bag-of-Word approach, where a feature
the negative class. To deal with this imbalance problem of t§@cabulary is constructed and a single feature vector is then
datasets, in [43], we modify Equation 10 by assigning differefitracted as the histogram on the vocabulary to present the

weights to the positive and negative examples as follows content of the whole video. For the second approach, sequen-
tial information is employed. A feature vector is extracted from

a, = { Nl_ ity = __1 (11) each keyframe (or sub-clip) and a sequence of vectors are
N+ Otherwise used to represent the evolution of the event over the feature

where N~ and N+ are the numbers of negative and positivépace along the timeline. In this paper, we compare these
examples in the training dataset respectively. Equation 10tyo different feature representations for event detection with

then modified as ERMH-BoW. Given an event, an SVM is trained to classify
> R S SRV positive and negative video samples. For two different feature
T p<qdpg lplg Qp - Qq i 5 .
= (12) representationsy? — RBF kernel and EMD (Earth Mover’s

N \/Ep<q ap - og - K3, Distance) kernel proposed in [48] are employed respectively.
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A. RBF kernel In [48], the positive definiteness of the EMD kernel has

In this approach, the whole video is treated as a volumdieen verified by experiments. Pyramid matching with different
sampled every second. ERMH-BoW features are extractgl?us on feature extraction for event description, we aim at
between neighboring keyframes and then accumulated over YRédating the effectiveness of the proposed feature ERMH-
whole video clip. The resulting feature vector mainly encodd2®W. To be efficient, we just adopt a single-level EMD
the motion patterns and intensities between different visuBRtching algorithm for distance measure.

. ) : 5 ) .
words in the video. F!qallyx — RBF kernel in quatlon 7 VI. EXPERIMENTS
is used for SVM classification. The advantage of this approach

is its efficiency since only one feature vector is extracted over " ':jh's section, wefconduct g);]perl.m(.antsfto compare thlzpro—
the whole clip. However, it just captures limited evolutio°S€ ERMH-BoW feature with existing features to validate

information of an event, i.e. the motion between neighborint e effectiveness of motion relativity and feature selection for
keyframes. deo event detection. We use the data resources provided by
NIST in the yearly MED (Multimedia Event Detection) task
B. EMD kernel [56] for experiment. The following datasets are included.
« MED10 data This dataset consists of 3468 video clips

! To capture more sequence information. in tr_]e video, we with a total duration of about 114 hours. The data was
first represent a given video as a sequential object by evenly o 0cte by the Linguistic Data Consortium, and consists

segmenting It into fixed-length sub-clips. An ERMH'BOV_V of publicly available, user-generated content posted to
feature_ vector is then extracted from egch sub-clip as described various Internet video hosting sites.

in Section V-A. This eventually results in a sequence of vectors MED11 Transparent Development (DEVT) collection
to capture how an event evolves along the timeline in the This collection includes 10403 video clips with a total
video. For event detection, we employ the approach proposed j ration of about 324 hours and was used for system
in [48] to measure the similarity between different videos with development in MED11.

EMD (Earth Mover’s Distance) and then incorporate it into MED11 Opagque Development (DEVO) collecticFhe

SVM ke_rnel fo_r clqssific_ation. DEVO corpus contains 32061 video clips with a total
For video clip similarity measure, EMD has proven to be duration of about 991 hours and was used for system
effective in video clip alignment and matching. To employ evaluation in MED11

EMD for video clip similarity measure, the ground distance . Progress Test collections (PROGTESThis dataset is
between a pair of sub-clips from two videos is defined as the constructed by the Linguistic Data Consortium and NIST,
Euclidean distance of the ERMH-BoW features corresponding .4 contains 98117 video clips with a total duration of

to the two sub-clips: about 3722 hours as the test set in MED12 task. The
1 ) groundtruth of this dataset is currently not available.
d(zq,2p) = n Z (Zai — 20:) (15) ., Event kits Twenty events which are evaluated in MED12
lsisn are used in our experiment. The detailed definitions and
Given two videosp = {(a:,(,l),w,(gl)), (3;1()2)’101@)’ . information. of the events can be foupd at [56]. In total
20 (k))} and ¢ = {(Igl)’ w,(]l)), (sz), w((12))’ . the event kits contain 3736 example videos for the events.

7w oy
E 0 5))} with k and! ERMH-BoW vectors as signatures The number of positive examples for each event ranges

Zq’, Wq - . .
respectively, anch;,(f) — 1k, wff) — L 1<i<kl< from 119 to 221 as shown in Table I.

j <1 as the weights for each ERMH-BoW vector. The EMD All video clips in the above datasets are provided in
distance betweep andq is computed by MPEG-4 formatted files with the video being encoded to the

] ) H.264 standard and the audio being encoded using MPEG-

doim1 >t figd(zy), z$) 4's Advanced Audio Coding (ACC) standard [56]. We present
D(p,q) = S S fi (16) our experimental results on MED12 development set and test
: . e set respectively. For the former, we take positive examples

where f;; is the optimal match among tW.O sequences (?Fom the event kits provided by MED 12 (see Table I). Half
ERMH-BoW vectors ofp and ¢. The details of how 10 ot yhom are used for training and another half for testing.

de\tz.“:]“nffiﬂé&ag (lj)_e foundbln [48]. i | The negative examples are taken from MED10, DEVT and
Ith the Istance between video samples comput%jEVO collections by removing those positive clips containing

in Equation 16 by employing ERMH-BoW features, we adop& -
X . X . ny one of the twenty events according to the groundtruth
the algorithm in [48] to train SVMs for event detection. Th%nnotations from MED12. We use 30% of negative examples

EMD distance between videos is incorporated into the kerr}%lr training and the other 70% for testing. For the experiments

function of the SVM framework by using Gaussian function(')n the test set, since the groundtruth of PROGTEST collection

“ 1 . . . .
K,y = exp(— D(p,q)) (17) is strictly protected. and blind tol r.esearcher.s until 2015, we
only present and discuss the official evaluation results in our

kM
where the normalization factat/ is the mean of the EMD participation in MED 12 where all positive examples in event
distances between all training videos, ants a scaling factor kits are used for training and the PROGTEST collection for
empirically decided by cross-validation. testing.
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TABLE | - :
EVENT KITS USED INMED12. ——

Event ID | Event Name # positive 9% A
EO006 Birthday party 221 ——  RMH-Bow
EO007 Changing a vehicle tire 119 80 —— ERMH-Bow |
E008 Flash mob gathering 191 S —_— E?“F”,'MSSF
E009 Getting a vehicle unstuck 151 : —
E010 Grooming an animal 143 g \\
EOI1 Making a sandwich 186 5 \§\-\_
E012 Parade 171 o 40 N
E013 Parkour 134 Z %ﬁ_ﬂ
EO014 Repairing an appliance 137 5 20 m—
EO015 Working on a sewing project 124 > \
EO021 Attempting a bike trick 200 3 " 3
E022 Cleaning an appliance 200 § q
E023 Dog show 200 \
E024 Giving directions to a location 200 5
E025 Marriage proposal 200 Q
E026 Renovating a home 200 2 !
E027 Rock climbing 200 \“
E028 Town hall meeting 200 . | ; | '\g.
E029 Winning a race without a vehicle 200 01 02 05 1 2 5 10 20 40 60 8 9 95
E030 Working on a metal crafts project 200 Probability of False Alarm (%)

Fig. 4. DET Curve of different features for event E013 (Parkour).

In our implementation, the detection of a given evens o extraction of MH-BoW, RMH-BoW and ERMH-BowW
treated as ane vs. aII_binary classification pro_blem and thefeatures, each video is equally segmented into a number of
system outputs a confidence score for each video. We empi¥econd sub-clips, and a motion histogram is computed over
the DET Curve [32], [57] to evaluate the performance of eveghc syp-clip. This results in a sequence of histograms for each
detection. The DET Curves involve a tradeoff of two ermfijeq and EMD kernel is used for SVM training and testing.
types: Missed Detection (MD) and False Alarm (FA) errorsgg compare the performances of two feature representations

which are defined as described in Section V, in another approach (ERMH-RBF),
Parp (e, thres) #MD(e,thres) (18) e also extract ERMH-BoW features over the whole video
MDA #Targets(e) sequence to compose a single vector and emgfoy RBF
FA(e.th kernel for SVM classification. Furthermore, we compare our
Pra(e,thres) = i EA(e, thres) (19) ;

approaches with three motion features: MoSIFT [8], DTF-HoG
46], and DTF-MBH [11]. According to the evaluation results
eported by [41], MoSIFT and DTF-HoG perform the best
among different low-level features for event detection. For the
extraction of MoSIFT, DTF-HoG, and DTF-MBH features, we
Yollow the approaches presented in [41].

As can be seen in Table Il, on this dataset, MoSIFT performs
better than DTF-HoG and DTF-MBH. The performances of
. . . hese three features are basically consistent with the evalu-
Figure 4 shows an example of DET Curve with d'ﬁerentetltion results in [41]. On average, MH-BoW achieves simi-

features for detecting evearkour on the development set. . L
Based on DET Curve, to numerically compare the perfolra-lr performance with MoSIFT. Actually they capture similar

mances of different approaches, we presént, values when information in videos, i.e. the local motion information of
P ' P ' keypoints. This shows that a simple representation of the

Pra » 5%. This threshold setting was used in [41] fof otion information can already achieve competitive results for
evaluating the performances of different features. AIthouq’Ee detection of many events suchFiash moh gathering Re-

this may cause many arguments on the selection offthg " : . : _
. . airing_.an_appliance and Winninga_race withouta_ vehicle
threshold, it can demonstrate the performances of different gp- ) .
Fanwhne, the motion features do not work well enough

proaches by looking at the detection accuracy at a fixed pojn . :
O . some events such a&roomingan.animal and Mak-
considering that most people focus more on a relatively smal : ; : L

) : o . Ing_a_sandwich The possible reason mainly lies in two as-
set of returned results with a higher precision. In the followin

. e&ts: i) Some events are not motion intensive and do not show
we present the evaluation resuits on the development set MBng and consistent motion patterns: ii) The representation
the MED12 Progress Test Collections respectively. 9 P ' P

of the motion information could be further improved to derive

more effective features.

A. On Development Set By employing motion relativity, RMH-BoW performs sig-

A.1 Performance of ERMH-BoW Feature nificantly better than MH-BoW for most events. On one
Table 1l compares the performances of different approachiesnd, compared with MH-BoW, RMH-BoW is invariant to the

for the detection of 20 events on the development set. Fsamera movement. On the other hand, RMH-BoW encodes not

#TotalClips — #Targets(e)

where thres is a threshold to determine whether a vide
contains eveng, #M D(e, thres) is the number of missed de-
tection (positive clips with confidence scores lower thaeg,
#F A(e, thres) is the number of false alarms (negative clip
with confidence scores higher ththwreg, #Targets(e) is the
number of positive clips in the groundtruth, agd otalClips
is the total number of clips in the test set.
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TABLE I
COMPARISON OF DIFFERENT APPROACHES ON THE DEVELOPMENT SETHE PERFORMANCES ARE EVALUATED BYP);p VALUES WHEN Pr 4 = 5%.
[ Events [[ MH-BoW | RMH-BoW [ ERMH-BoW | ERMH-RBF [ MoSIFT | DTF-HoG [ DTF-MBH ]
Birthday_party 31.56 33.88 34.34 33.05 35.62 40.17 50.31
Changinga.vehicletire 37.43 34.15 32.03 35.64 38.39 42.28 41.09
Flashmob.gathering 17.71 13.68 13.94 16.23 14.74 21.36 25.44
Getting.a_vehicleunstuck 37.62 30.74 27.65 29.88 34.75 30.43 35.62
Groomingan.animal 44.14 45.4 43.17 45.62 48.81 46.53 49.55
Making a_sandwich 47.35 49.22 44.73 43.37 43.5 48.94 52.16
Parade 22.08 17.93 17.21 19.86 24.11 30.65 34.79
Parkour 27.95 21.36 20.16 23.79 31.25 30.86 28.24
Repairingan.appliance 18.42 15.56 15.98 17.15 14.83 27.47 31.88
Working.on_a_sewingproject 34.27 30.69 31.1 32.11 29.47 35.53 37.9
Attempting.a_bike_trick 25.88 19.72 18.84 19.91 22.47 28.58 29.28
Cleaninganappliance 23.61 20.39 20.45 22.14 20.52 25.95 26.74
Dog show 20.45 16.28 15.46 15.98 17.66 27.74 30.18
Giving_directionsto_a_location 47.21 49.53 44.61 43.51 46.79 42.15 52.37
Marriageproposal 46.75 41.93 42.61 46.06 44.83 49.24 48.26
Renovatinga_home 20.1 17.45 16.09 17.63 194 23.29 21.85
Rock climbing 24.36 19.67 20.43 22.26 28.39 24.37 26.66
Town_hall_meeting 52.18 50.21 47.39 48.41 52.15 46.95 57.59
Winning.a_racewithout a_vehicle 18.68 15.29 14.97 18.58 19.46 22.13 25.5
Working.on_ametalcrafts project 26.89 22.56 18.46 20.79 28.02 33.98 31.28
[ Mean [ 3123 ] 2828 ] 26.98 [ 28.60 [ 3076 [ 3393 | 3683 ]

only the motion of objects, but also the interactions betweamotion words. In our implementation, we empirically select
different objects. This shows to be important in representii@)% as the threshold to remove the less useful words in the
and recognizing different event occurrences. The experimeémformation gain approach.
results demonstrate the effectiveness of our approach in capin the remaining motion words, we further employ the
turing the object interactions in event detection comparegbproach described in Section IV-B to measure their infor-
with other motion features. By expanding visual words to thaativeness for the detection of each specific event. We assign
related words, ERMH-BoW slightly but consistently improveslifferent weights to different words and remove those words
the performance of event detection. The word expansigith weights smaller than a threshold. Figure 6 shows the
alleviates the ambiguity caused by SIFT quantization whef®,,, values and computation time when different weight
the same objects in an event with similar visual appearanteesholds are used. As can be observed in Figure 6, when the
would be mapped to different visual words. Table Il alstess informative words are removed, the detection accuracy is
compares the performances of two representation approacsi@ghtly improved {,,p value is reduced). This is because:
for the ERMH-BoW feature described in Section V. Oui) The removed words are less useful in detecting the given
experiments show that EMD kernel performs better than RB#vents; ii) By assigning larger weights to the most informative
kernel. In the ERMH-BoW feature, we only encode the motiowords, the discriminative ability of the SVM is improved.
between neighboring keyframes. To some extent, this ignotdewever, the detection accuracy is reduced when too many
the sequence information in event evolution. By matching thveords or some useful ones are removed. Similar to the
sequences of motion histograms in video events, EMD kernieformation gain approach, the computation time is reduced
compensates the weakness of ERMH-BoW in representing tliken less words are used. In our implementation, we select
sequence information and thus achieves better performance.5 as the threshold in this approach to remove the less useful
words.

A.2 Performance of Feature Selection for ERMH-BoW

In this section, we present the performances of our approach ,
described in Section IV for reducing the dimensionality of thg' On MED12 Progress Test Collections
ERMH-BoW feature. Figure 5 shows the me&y,p values In this section, we present the evaluation results during our
for 20 events wherPr 4 = 5% and the total computation time participation in TRECVID 2012 Multimedia Event Detection
for SVM training and classification when different thresholdtask. In this evaluation, the Progress Test collections were
are used to remove the less useful motion words. In Figureused. We submitted three runs for the official evaluation [45].
information gain is employed to remove the motion wordBigure 7 shows the performances of our submitted runs (in red
which are weak in discriminating different event categories. Alor) among all submissions in term of actual NDC (Normal-
can be seen in Figure 5, wh&f% of the words are removed, ized Detection Cost) metric [56], [57]. The run c-run3 employs
the Py;p value is not or very slightly changed. This showsnainly the static visual, audio and semantic information in
that most of the words are actually useless or even noisy, ahé videos. Visual features including SIFT and ColorSIFT are
can be treated as stop words for event detection. Meanwhiejracted in the sampled keyframes. For audio feature, MFCC
with more motion words being removed, the computatiotoefficients are extracted in every audio frame of 50ms, where
time is reduced which is basically linear to the number @fach frame overlaps with its neighbors by 25ms. For SIFT,
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Fig. 7. Performance of our runs submitted to MED12 task. To better compare
0 5 » o © @ w - different systems, the last run with the highest NDC (9.30) is not shown in

this figure.

Compression ratio (%)

. . TABLE Il
Fig. 5. Detection accuracy (meaf,;p values whenPr, = 5%) and
computation time when different thresholds are used for feature selection NUMBER OF EVENTS MEETING DEFINED GOALS THE GOALS ARE

with information gain. DEFINED TO BE MET IF THE SYSTEMS Phriss < 4% AND Pr 4 < 50%.
RUNS Number of Events Meeting Goals
= Actual Decision | Target Error Ratio
—#-PMo 00 c-run3 15 19
o i 600 crun2 17 20
/ p-baseline 17 20
25 —— 500 —~
- g
S 20 400 3
a £
= groominganimal
0_2 15 300 g g

'\ In the run p-baseline, feature selection is further employed
to reduce the dimensionality of the ERMH-BoW feature by
eliminating the less useful features. According to the eval-
uation results, the performance is a little bit improved by
& 0 025 05 075 reducing the actual NDC from 0.47 to 0.45. This is because
Threshold the original feature contains too much irrelevant information,
which is useless and even noisy sometimes in event classi-
Fig. 6. Detection accuracy (meafy, , values whenPp, — 5%) and fica}tion. By selepting a rather cleaner set of features, larger
computation time when different thresholds are used for feature selectif@ights are assigned to the most important features and the
with kernel optimization. performance is thus improved.
Among all the submitted runs, our two runs employing
the ERMH-BoW feature (p-baseline and c-run2) are ranked
ColorSIFT and MFCC, Bag-of-Words approach is employeli and 2 respectively. In other systems, most existing features
in feature representation. The feature spaces are first quantiggduding SIFT, ColorSIFT, Gist, MoSIFT, and DTF-HoG are
into 2000, 4000, 8000 words for three features respectivegmployed. Different machine learning strategies, experimental
Soft weighting is used for word assignment by mapping eaéttings, and their combinations are investigated [1], [6], [9],
descriptor to the 3 nearest words. Besides low-level featuré34], [37], [50]. Although the detailed results and comparisons
we extract mid-level features, i.e. concept scores for evede not currently available due to the evaluation strategies in
detection. Due to the lack of annotations on MED developmelfie MED task, the evaluation results have demonstrated the
set, we simply borrow the concept detectors constructed &ffectiveness of our approach based on motion relativity and
the Semantic Indexing task [45]. In total, 46 concepts whidgature selection for event detection compared with the state-
are semantically related to the events are manually selectetithe-art approaches.
The scores output by the corresponding detectors are used d@Rable Il shows the number of events for which our systems
the semantic features. For classifier learning, LIBSVM [7] imeet the defined goals (the goals are met if the system’s
employed. Linear weighted fusion is used to combine all SV¥?,,p < 4% and Pr 4 < 50%) with two methods for selecting
outputs. In the submission, the thresholds are determinedthyg detection threshold in Equations 18 and 19. The thresholds

B
8

ol
8

minimizing the NDC scores. for Actual Decisionare selected on the development set by
In the run c-run2, ERMH-BoW feature described in Seaninimizing the NDC values, while the thresholds farget
tion 1l is employed for event detection. The results arError Ratio are selected during the NIST evaluation at the

combined with c-run3 by late fusion. According to the evaintersection points between the system’'s DET curves and the
uation results, the actual NDC value is reduced from 0.5arget Error Ratio lines [57]. As can be seen in Table Ill, our
to 0.47. This shows the effectiveness of ERMH-BoW fosystems meet the defined goals for most of the twenty events.
detecting video events, especially for those events with intefhis shows that our approach can be successfully applied to
sive motion such abike trick, parkour, winninga_race and the detection of various events.
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