Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

2-2012

Summarizing rushes videos by motion, object, and event
understanding

Feng WANG

Chong-wah NGO
Singapore Management University, cwngo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

6‘ Part of the Graphics and Human Computer Interfaces Commons

Citation
]

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/224254466
Summarizing Rushes Videos by Motion, Object, and Event Understanding

Article in IEEE Transactions on Multimedia - March 2012

DOI: 10.1109/TMM.2011.2165531 - Source: IEEE Xplore

CITATIONS READS
46 160

2 authors, including:

Chong-Wah Ngo
City University of Hong Kong

276 PUBLICATIONS 8,837 CITATIONS

SEE PROFILE

All content following this page was uploaded by Chong-Wah Ngo on 21 May 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/224254466_Summarizing_Rushes_Videos_by_Motion_Object_and_Event_Understanding?enrichId=rgreq-eebabf9bd6fc4aa3de65b2c8d660dfcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI1NDQ2NjtBUzo5OTA4MjkxNTgxMTMyOEAxNDAwNjM0NjE2MDYy&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/224254466_Summarizing_Rushes_Videos_by_Motion_Object_and_Event_Understanding?enrichId=rgreq-eebabf9bd6fc4aa3de65b2c8d660dfcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI1NDQ2NjtBUzo5OTA4MjkxNTgxMTMyOEAxNDAwNjM0NjE2MDYy&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-eebabf9bd6fc4aa3de65b2c8d660dfcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI1NDQ2NjtBUzo5OTA4MjkxNTgxMTMyOEAxNDAwNjM0NjE2MDYy&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chong-Wah-Ngo?enrichId=rgreq-eebabf9bd6fc4aa3de65b2c8d660dfcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI1NDQ2NjtBUzo5OTA4MjkxNTgxMTMyOEAxNDAwNjM0NjE2MDYy&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chong-Wah-Ngo?enrichId=rgreq-eebabf9bd6fc4aa3de65b2c8d660dfcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI1NDQ2NjtBUzo5OTA4MjkxNTgxMTMyOEAxNDAwNjM0NjE2MDYy&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/City-University-of-Hong-Kong?enrichId=rgreq-eebabf9bd6fc4aa3de65b2c8d660dfcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI1NDQ2NjtBUzo5OTA4MjkxNTgxMTMyOEAxNDAwNjM0NjE2MDYy&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chong-Wah-Ngo?enrichId=rgreq-eebabf9bd6fc4aa3de65b2c8d660dfcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI1NDQ2NjtBUzo5OTA4MjkxNTgxMTMyOEAxNDAwNjM0NjE2MDYy&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chong-Wah-Ngo?enrichId=rgreq-eebabf9bd6fc4aa3de65b2c8d660dfcd-XXX&enrichSource=Y292ZXJQYWdlOzIyNDI1NDQ2NjtBUzo5OTA4MjkxNTgxMTMyOEAxNDAwNjM0NjE2MDYy&el=1_x_10&_esc=publicationCoverPdf

IEEE TRANSACTIONS ON MULTIMEDIA 1

Summarizing Rushes Videos by Motion, Object and Event Understanding

Feng Wang & Chong-Wah Ngo

Abstract— Rushes footages are considered as cheap gold minefor multiple times,e.g, when the actor forgets his lines. This
with the potential for reuse in broadcasting and filmmaking results in many repetitive shots in rushes. Different kinds of
industries. However, mining “gold” from unedited videos such (ﬁehind—the—scenes footages are included, such as the clap-
as rushes is challenging as the reusable segments are burie . \ . .
in a large set of redundant information. In this paper, we oard, the dlrect'ors command, and the dlgcu53|on be_tween the
propose a unified framework for stock footage classification actors and the director. Rushes also contain some unintentional
and summarization to support video editors in navigating and camera motione.g, when the cameraman adjusts the camera
organizing rushes videos. Our approach is composed of two to focus on the actors before movie shooting.
steps. First, we employ motion features to filter the undesired Table | compares rushes video with another two video
camera motion and locate thestock footage. A Hierarchical S . . .
Hidden Markov Model (HHMM) is proposed to model the domains: movie product and homg V|_de0. Prew_ous works
motion feature distribution and classify video segments into are mostly focused on the summarization of movie product,
different categories to decide their potential for reuse. Second, where the main challenge is the selection of representative and
we generate a short video summary to facilitate quick browsing informative clips through content understanding. Home videos
of the stock footages by including the objects and events that are jhyoqyces additional challenge for clip selection due to poor

important for storyteliing. For objects, we detect the presence visual quality because of amateur camera control. For example
of persons and moving objects. For events, we extract a set q Yy : P

of features to detect and describe visual (motion activities and in [17], spatiotemporal factors such as jerkiness, infidelity and
scene changes) and audio events (speech clips). A representabilitplurring are utilized to select high-quality shots. Rushes videos
measure is then proposed to select the most representative videoshare some properties with these two video domains. As a
clips for video summarization. Our experiments show that the . ajimin version of movie or rush r r
proposed HHMM significantly outperforms other methods based bre .aw ersion of movie p' Odl.JCt’ gs es a e. captured by
on SVM, FSM and HMM. The automatically generated rushes professional cameramen and in high viusal quality. However,
summaries are also demonstrated to be easy_to_understand,Similar to home VldeOS, I’USheS are not ed|ted and thUS UI"III"I-
containing little redundancy, and capable of including ground- tentional camera motion and redundant materials are included.
truth objects and events with shorter durations and relatively |n general, existing works in movie product and home video
pleasant rhythm based on the TRECVID 2007, 2008 and our gomains which have their respective assumptions on visual
subjective evaluations. i d tent redund t be directl lied f
Keywords: Rushes video structuring, Video summarization, quality and content re u_n ancy cannot be aireclly app 'e_ or
Motion analysis, Object and event understanding. rushes. Instead, there is a need to develop new techniques
for identifying a reduced set of useful footages from high-
quality but redundant and unusable materials. However, “gold

[. INTRODUCTION mining” in rushes is difficult as the semantic understanding of
In the broadcasting and filmmaking industriesshesis a video content remains a challenging problem. Furthermore,

term for raw footage (extra video, B-rolls footage), which i§tock footages and unusable materials are intertwined with
used to generate the final products such as TV programs &3%§h other. Video structuring needs to be carried out together
movies. Twenty to forty times as much materials may be sh¥fth the stock footage classification.
as actually becomes part of the finished product. Producers see TABLE |
these large amount of raw footages as cheap gold mine. The
“gold” refers to stockfootages which are the “generic” clips
with high potentials for reuse. However, cataloguing stock | Vide domain [ Home video | Movie product | Rushes video|
footage is a tedious task, since rushes are unstructured, and tHeCameraman Amateur Professional | Professional
stock footage is intertwined with lots of redundant materials. | Editing No or little | Professional No

In the past decades, research on video representation angRedundancy ||  Much No Much

analysis has been mainly founded on edited videasg, news, o
sports and movies, which are highly structured. In contrast!n TRECVID 2007 and 2008 BBC rushes summarization

to edited videos, rushes are characterized as unstructured &s4S [24], [25], the participants are required to produce short

redundant. During video capture, the same scene may be taRgfimaries for given rushes videos. The summaries should
contain as much useful footages as possible with enjoyable

Copyright (c) 2010 IEEE. Personal use of this material is permittethythm, but least junk and redundant materials. Most systems
However, permission to use this material for any other purposes must ffllow a two-step procedure. First, the irrelevant scenes and
obtained from the IEEE by sending a request to pubs-permissions@ieee.orqg. .

F. Wang is with the Department of Computer Science and Technology, Eég%akes are detected and removed, where shot CIUSte”ng are
China Normal University, 500 Dongchuan Rd, Shanghai, 200241 China. Téfidely employed. Second, the most important video clips are
(86) 21-54345054. Email: fwang@cs.ecnu.edu.cn _ then selected to compose a short summary by ranking the shot

C. W. Ngo is with the Department of Computer Science, City University of .

Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong. Tel: (852)27gimportance based on different features such as face occurrence,

4390. Fax:(852)2788-8614. Email: cwngo@cs.cityu.edu.hk image saliency and motion intensity.

COMPARISON OF DIFFERENT VIDEO DOMAINS
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' (shot Stock footag Domain-—specific scene 3 dgta pruning methods. $pe§ch transcript is explored' in [34] for
! |detection classification detection & removal ! video program summarization. In [16], a user attention model
! f | utilizing a set of audio-visual features is proposed. Object
 Rushes video : i 1 detection is employed in [12] for video abstraction in surveil-

| Summary Representative Object/Event ! lance system. In [43], a perception curve that corresponds to
! video clip selection understanding |

human perception changes is constructed based on a number
fo 1 F . ssificat § tion of hof visual features, including motion, contrast, special scenes,
1g. 1. ramework for content classification and summarization of rus! ot :
videos. 8?1@ statistical rhythr_n. The frames corresponding to th_e p_eak
points of the perception curve are extracted for summarization.
In [32], representative keyframes and metadata about video

. . - . structure and motion are generated to summarize the video
In this paper, we integrate two preliminary works in rUShE{ﬁith the least information loss

exploration [21] and summarization [38] into a unified frame- In contrast to the edited videos, rushes videos contain

WOI’k.tO present.our approaches.m deta|'ls and prpv!de COMPI other kind of redundant information, i.e., inter-shot re-
hensive evaluations and comparisons with the existing systems

) : - 2 guhdancy. Some junk shots may be inserted during video
Figure 1 illustrates our framework to facilitate gold mining an . .
recording, and usually the same scene is taken for many

quick browsing of rushes materials. We mainly address the h S h dund q
following two problems. Firsthow to classify useful footages“mes' I_:or rushes summarization, these redundancy needs
: to be filtered and the useful materials should be located.

;g;t%?;esntils | Ifgjt?:/v es’IggEnggt:XgO,r&n%Zfafcsheicc; T—Ici)éllgghn the annual TRECVID workshop [46] since 2005, differ-
9 ) ge. ent approaches have been proposed for rushes exploitation,
Markov Model (HHMM) is proposed to structure the rushes . . . o . :
) . ) . ; including junk information filtering, retake detection, high-
video and classify each video segment into different categor\es . . . 2
. : X ével feature detection, video browsing and summarization.
according to the semantics of camera motion. The segmepts . .
S ) . n-[33], a system is proposed to single out redundant and
with intermediate camera motion are regarded as useless

and filtered. The purpose of stock footage localization is [?epetltlve rushes data. High-level features, such as faces and

0
generate a clean version of the rushes videos with only useful

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

uildings, are detected to help the editors select the useful
materials so that we can grasp the desired content during vi&ggt.ent' n [.1.0]’ .[39]’ [40], after video .structunng, camera
. o 2 “motion classification and concept detection are performed for
content analysis and summarization. Secdraly to organize . : : . ;
. - content analysis. In [2], [3], different features including motion
the stock footage so that it can be efficiently browsed qr.. . ' .
searchedTompared with edited videos, rushes videos conta?r?“v'ty' audio volume, face occurrence, color and object
. ~omp . ' imilarity are extracted for shot clustering. The representative
duplicate clips due to the multiple takes of the same shot. \}

itéms are then selected from each cluster to create tools for
detect and remove these retakes before summary generah%n . . . o
video content visualization, browsing and summarization. In

S0 as to_ save unnecessary time on video content analysjs. keywords are manually assigned to each shot. The shots
Q)': 22;:“2;2hlzsthvﬁge?)robmz%(ljezginger':ﬁ(raatrioastsrr]grtr:sue?ga\lr/ e united into stories manually. Metadata is used for fast
video clips based on th)é object gnd event unc?erstandinr%wsmg' I [33], spatiotemporal slice is employed to quickly
P ) . . ; tect the repetitive shots to remove the inter-shot redundancy.
By watching _the produced summartes, th_e V'de(.) editors N [36], the shots are clustered by SIFT features and one
browse the Y|Qeo CO”“?”t qwckly and de_C|de their usemlneise'yframe is selected from each shot cluster based on a number
The remaining .Of this Paper 1S _orgamzed as follows. R%'f rules, e.g, selecting the most dominant face, or selecting
lated works are discussed in Section Il. Section lll proposgs

our HHMM for rushes video structuring and stock foota e longest camera distance if no face exists. All these works
. ; g 9&im at selecting the potentially useful footages by employing
classification. In Section IV, we present our approaches 9

I o e .
) ) o " Ifferent features so as to faciliate more efficient browsing of
irrelevant materials filtering and repetitive stock removal usin

domain-specific knowledge. A video summary is generaté%Shes videos.

in Section V by the proposed representability measure based
on object and event understanding. Section VI presents our [1l. STOCK FOOTAGE CLASSIFICATION AND
experiment results, and Section VII concludes this paper. LOCALIZATION BY MOTION FEATURES

The stock footage localization is to extract the materials
Il. RELATED WORKS with high potential for reuse by the editors from the rushes
Rushes summarization is to produce a simplified version obllections. Three semantic categories are considestedk
the given video by reducing redundant information and themuttakeandshaky The concepstockrepresents the clips with
content that can be easily predicted by watching just a portiortentional camera motion which have the potential for reuse,
of the video. Video summarization is a challenging task due snch as capturing an event with still camera and rotating
the requirement of making decisions automatically accordilge camera for a panoramic view. In contrast, those clips
to the semantics of the given video. In the past sevemslth intermediate camera motion, which are very likely to
decades, different kinds of approaches have been propodezidiscarded in the final production, are denotedttake
A systematic review can be found in [35]. In [8], a set oExamples include a quick zoom-in to get more details and
non-redundant keyframes are obtained by fuzzy clustering amcan to change to another perspective. The third category,



IEEE TRANSACTIONS ON MULTIMEDIA 3

by dividing a shot into segments each with consistent motion.
Both types of segments have their strength and weakness.
The fixed segment is easy to obtain in practice, but with
inaccurate boundary and motion feature. Intuitively, adaptive
segment may have better performance due to good boundary
and motion feature. However, since shot segmentation by
. ' y motion itself is a research issue, false and missed detections
 (Gight) Cout)" " Cright) Cout)" " Cright Cout)" would introduce under- or over-segmentation that prohibit the
finding of underlying semantic labels.
Fig. 2. An illustration of our two-level HHMM. Solid ellipses denote the To obtain the observation sequence for HHMM, we ex-
e e e ey 1o Uffact three types of dominant motion: panftrack, ti/boom
simplicity of presenting the figure, we do not show the edges.) and zoom/dolly from each segment. The inter-frame motion
features are firstly estimated from each two adjacent frames.
We apply Harris corner detector to extract the keypoints,
shaky represents the shaky artifacts which could be discard’%ﬂ from the framet. Their corresponding pointss; 1, in
. the next framet + 1, are estimated by the Singular Value
from summarization.

Since rushes are raw footages without editing. the probl Decomposition (SVD) of the 3D tensor structure [26]. Since
. otag , ing, the p etWe dominant features for rushes structuring and categorization
of structuring and categorization are intertwined. It is |nfeaS|-re anftrack. tilboom and zoom/dollv. 2D camera motion
ble to structure the videos without knowing the underlyin P ' Y

g : odel is sufficient for the representation of these three motion
characteristics of frames. For example, structuring only l%Xatures Therefore, we use the 2D 6-parameter affine model
motion cannot obtain satisfactory performance due to the i@u— ' '

T . : escribed as
discriminative motion features of the three semantic concepts.

In other words, there are two kinds of temporal structures X4l = [ 11 G12 ]Xt + [ u1 } ,
that are intertwined: the camera motion transitions inside each a21 422 v2
category and the category transitions in the rushes videafere [a;1,a12,as1,a22,v1,v2]7 are estimated from the
Simultaneous modeling of both temporal structures is requiretatched points in the frame pair using the robust estima-
Approaches such as [17] which measures the characteristicsoof LMedS [30]. The parameter; and v, characterize the
video segments independently could not be directly adoptpdn/track and tilt/boom respectively, while the parameter
for not modeling the temporal relationship between segmendsd a,, describe the zoom/dolly motion. We extract a 3-
In this section, we propose a Hierarchical Hidden Markodimensional motion feature vectgr = [v1,v2,2 = (a11 +
Model (HHMM) for modeling the intertwined relationshipass)/2] for each two adjacent frames. A sequence of motion
between structuring and categorization. vectors, {f}, is then obtained from the frame sequence in
HHMM is the generalization of HMM with hierarchicala segment. We use the median = median{f} as the
structure [42]. We use a two-level HHMM to encode thebservation for a segment. Then7asegment string of a
three semantic categories. Figure 2 illustrates the structureshbt forms an observation sequence for HHMM, denoted as
our HHMM. On the top is an auxiliary root state. The firsD = (01,02 - - or).
level is a sub-HMM which has three substates to represent
stock outtakeand shakyrespectively. Each substate is also 8- HHMM Representation
sub-HMM which is further decomposed into several substatesA state in an HHMM consists of a string of substates from
in the lower level. Basically a substate in this level modelt®p to bottom levels. We use = ¢1.q = 1z -~ qq to denote
certain aspect of low-level features to support the encodittie substate string from top to levé] where the subscripts
of semantic concepts at the higher level. For each semard&note the hierarchical levels. We drop the supersetifiir
concept, we use six substatédt, right, up, down in andout, abbreviation when there is no confusion. LBt denote the
to model the six major movements respectively in horizontahaximum number of levels and) denote the maximum
vertical and depth directions. This hierarchical model, on omséze of any sub-HMM state spaces in HHMM. An HHMM
hand, can alleviate the feature overlap problem by taking intan then be specified b® = {A,B,II,£}. Explicitly, A
account the temporal constraint. On the other hand, the higher- » . 4t 4 4
level substates make it possible to simultaneously structure &Iffiotes the transition probabiliti€s ) {J {aj}), whereay

. d=1 k=1
categorize the rushes on the whole sequence. is the transition matrix at levedl with configuration 1.
B is the emission parameter which specifies the observation
A. Motion Feature Extraction distributions. We assume that the motion features comply with

D

In order to facilitate structuring and categorization, a shej;ssian distributionV (s, ¥), thenB = (Cﬁj {1s,2:}). Sim-

should be partitioned into smaller segments which form an } 4 _ i=1

observation sequence for HHMM. In this paper, we investigallarly, let i andej, denotde the prior and exiting probabilities
. . . . D —1 D —1

two k_|nds of §ett|ngsf|xedandadaptlves_e_gments. The forme_zrat leveld, thenl = |J U nland€= (J U ¢! are the

one is obtained through equal partitioning of a shot into d=1 kg1 d=1 ky=1

k
segments of fixed length, while adaptive segments are obtaimetbr and existing probabilities for HHMM model.
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L-R-L - I - D-L-U-R-L-R-D-0 - R-L - O - 0

CQutake> Cshaky > Cstock>

Fig. 3. An example of stock footage classification. The first row shows some snapshots of the video sequence. The second row lists the detected camera
motion along the sequence. L: Left; R: Right; U: Up; D: Down; I: In; O: Out. The third row illustrates the state transitions at the higher level of HHMM.

C. HHMM Training and Classification levels lower thand. The means and covariances of statat
HHMM training is to find ©* that maximizes the likelihood

T
L(©). This is estimated by the Expectation-Maximization > oy (k)
(EM) algorithm as in traditional HMM. Given an old pa- e = '52;7 (5)
rameter® and the missing dat& = (ki, ko, ki - kp), S (k)
the expectation of the complete-data likelihood of an updated t=1
paramete® is written by T

. Ot — Oy — T t k
E(log p(0, K|6)]0, ©) G - 2 (00 = )0 = ) e (R) o

ZK:p(KlQ@)logp(O,KI@) i}l (k)

L(6,0)

. ZP(O’MG) log p(O, K|©) (1) Wit_h the estimated_parameters, HHMM is then _used to
% classify each segment into the three semantic categories. Given

an observation sequence of a slibt= (01,09 0¢ -+, 07),

we apply Viterbi algorithm [42] to obtain the underlying

optimal state sequencé™ = (ki k3 ---,k;,---,k%). Each

k* actually has two variables to indicate the substates of

o def o LD semantic label and motion feature in the two-level HHMM.

©, as&(k, k', d) = p(ky =k kipr = K, e, = 0,677 = The final solution is found in the higher-level variable string

110, ©). Similarly, we define the p[l(e)]l?ablllty of being in stdte 1+ _ (k1* k3 -k}, --- kX), which forms the labels

at timet, givenO and®©, as~;(k) = p(k; = k|O,0). In E- of the semantic concepts for the segments. Meanwhile, the

step, these two auxiliary variables are estimated by forwavdriations in the variable string’'* indicate the locations of

and backward algorithm [42]. In M-step, we can get ththe semantic concept boundaries. Therefore, by using Viterbi

The E-step estimates the expectatiaf®, ©), and the M-step
finds the valued that maximizes the likelihood.

We define the probability of being in stateat timet¢ and
in statek’ at timet + 1 with transition at levell, givenO and

updated model parametér as follows, algorithm on the segment string, the simultaneous structuring
T—1 and categorization for a rushes shot can be efficiently achieved.
SN qiq" d — 1) Figure 3 illustrates an example of stock footage localization.
frfj(i) __t=laa (2 In the given video sequence, the detected camera motion
HZZZg (¢, qid"d 1) composes the states in the bottom level of the HHMM (Fig-
=77 g B ure 2) which models the motion pattern inside each semantic
_— category. With the two-level HHMM, we can simultaneously
S S &lqid KL d) structure and c_Iassify the sequence into different_ categories.
é(i) = t=1 ¢ Kk d'<d 3) As shown in Figure 3, a_m)uttakeand ash_akyare ms_erted
q T—1 — to adjust the camera setting before shooting the desitack
t; %;%(‘”q ) footage. This pattern frequently happens in rushes videos and

is modelled by the high level of HHMM. Finally, the video
T-1 .
Gid.aid".d segments of the conceptttakeand shakyare pruned, while
dye s t;l %; ;:&(qzq 43¢, ) those ofstockare retained for video summarization.
ag(i,j) = 7 4)
1

S S 4(qid, q3q7, d) IV. DOMAIN-SPECIFIC SCENE CLASSIFICATION
t=1aq ¢’ j In the remaining stocks after filtering the undesirable camera
The above three equations estimate the prior probabilitpotion, there are still two kinds of footages that are less
within-level transition probability and level-exiting probabilityuseful for editors, i.e., clapboard and retake scenes. The former
respectively by normalizing and~. The temporal dimension does not contain any information relevant to video content
of £ and~ are marginalized out. Here we are only interesteahd should be removed, while the latters are stocks repeatedly
in the transitions made at levé| andq’, ¢” are the states at taken and contain redundant information.
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B. Retake Detection and Removal

During video capture, due to the mistakes of the actors and
in order to achieve better effects, each stock is usually taken for
many times. This results in many repetitive stocks. We detect
all the retakes and select only one for summary generation. Re-
take detection is carried out by matching subshots in different
stocks. The similarity of two subshots are calculated based on
keyframe and ASR speech transcript comparison. Given two
subshotss; and s;, two different cases are considered:sj)
and s; are repetitions of each other; i§; is a part ofs;.

Fig. 4. Detection of clapboard scenes. First row: keyframes from tésOr the second case; is an incomplete version of; and is

video set; Second row: example clapboard scenes extracted from trainingrggnoved from the subshot list. For the first case. all subshots

(Different colors are used for matching lines just to make the lines clearla/ | Th diff k fth ’ il
viewable in different images). re comp ete. They are di erent takes o .t e same scene unti

the director gets an satisfactory one. In this case, we choose the
last version and remove all the other repetitions by assuming

that the capture of the same scene is stopped until the director

. . gets a desired version.
In rushes videos, each stock usually contains not only the

movie play, but also some other materials that are irrelevant v v/|\peo SUMMARIZATION BY OBJECT AND EVENT

to the storytelling, such as camera adjustment and scene UNDERSTANDING

arrangement before movie shooting, and discussions betwee . . Lo
) : L fter removing the less useful information in the rushes

the director and the actors. In video summarization, we detec

the clapboard scenes to partition a stock into subshots z-%/?') £o, in this section, a short video summary is generated to

separate the story-relevant materials from other elements. §p the users quickly browse the video content. The summary

y
employing visual and audio features. IS

A. Clapboard Detection

expected to include as much information as possible in

To detect the clapboard scenes, we employ the aIgoritH'nW'ted duration with pleasant rhythm. Unlike most previous

for Near-Duplicate Keyframe (NDK) detection in [22], [44]. Aapproaches by shot clustering based on onv-leyel color, text'ure
set of50 example keyframes of the retake scenes are extracf?‘enad audio fe‘“!‘“fes’ we carry out su_mmarlzat|on by exploring
from the training video set as shown in Figure 4. The regiorﬁgOre semantic mformaﬂon, €., objects and events, to have
better understanding of the video content.
of the boards are manually annotated. For the keyframesin
the given rushes video, we detect the keypoints and match )
them with the example clapboard scenes. Figure 4 shows safheObject and Event Understanding
matching lines between keyframes and the matched examplé&or video summarization, the first step is to understand the
boards. If enough matching lines are found in the annotatedeo content. Since video is used to present objects and de-
regions, the keyframe is detected as a clapboard scene. scribe events, video content analysis, in nature, is about object
Besides visual features, the clapboard scenes can be deteatetievent detection. For objects, we mainly detect the presence
in speech transcripts. In most cases, the director controls tifgpersons and moving objects, which are essential for content
progress of movie capture by calling out keywords such asalysis of rushes videos. An event can be described from the
“standby”, “action”, “cut”, “take xx”, and “shot yy” (xx, yy are following five aspectsWho, What, Where, Wherand How.
the sequence number of the current take). We employ an A8Rour approach, we attempt to detect event occurrences by
(Automatic Speech Recognition) engine for speech recognitiertracting related features to locate these five elements. To
and then detect these keywords in the output transcripts. Tareswer the question of¥hathappen in the video” needs event
movie play is located by a pair of keywords “action” and “cut’recognition, which remains a challenging problem in general
The third feature is audio. In some cases, although thisleo domains. Fortunately, for video summarization, the task
camera is faced to the actors, they might be discussing withto detect the presence of events so as to include them in the
the directors instead of acting. These kinds of footages cansatnmary, while the recognition is usually unnecessary. Event
be detected by visual or speech cues. However, we obsedietection can be carried out in both video and audio tracks,
that in audio track there is quite obvious boundary betweamd most events are visually presented by the object activities,
movie play and unintentional materials, since the source cdmera motion and scene changes.
audio, manner of speaking and background noise are differenObject detection actually answers the question \8tho
in these two scenes. We classify the corresponding segmepasticipate in the event”. We consider two kinds of objects
into three classes: silence, actor’s lines, and noise. A numliervideo sequence. First, human plays an important role in
of features are extracted from audio track, including cepstralifferent kinds of videos, especially in the rushes collections
flux, multi-channel cochlear decomposition, cepstral vectaf movie products. We detect human faces by employing
low energy fraction, volume standard deviation, non-silentbhe face detector from CMU [45]. Second, an object in
ratio, standard deviations of pitch and zero crossing rat@pvement usually implies an event occurrence. To capture
and smooth pitch ratio. An SVM is then employed for th¢he objects in videos, we detect and track moving objects

classification of different audio scenes. based on our previous work [27]. Some examples of face
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By audio-visual event understanding, we get the following
features:

a) A set of objectsO = {o;}. Each object is associated
with its existence period and location information;

b) A set of object motion activitesb = {¢;}. Each
element is associated with an object and its movements
along the video sequence;

c) A list of camera motionI' = {v;}. Each element is
associated with the camera motion parameters and time
information.

d) The scene changeA = {§;} between neighboring
frames with the period of each scene being recorded.

e) Dialogue or speech clip§2 = {w,,}. Each clip is
associated with the speech transcripts, and the beginning
and ending time of each dialogue.

Although the above features cannot tell what exactly happen
in the video, they are good indicators for the object and event
and object detection are shown in Figure 4. Each 0bjectqgcurrences. Furthermore, they also enable us to extract the el-
represented as(0;4, ts, te, po(t)), Whereo;, is the identity of em_ef?ts OWh.O ' When,_ WherandHoyvto describe the.eve_nts.
the object, andt, denote the time when the object appear-gh's is sufficient for video exploitation and summarization.
and vanishes before the camevshen), andp,(t) includes a
list of locations of the object at time (¢, < t < t.) (Where B. Representability Score
and How). Video summary is to select the most representative video
The scene actually answers the questioMiifere A new clips to explicitly describe video content. For this purpose, we
scene indicates the beginning or a new stage of an event.propose a representability score for the candidate video clips
detect the scene changes in events, we employ the algorithnbésed on object and event understanding. First, a given subshot
[44], [22] to track the keypoints in sampled frames. Basicallg segmented intd-second video clips. Each clip overlaps
we evenly selecB frames every second. For each samplegith the previous one b$00ms to enable the flexibility of clip
frame, keypoints are detected and matched with the subsequsgimentation and selection. These clips are used as candidates
5 frames by employing the algorithm in [44], [22]. An exampldor composing video summaries.
of keypoint tracking is shown in Figure 6. Based on the Given a video clipv, five scores are defined to measure the
results of object detection, a matching keypoint in two frameepresentability ofv for the five feature set$O, ®,T", A, Q}
is assigned to an object if it lies on the object tracked irespectively as follows:
both frames. Otherwise, it is assigned to the background Z /t2(1 B 1t — (oo + o) /2| P

Fig. 6. Keypoint tracking in sampled frames.

scene. The number of matching keypoints in the neighboring R, (O)

keyframes measures the consistency of the scenes. A scene ocO /1t teo — tso
change is detected if the number of matching lines between t2 d
) dsea [0 f(t)dt
two keyframes is less than a threshold. R,(®) = o (8)
Camera motion is another indicator of event evolution. que@ ftw f(t)dt
Different kinds of_ camera mqtion imply the intentions pf the R,(T) = tQ(l = (e tey)/2|)dt ©)
cameraman or director. For instance, a camera pan includes v - " toy — tay
new objects and background scenes, while a zoom-in em- ver .
phasizes some objects or people. In Section IIl-A, we have RA) — Dosena Jy ot)dt 10
detected three types of dominant camera motion: pan/track, o(8) = tes (10)
: : Dsea )i ot)dt
tilt/boom and zoom/dolly from each subshot. This helps us to -
W) AW

capture the intentions of the movie makers and thus include R,(Q) =
the desired materials. Al
Besides visual events, we consider people’s speech amidere (t1,t2) denotes the temporal intersection of clip
dialogue based on speech recognition in audio track. Audiod the corresponding object or eveft,,, t.,) denotes the
is useful for video summarization since there is usually littlexistence period of object or even{ f(¢) is the motion
visual changes during a long dialogue or speech. Such eventensity function at timet, and W(v) is the set of words
are important for the semantic completeness of the summaryspeech transcript for a given video clip Equations 7 and
but cannot be captured by visual detectors. In Section V-8, measure to what extent the clipcan include the presence
we have employed an ASR engine to extract human’s speexfreach objecb € O and camera motiory € I" respectively.
inside each stock. After stop words removal, we get a set \bfe assign larger weights to the video clips when the object or
words. An audio event is detected if the density of meaningfoaamera motion starts or ends (farther away from the midpoint
words is high enough in a video clip. of [tso,teo]) @S we think this is more important events, while

(11)
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the progress of the object movement or camera motion car\r/ég%gr'jtgbimy
be easily predicted if the starting and ending clips have bee
included in the summary. In Equation 8, the representability
of clip v for an activity eventp is measured by the amount of
motion included byw. Equations 10 and 11 measure how many
scene changes and words in speech transcripts are included
video clip v respectively. A T T T LI T M A L IO T e S

Based on object and event understanding, we can identify G ¢ €2 Video sequence
the content inclusion of each video clig as Inc(v;) =< separted into clips
Oy, Py, T, Ay,, 0, >, whereO,, C 0,®,, CP,T",, CTI', Fig. 7. Representability scores of two video clipsandcz. Given another
A, € AQ, C Q are the sets of objects, motion activitiesyideo clip ¢, the values ofs; = Rep(ci, ) and sy = Rep(cz, ) indicate
camera motion, scene changes, and speech clips respecti %v'\S/much information irc can be represented ly andco respectively.
that lie inv;. By equations 7-11, a representability score of a

video clip v; for v; is defined as ) - ] )
) improve the overall representability. For each video dljp

Rep(vi,vj) = ————= - (Wo Ry, (Oy;) + wa Ry, (Py,) that is not sglected, we attempt two _opera_ltions: .inserft':in_g
v d(vi, vj) to Sum or usingc, to replace one of its neighboring clip in
Fwr Ry, (I'y,;) + waRy, (Ay;) +waRy, () (12) Sum. The clips that can improve the representability the most
are inserted or used to replace another one. This procedure
ntcsontinues until the summary length reaches the upper limit
of v; and v;, wo = we = wp = wa = wo = 0.2 A€ o 4 5o of the original video duration in TRECVID 2008) or

the weights for the five different features respectively. Tt} e incremental representability scades gained by inserting
score Rep(v;,v;) measures to what extent can represent one clip is less than a minimum value' 7N, = .1 . Finally

the contetntlljr'wj:[For gstancte, .'fRep(Ui’lvj)f'S h'gh eho.?gh’ all video clips in Sum are adjoined together to compose a
i.e., most objects and events iy are also found i, itis iqe o' summary,.

hetter to keep the more representative eipn the summary The novelty of our algorithm comes from the employment

and removay; to reduce the summary length and redundancy object and event understanding for selecting semantically

Based on Equation 12, for each video clip, we measurrr?eaningful clips. This is in contrast to existing works such

its representability for the neighboring clips. Figure 7 showgS [7], [19] which sample clips based on activity or visual
the representability curves of two video clips and c,. The :

it tabilt £ 2 vid i lculated intensities through low- or mid-level feature analysis. In ad-
overall representability score ot a video ctips caiculated as dition, the proposed representability measures the importance

s(c) = Z Rep(c, ) (13) of aclip by judging from its contribution to the video content.
o This is also different from conventional strategies where the
selection criteria are rule-based or depending on pairwise shot

whered(v;,v;) is the temporal distance between the midpoi

where ¢’ is the neighboring clip ofc. In Figure 7,s(c;) . arit
and s(c2) correspond to the area below the two curves. TR anty-
larger the representatability score is, the better the video clip Vi

. EXPERIMENTS
can represent the neighboring ones. We just consider the q . he video data f
representability of a clip for its 150 neighbors in order tg We conduct experiments on the video data from TRECVID

smooth the storytelling of the summary. For instance, if orf?0/ and 2008 BBC rushes summarization task [24], [25]

person appears again after a long time, the second clip Shottﬂodernonstrate the performar)ce'of both SI,OCk footage clgs-
s%lcatlon and rushes summarization. The video data consists

not be simply removed because this might correspond to _ : . .
hew event. of raw video footages mainly for five series of BBC drama
programs. The TRECVID 2007 dataset includes 43 videos

_ (about 18 hours) for development and 42 videos (17 hours) for

C. Summary Generation testing. The video duration ranges from 3.3 to 36.4 minutes. In
Based on the calculated representability score, we selecTRECVID 2008, another 39 videos (17.2 hours) are provided

set of video clipsSum that include all detected features ancs testing data. For experiments, the videos are first partitioned

have the highest ratio of representability and total duratioimto shots by employing our work in [20].

Our algorithm works as follows.
1) Initialize Sum = {}, and C is the set of all video clips A. Stock Footage Classification

in the descending order of their representability scores. \We compare the proposed HHMM with our previous
2) Select the clipr; € C with the highest representability work presented in TRECVI2005 [23]. In [23], we exper-

score.Sum = Sum | J{c;}. iment three approaches: Finite State Machine (FSM), Hidden
3) Remove all clips;, € C'if Rep(c;,c,) is larger than a Markov Model (HMM) and Support Vector Machine (SVM).

threshold. In this paper, we use TRECVID 2007 BBC development
4) Goto 2 if C is not empty. dataset for training, and TRECVID 2008 testing set for eval-

With the above algorithm, we exclude the duplicate clipgation. In the groundtruth data, 63.5%, 15.9% and 20.6% of
that can be represented by others. Next, we update. to the shots are belong &tock outtakeand shakyrespectively.
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Table Il summaries and compares the properties of differeédt TRECVID BBC Rushes Summarization
approaches. FSM is actually a simplified HMM that the fuzzy Gjyen a video from the rushes test collection, the task is
transitions in HMM become deterministic. SVM, instead of, automatically create an MPEG-1 summary clip less than or
modelling feature distribution, discriminates the three semangaum to a maximum duration that shows the main objects and
concepts by hyper-plane in feature space. We use Radial Bagjgnts in the rushes video to be summarized. The summary
Function (RBF) as the kernel for SVM. Meanwhile, Gaussiaghoy|d minimize the number of frames used and present the in-
distribution is used as kernel function in HMM and HHMM .t5mation in ways that maximize the usability of the summary
Adaptive video segmentation is applied for FSM, while fixedq speed of recognizing objects and events in videos. In the
segments of 1-second duration are used for SVM and HMMyperiments, based on domain specific knowledge presented
HHMM is tested with both adaptive (A-HHMM) and fixed, ‘gection IV, the performance of clapboard detection is:
video segments (F-HHMM). Recall = 95% and Precision = 78%. Most retakes can be
removed with an accuracy &#1%.

1) TRECVID 2007 Evaluationin TRECVID 2007, there
are 1008 summaries (including 84 summaries of two baseline
runs generated by CMU [9]) of 42 videos submitted from

TABLE I
COMPARISON OF DIFFERENT METHODS PROPERTIES

| Segment length| # Structure | # Feature| Kemel | 22 tegms for judgment [24]. The summaries’ lengths are
FSM adaptive flattened 3 threshold limited to be less thani% of the original videos. During
SVM fixed flattened o RBF evaluation, five assessors are asked to watch and score the
HMM fixed flattened 9 Gaussian|  gypmitted summaries. Seven criterions are used for the subject
F-HHMM fixed hierarchical| 3 Gaussian|  ayalyation:EA, RE, IN, DU, XD, TT, andVT (the detailed
AHHMM adaptive | hierarchical 3 Gaussian|  gefinitions of these criterions can be found in Table IV). The
performance is judged based on the guidelines and evaluation
provided by TRECVID 2007 BBC rushes summarization task
TABLE III [24].

SEMANTIC CATEGORIZATION ACCURACY ON THE TESTING VIDEO SET TABLE IV

OUR RESULTS ONTRECVID 2007RUSHES SUMMARIZATION TASK. (THE

Stock Outtake Shak
Approaches y NUMBERS ARE THE MEDIANS OF THE SCORES FOR ALU2 VIDEOS.)
Recall | Prec. | Recall | Prec. | Recall | Prec.
FSM 0.764 | 0.986 | 0.794 | 0.120 | 0.075 | 0.116 EA - Easy to understand: 1 strongly disagree - 5 strongly agree;
SVM 0.795 | 0.982| 0.721 | 0.175| 0.621 | 0.334 RE - Little duplicate video: 1 strongly disagree - 5 strong agree;
HMM 0.870 | 0.976 | 0.383 | 0.148 | 0.348 | 0412 IN - Fraction of inclusions found in the summary (0 - 1);
F-HHMM 0.959 | 0.983 | 0.612 | 0.591 | 0.413 | 0.589 DU - Duration of the summary (sec);
A-HHMM 0977 | 0.988 | 0.537 | 0633 ] 0.731 | 0.695 XD - Difference between target and actual summary size (sec);
TT - Total time spent judging the inclusions (sec);

. VT - Video play ti . to judge the inclusi .
Table Il shows the results of rushes footage classifical’ = /deC Play time (vs. pause) to judge the inclusions (sec)

tion for testing videos. The results are evaluated based olcriterion IN [RE|EA| DU | XD | TT | VT
the number of frames being correctly or wrongly classified.| Baseline 1 0.60| 3.33|3.33| 66.4 | -2.28|110.67| 66.67
From Table Ill, we can see that HHMM outperforms the | Baseline 2 0.62(3.67|3.67| 64.6 | -0.89|109.17| 63.83
other approaches. Overall, we have ab®6ifc accuracy on | Median. of 22 teamb0.47| 3.67] 3.33[ 59.33| 5.23 | 93.17 | 59.09
stock 60% on outtakeand 70% on shakyin the testing set. [, result 065/ 2.0013.50] 42 151 15.03] 87.83 | 45.33
Compared with the other two categoriesiock footages are 5 Ranking s 11131 5 | 6 8 5
usually captured with perfect and consistent camera control.

The motion pattern irstockis relatively simpler and easier to

model with HHMM. Thus stockis more separable froshaky  Table IV shows the evaluation results of TRECVID 2007
and outtake The classification errors mainly happen betweemishes summarization task. The two baselines are generated by
shakyand outtakedue to the complicated and varying camer&MU [9]. The first one evenly selects 1-second video clip for
motion in these two categories. This does not hurt much teeery 25 seconds. The second one performs shot clustering and
performance of the whole system since both concepts amects one shot from each cluster. The detailed results of all
finally discarded. Since SVM assumes that the observatidieams can be found in [24]. As can be seen in Table IV, for the
are independent and neglects the temporal relationship, finst three criterions: IN, EA, and RE that measure the usability
classification accuracy is pretty low. Instead, by exploitingf the summaries, we are ranked 3, 1, and 3 respectively.
the temporal relationship, HMM presents some improveme@bnsidering the contradictions among these criteriang, (
compared to SVM. Through experiments, hierarchical HMMigher IN usually introduce more redundancy and lower RE),
shows better performance than flat HMM. A-HHMM show®ur results are quite encouraging. Meanwhile, our summary
slight improvement instock classification compared to F-duration (DU) and watching time (VT) are ranked 5 from 24
HHMM, and significant improvement in the classification ofuns. As concluded in the evaluation report [24], only our
shakysegments. system is significantly better than the baselines in terms of
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EA (easy to understand), IN (inclusion of objects and eventsystem. For this metric, our submission (VIREO.1) is ranked
and RE (little redundancy). 3 among all 43 runs. Only QUGP and thuntel get higher
The major approaches adopted by other teams inclusieores than us. By checking the raw scores, our summaries
shot clustering [9], [5], [37], video acceleration [7], [9], andnclude 50% more useful footages (IN) than both of them.
highlight keyframe detection [4]. Shot clustering focuses on To evaluate the performance of stock footage localization,
detecting and removing redundant shots based on differevé define S, = IN % JU * RE. A higher value ofS;
features such as SIFT [37] and color [9]. The problem aheans that the system can pick up more useful materials
this kind of approaches lies in two aspects. First, withouthile including least junk and redundant information. We are
considering semantic information, only the visually similaranked 1 for this metric. Compared with other systems, we
shots are pruned. For instance, given a list of continuoase ranked 4 for IN. At the same time, our summaries include
shots describing a single event, the users can predict whta least junk materials (ranked 1 for JU). This demonstrates
happens by watching only one or few shots. However, bast@ effectiveness of our approach described in Section IlI
on shot clustering, these shots may not be similar to eafdr stock footage classification. For RE, our system scores
other according to low-level features and thus more shots amund the average level among all runs. As presented in
unnecessarily included in the summary than actually need&gction V, we just consider the representability of each clip
Second, two shots that are visually similar may appear for its near neighbors so as to smooth the storytelling. Some
different events. Simply removing any one of them based aimilar objects and scenes are inevitably included in a long
shot clustering will lead to incomplete event description. In owmideo sequence. This is probably the price we pay for keeping
approach, the redundancy level is measured not only visuallysmooth storyline in the summary. Some other runs (such as
but also semantically by object and event understanding. ThdRS, COST292 and REGIM) are good at removing junk and
the generated summary can preserve the storyline of the videdundant materials, but also exclude more useful footages at
while keeping elegant. According to the experiments of [9lhe same time.
simply speeding up the video achieves relatively high IN, Two metricsS; = 10« IN «TE/DU and Sy = 10 * I N x
since human is able to capture most objects and events e¥&an/TT are defined to measure the usability of the summary.
when the video is played at rather high speed, 25 times For the users, a good summary should be able to tell the story
of the original one. But this approach inevitably includesompletely with enjoyable rhythm in limited duratiofs) or
much redundant and junk materials. In [4], highlight shots ameatching time ). As shown in Table V, we are ranked 1 for
extracted by combining keyframe extraction, face detectidioth metrics. Our summary length is shorter than most other
and motion estimation. This approach attempts to include thens. Meanwhile, we include more useful materials and keep
information that is potentially important for users. Howevea relatively good rhythm of the summary. This helps the users
the redundancy problem is not addressed. to judge the usefulness of the rushes videos efficiently and
2) TRECVID 2008 Evaluationin the most recent rushesenjoyably. For IN, only the runs from CMU and asahikasei
summarization task organized by TRECVID 2008, 43 rurget higher scores than ours. However, all these runs suffer
from 32 teams are submitted for evaluation. The summarigedm significantly lower TE which reduces the usabilities of
lengths are further limited t@% of the original videos. The the summaries. Our performances on these two metrics are
evaluation process is the same as in TRECVID 2007. Amongginly due to the proposed approach for video summarization
the eight criterions used this year, five (DU, XD, TT, VT, IN)in Section V. With the extracted visual and audio features, we
are adopted from TRECVID 2007. In addition, JU and RHetect the object/event occurrences and understand the video
are used to measure the degree of junk materials and duplicgadatent in a more semantic way. This enables us to select the
video clips in the summaries respectively. Another criterion TEost representative clips for an elegant, complete, and pleasant
is defined and replaces EA in 2007 to evaluate the enjoyabilgymmary of the video content.
of the summaries. Table V shows and compares the detaile®) Discussions:Since the scales of different criterions are
scores of our approach (VIREO.1) with some other systemsot exactly the same, the above defined metrics might not
As can be observed in Table V, it is not easy to selectbee perfect. However, as listed in Table V, by these four
single metric from the eight given criterions to evaluate thmetrics, we can find some systems with good performance for
summaries. An ideal summary should include most necessdifferent aspects. The team QU3P [31] attempts to make
materials with the least junk and redundant information whilummaries as enjoyable as possible. Based on shot clustering,
making the storytelling smooth and enjoyable in as shdtte longest shot is selected. The number of faces, the amount
time as possible. However, there are always contradictioos motion and the size of the cluster are used to rank and
between these criterions. For instance, a large IN usuafiglect shots for summary generation. In the submission from
introduces more junk and redundant materials, and resultstti-intel [41], color, edge, face detection, motion intensity
a longer summary. On the other hand, the rhythm of a shard audio information are used to select the most representa-
summary with a lot of materials is usually unpleasant. To hatige clips by hierarchical clustering. In PolyU’s system [14],
a more comprehensive comparison among different systemssupervised clustering is also employed for keyframe and
in Table V, four metrics are derived by combining differentlip selection based on local color histogram feature. PicSOM
criterions to evaluate the summaries from different aspects[13] selects video clips by initially favoring the frames near
The first metricS; = IN « JU « RE « TE/DU combines the center of each shot using linear weighting. The scores
the different criterions to calculate an overall score for eadi clips containing faces, speech, objects or camera motion
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TABLE V
OuR RESULTS(VIREO.1)oN TRECVID 2008RUSHES SUMMARIZATION TASK. THE SYSTEMS ARE RANKED AMONG43 SUBMITTED RUNS. JU: DEGREE
OF JUNK FRAMES IN THE SUMMARY (1-5), 5MEANS LEAST JUNK MATERIALS IN SUMMARIES; RE: DEGREE OF DUPLICATE VIDEOY(1-5), 5MEANS THE
LEAST REDUNDANCY IN SUMMARIES; TE: DEGREE OF PLEASANT RHYTHM(1-5), 5FOR THE BESTS1 = IN * JU * RE « TE /DU ;
So =INxJU * RE; S3 =10« IN «TE/DU; S4 =10« IN « TE/TT.

TRECVID 2008 Criterions Derived Metrics
SYSM "5G T XD [ 7T [ VT [ IN [ JU [ RE | TE || S [ranki]| S, [rank2][ Ss |[rank3]| Si | ranka
QUT.GP.1 | 21.5] 7.17 | 32.67] 24.33] 0.44[ 3.67| 3.67| 3.33][ 0.918] 1 [ 5926] 5 [[0.681] 2 [ 0.448] 2
thu-intel.2 | 19.6 | 12.32| 31.67| 21.67| 0.42| 3.67| 3.67| 3.00([ 0.866] 2 || 5.657| 8 || 0.643] 3 | 0.398] 5
VIREO.I | 23.6] 7.63 | 38.00| 25.00 0.67| 3.67| 3.00 2.67|/ 0835 3 | 7.377| 1 || 0758 1 | 0471 1
PolyU.l | 26.0| 3.07 | 36.00] 27.00] 0.47 | 3.67 | 3.67| 3.33][ 0.811| 4 [[6.330] 2 | 0.602] 4 | 0.435] 3
COST292.1] 22.8| 8.44 | 31.00| 24.67| 0.31] 3.67| 4.00| 3.33][ 0.665| 5 | 4551 23 || 0.453] 15 | 0.333] 10

6

7

8

PicSOM.1 | 22.1| 4.05 | 32.33| 25.00| 0.44| 3.33| 3.33| 3.00 || 0.662 4.879| 15 0597 5 0.408| 4
thu-intel.1 | 28.1| 4.09 | 39.00| 28.67| 0.42| 3.67 | 3.67| 3.00|| 0.604 5657 7 0.448| 16 0.323| 12
JRS.1 18.5| 13.38| 25.33| 20.00| 0.22| 3.67 | 4.00 | 3.33|| 0.581 3.230| 38 0.396| 23 0.289| 19
asahikasei.1 19.5| 9.64 | 34.67| 20.00| 0.69 | 3.00| 3.00| 1.67 || 0.532| 11 6.210| 3 0.591| 6 0.332| 11
REGIM.1 28.0| 2.65 | 36.67| 30.67| 0.31| 3.67 | 3.67 | 3.33|| 0.497| 14 4.175| 27 0.369| 27 0.282| 22
BU_FHG.1 | 22.9| 7.94 | 38.67| 24.67| 0.58| 3.00| 3.00| 2.00 || 0.456| 19 5.220| 10 0.507| 7 0.300| 17
CMU.2 33.9| 0.40 | 56.67| 35.67| 0.81| 3.00| 2.00| 1.67 || 0.239| 39 4.860| 16 0.399| 22 0.239| 36
CMU.1 33.9| 0.40 | 53.33| 33.00| 0.80| 3.00| 2.00 | 1.67 || 0.236| 40 4.800| 18 0.394| 24 0.251| 33
cmubase3.l] 33.9| 0.40 | 58.67| 34.67| 0.83| 2.33| 2.00| 1.33|| 0.152| 42 3.868| 31 0.326| 39 0.188| 40

are then increased using heuristic weights. In COST292 comparison, our system which relies on object and event
system [18], face detection, camera motion and MPEGthderstanding offers better capability of selecting clips that
color layout descriptors for each frame are used as inputrn@aximize content inclusion. This undoubtedly leads to better
their clustering approach for summarization. The system putsderstanding of summaries. The factors such as excluding
emphasis on the enjoyability of the summary by following thendesirable content by stock localization and domain specific
storyline and some editing rules, for instance, it never displagsowledge also greatly enhance the summary quality in terms
segments shorter than 2 seconds. In asahikasei's submissibnontent conciseness and enjoyability.
[11], duplicate scenes are removed based on average coldror the efficiency issue, the overall complexity of the whole
of scenes. Each scene is skimmed to keep motion of videgstem is basicallp (L) where. is the original video length.
constant. In Joanneum’s submission [3], visual activity anthe system time is abodt£ which varies according to the
face detection are employed to select the important clips bastdicture of the rushes videos.g., the percentages of stock
on defined rules. In [28], [29], BUWFHG models rushes videosfootages and retakes). The feature extraction stage, especially
as a hierarchical structure and employs k-NN clustering fobject and face detection, keypoint matching and tracking,
redundancy removal. The most representative shot is seleatedsumes most of the computational time, up3ttimes of
from each cluster according to its length and sum of activithe video duration. Stock footage classification can be done
level for summarization. This system is implemented in tha video playing time, while summary generation takes only
compressed domain and quite efficient. Since no semarfé@v minutes. Overall, object and event based video summa-
information is considered, low TE scores are achieved. CMiization inevitably consumes more time while producing better
contributes three runs [6]. A baseline is first generated Isymmaries. According to the evaluation in [28], when system
fast forwarding the play of original videos by 50 times. Thefficiency is considered, our system is still ranked 2, 4, and
irrelevant clips are then detected and removed. Audio is addEsl among all the 43 runs under different evaluation settings.
to the summary to improve the comprehensiveness. Fast-
forwarding is good at covering most footages. However, & Subjective Evaluation
can be found in Table V for the CMU runs, the summaries After having compared our approach with other existing
are still filled with many repetitive shots and the enjoyabilitgystems in TRECVID BBC rushes summarization task, in
is inevitably unsatisfactory. this section, we conduct a subjective evaluation for collecting
Overall, in TRECVID 2008 BBC rushes summarizatiomuser comments. Besides our approach, we also implement
task, shot clustering is widely employed to detect and remowseother two algorithms for comparison. The first one is done
redundant materials. Some low- or mid-level features such agsimply speeding up the videos by 50 times as in [6]. For the
shot length [31], motion intensity [29], [11], spatial imagesecond algorithm, after removing the junk materials, shots are
salience [15], and human face occurrence [3], [41], [18}lustered based on color and edge histograms. The longest shot
[31] are used to heuristically rank the shot importance. Thefem each cluster is selected. The number of faces and motion
methods intend to highlight some content such as face antkensity are used to rank the shots for summary generation.
motion, and produce summaries that are good from aspect§or evaluation, 39 videos from TRECVID 2008 BBC testing
such as content inclusion, system efficiency and enjoyabilijataset are used. We invite 24 people and partition them into
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6 groups to grade the summaries. Each group is assignetbliows the storyline of the original videos, our summaries
to 7 videos. For each video, the original video is first playegroved to be elegant with good rhythm and users can easily
The judges are then asked to watch and grade the summacsture the desired information.

generated by different approaches. The order of playing the

summaries is random and unknown to the judges. They are VIl. CONCLUSION

asked to score the summaries by answering the following

. In this paper, we have presented our approaches for the
questions:

h etely describe. th _ rszxploitation of rushes videos by automatically stock footage

1) Can the summary completely describe the content in thg.i;ation and video summarization. In stock footage classi-
original videos? (Completeness) . L .

2) Is the summary with the least redundancy? (Elegancy) fication, by taking into account the sequential patterns of the

3) How easy is it to grasp the story in the summary? (Easy t®otion features, the proposed two-level hierarchical hidden

understand) Markov model (HHMM) is capable of modelling statistical
4) How pleasant do you feel to watch the summaries? (Enjoyeaapping from low-level motion features to high-level semantic
bility) concepts. Experimental results show that our approach signif-

The score for each question ranges from 1-10, with igantly outperforms other methods such as SVM, FSM and
meaning the best. The medians of the scores for differddMM. In video summarization, the extracted visual and audio

approaches are shown in Table VI. features are effective to detect the object and event occur-
rences. The proposed representability measure helps select the
TABLE VI most representative video clips for summary generation. The
SUBJECTIVE EVALUATION AND COMPARISON OF SUMMARIES evaluation results in TRECVID BBC summarization task and
Approach [[CompleteneséElegancy Easy to understarj@njoyability]  subjective evaluation show that our summaries are encouraging
Sampling 9.00 2.25 5.50 450 at preserving the semantic content and storyline of the given
Shot clustering ~ 6.75 8.25 7.50 5.25 video with pleasant rhythm and concise information.
ours 8.50 8.00 8.75 7.50 For the future work, the accuracy of stock footage localiza-

tion can be improved by also considering the visual qualities

Th ies b i dt of video segments and other multi-modality cues in addition
€ summaries by even sampling aré assumed to Comfadr}notion features. Our summarization work demonstrates that

mos:r:nftot;]matlon In thﬁ gnglnalt\ndeos. Frow;akr)lle \t/rll We ca analysis of objects and events show promising for video
see hat this approach does Not score much higher than oursﬁ Mmarization towards semantic understanding. The proposed

Ferm of elegancy of summaries, sampling approach mewtat%é( hniques of object and event understanding can be employed
include most of the repetitive shots and scores the lowest. M?g both edited and home video summarization

judges comment that our summaries already include most
materials that are important to describe the stories completely.
Few missing objects/events do not affect their understanding
of the storylines. The motion intensity is a useful hint to The work described in this paper was supported by a grant
detect some events and decide the usability of the video clifi¢m the Research Grants Council of the Hong Kong Special
However, some events are actually not motion intensive afdministrative Region, China (CityU 119610).
thus ignored by being assigned a low preference. For elegancy,
motion intensity based approach achieves a slightly higher REFERENCES
score than ours since We' do not remove those similar ?hﬁﬁSB. P. Allen, V. A. Petrushin, G. Wei, and D. Roqueiro, “Semantic Web
far away from each other in order to smooth the storytelling. Techniques for Searching and Navigating Video Shots in BBC Rushes”,
The last two criterions are used to evaluate the usabilities NIST TRECVID Worksho2006. -
f . For both of th h he hiah i W. Bailer and G. Thallinger, “A Framework for Multimedia Content
Y Summa”es_' or both of them, our approac geFS the hig tAbstraction and its Application to Rushes ExploitatioACM Conf. on
scores. Most judges feel the rhythm of the sampling approach Image and Video Retrieva2007.
unpleasant. It is not easy to find what exactly happens in t[% W. Bailer and G. Thalllnger, “COmpariSon of Content Selection Methods
id Th l . Ei iunk d for Skimming Rushes Video”TRECVID Workshop on BBC Rushes
video. The reason lies in two gspects. irst, many junk and s;mmarization in ACM MultimediZ2008.
repetitive shots are included, which break the storytelling frops D. Byrne, P. Kehoe, H. Lee, C. Conaire and A. F. Smeaton, “A User-
time to time. Second. since the summary is played at 50 times Centered Approach to Rushes Summarization Via Highlight-Detected
S . keyframes”, TRECVID Workshop on BBC Rushes Summarization at ACM
faster than the original video, people have to receive too much \;;imedia 2007.
visual information at high speed. Furthermore, it is difficult tgs] F. Chen, M. Cooper and J. Adcock, “Video summarization preserving
locate the useful materials when playing the videos at a very dynamic content” TRECVID Workshop on BBC Rushes Summarization
high d. Alth h it includ ials. f at ACM Multimedia 2007.
Igh spee » though it _|nc u .es most materials, rew p(?Opﬂﬁ M. G. Christel, A. G. Hauptmann, W. Lin, M. Chen, J. Yang, B. Maher,
would not like to watch videos in such a rhythm for long time. ~ and R. Baron, “Exploring the Utility of Fast-Forward Surrogates for BBC
By maimy focusing on the motion intensive ClipS the Rushes” TRECVID Workshop on BBC Rushes Summarization in ACM
second approach distorts the rhythm of the stor teIIin’ a Multimedia 2008.
pp o y_ ) y 9. f‘ﬁ E. Dumont and B. Merialdo, “Split-Screen Dynamically Accelerated
thus reduces the usability and enjoyablity of the summaries. video Summaries”TRECVID Workshop on BBC Rushes Summarization
Instead, based on object and event understanding, our approgcidt ACM Multimedia 2007. _ o
| h . l d . h 8& A. M. Ferman and A. M. Tekalp, “Two-stage hierarchical video summary
selects the most representative clips and removing those pr “extraction to match low-level user browsing preerencHsEE Trans. on

dictable ones to produce summaries. Since the clip selection Multimedia vol. 5, no. 2, pp. 244-256, 2003.

ACKNOWLEDGEMENT



IEEE TRANSACTIONS ON MULTIMEDIA 12

[9] A. G. Hauptmann, Michael G. Christel, W. Lin, Bryan Maher, J. Yang[35] B. T. Truong and S. Venkatesh, “Video Abstraction: A Systematic
Robert V. Baron, and G. Xiang, “Clever Clustering vs. Simple Speed-Up Review and Classification”ACM Trans. on Multimedia Computing,
for Summarizing BBC RushesTRECVID Workshop on BBC Rushes = Communications and Applicationsol. 3, no. 1, 2006.
Summarization at ACM Multimedi&007. [36] B. T. Truong and S. Venkatesh, “Curtin at Trecvid 2006 - Rushes
[10] X. S. Hua, T. Mei, W. Lai, M. Wang, J. Tang, G. J. Qi, L. Li, and Summarization”’NIST TRECVID Worksho2006.
Z. Gu, “Microsoft Research Asia TRECVID 2006 High-Level Featurd37] B. T. Truong and S. Venkatesh, “Generating Comprehensible Summaries
Extraction and Rushes ExploitationIST TRECVID Worksho2006. of Rushes Sequences based on Robust Feature MatcHiRECVID
[11] K. Ishihara and Y. Sakai, “BBC rush summarization and High-Level ~Workshop on Rushes Summarization at ACM MItime2i@7.
Feature extraction In TRECVID2008NIST TRECVID Worksho2008. [38] F. Wang and C. W. Ngo, “Rushes Video Summarization by Object and
[12] C. Kim and J.-N. Hwang, “Object-Based Video Abstraction for Video  Event UnderstandingTRECVID Workshop on Rushes Summarization at
Surveillance Systems'|EEE Trans. on Circuits and Systems for Video ~ACM Mitimedig 2007.

Technologyvol. 12, no. 12, 2002. [39] M. Wang, X. S. Hua, R. Hong, J. Tang, G. J. Qi, and Y. Song, “Unified
[13] M. Koskela, M. Sjoberg, V. Viitaniemi, and J. Laaksonen, “PicSOM Video Annotation via Multigraph Learning!EEE Trans. on Circuits and
Experiments in TRECVID2008"NIST TRECVID Worksho2008. Systems for Video Technologiol. 19, no. 5, 2009.

[14] Yang Liu, Yan Liu, T. Ren, and K. C. Chan, “Rushes Video Sum[40] M. Wang, X. S. Hua, J. Tang, and R. Hong, “Beyond Distance Mea-
marization using Audio-Visual Information and Sequence Alignment’, surement: Constructing Neighborhood Similarity for Video Annotation”,
TRECVID Workshop on BBC Rushes Summarization in ACM Multimedia |EEE Trans. on Multimediavol. 11, no. 3, 2009.

2008. [41] T. Wang, S. Feng, P. P. Wang, W. Hu, S. Zhang, W. Zhang, Y. Du,

[15] Z. Liu, E. Zavesky, B. Shahraray, D. Gibbon, and A. Basso, “Brief J- Li, J. Li, and Y. Zhang, “THU-Intel at Rushes Summarization of
and High-Interest Video Summary Generation: Evaluating the AT&T TRECVID 2008", TRECVID Workshop on BBC Rushes Summarization

Labs Rushes SummarizationTRECVID Workshop on BBC Rushes in ACM Multimedia 2008.

Summarization in ACM Multimedi2008. [42] L. Xie, S. Chang, A. Divakaran, and H. Sun, “Learning Hierarchical
[16] Y. F. Ma, L. Lu, H. J. Zhang, and M. LiA User Attention Model for Hidden Markov Models for Video Structure DiscovenColumbia Uni-
Video SummarizatigpACM Multimedia Conf.2002. versity Technical Repqre002. ) i )
[17] T. Mei, X. S. Hua, C. Z. Zhu, H. Q. Zhou, and S. Li, “Home Video[43] J. You,_ G. Liu, L._ Sun, and H. Li, “A Mgltlple \(lsual Models _Baged
Visual Quality Assessment with Spatiotemporal FactafSEE Trans. on Perceptive Analygls I_:ramework for Multilevel Video Summarization”,
Circuits and Systems for Video Technolpggl. 17, no. 6, 2007. IEEE Trans. on Circuits and Systems for Video Technglegy 17, no.

: : ; ; 3, 2007.
[18] S. Naci, U. Damnjanovic, B. Mansencal, J. B. Pineau, C. Kaes, M. Cor- _*: N .
vaglia, E. Rossi, and N. Aginako, “The COST292 Experimental Fram&*4] W. L. Zhao, C. W. Ngo, H. K. Tan, and X. Wu, “Near-Duplicate

work for Rushes Summarization Task in TRECVID 2008RECVID Keyframe Identification with Interest Point Matching and Pattern Learn-
Workshop on BBC Rushes Summarization in ACM Multime2088. ing’, IEEE Trans. on Mulnmedl,a\{pl. 9, pp. 1037-1048, 2007. ,,

[19] J. Nam and A. H. Tewfik, “Dynamic Video Summarization and VisuaI[45] Face Detection Project at CMU, “http://vasc.ri.cmu.edu/NNFaceDetector/".
ization”. ACM Multimedia bonf 1999 [46] TRECVID Workshop, “http://www-nlpir.nist.gov/projects/trecvid”.

[20] C. W. Ngo, T. C. Pong and Roland T. Chin, “Video partitioning by
temporal slice coherencylEEE Trans. on Circuits and Systems for Video
Technologyvol. 11, no. 8, 2001.

[21] C. W. Ngo, Z. Pan, and X. Y. Wei, “Hierarchical Hidden Markov Model
for Rushes Structuring and Indexing®CM Int. Conf. on Image and Video
Retrieval 2006.

[22] C. W. Ngo, W. L. Zhao, and Y. G. Jiang, “Fast Tracking of Near Feng Wangreceived his PhD in Computer Science
Duplicate Keyframes in Broadcast Domain with Transitivity Propage from the Hong Kong University of Science and

tion”, ACM Multimedia Conf.2006. Technology in 2007 and BSc from Fudan University,

[23] C. W. Ngo, Z. Pan, X. Wei, X. Wu, H. K. Tan, and W. Zhao, China, in 2001. Before joining East China Normal
“Motion Driven Approaches to Shot Boundary Detection, Low-Leve University as an associate professor in the Dept.
Feature Extraction and BBC Rushes Characterization at TRECVID 200! of Computer Science and Technology, he was a
TRECVID Workshop2005. research fellow in City University of Hong Kong

[24] Paul Over, Alan F. Smeaton, and Philip Kelly, “The TRECVID 2007 and Institute Eurecom, France. His research interests
BBC Rushes Summarization Evaluation PilcfTRECVID Workshop on include multimedia computing, pattern recognition
BBC Rushes Summarization in ACM Multimed807. i and IT in education.

[25] Paul Over, Alan F. Smeaton, and G. Awad, “The TRECVID 2008 BBC
Rushes Summarization EvaluatioTRECVID Workshop on BBC Rushes
Summarization in ACM Multimedi&2008.

[26] Z.Pan and C. W Ngo, “Structuring home video by snippet detection and
pattern parsing”’ACM SIGMM International workshop on Multimedia
Information Retrieval 2004.

[27] z. Pan and C. W. Ngo, “Moving Object Detection, Association and
Selection in Home Videos"lEEE Trans. on Multimediavol. 9, no. 2,
2007.

[28] J. Ren and J. Jiang, “Hierarchical Modeling and Adaptive Clustering f@
Real-Time Summarization of Rushes Video2EE Trans. on Multime-
dia, vol. 11, no. 5, 2009.

[29] J. Ren and J. Jiang, “Hierarchical Modeling and Adaptive Clustering fg
Real-Time Summarization of Rushes Videos in TRECVID'0BRECVID
Workshop on BBC Rushes Summarization in ACM Multime20a8.

[30] Peter J. Rousseeuw and Annick M. Leroy, “Robust regression and out
detection”,Wiley New York1987.

[31] J. Sasongko, C. Rohr, and D. Tjondronegoro, “Efficient Generatic
of Pleasant Video SummariesTRECVID Workshop on BBC Rushes

Summarization in ACM Multimedi£2008. . . . .
; “ : . i chair of ACM Multimedia Modeling (MMM) 2012
[32] L. Tang, T. Mei, and X. S. Hua, “Near-lossless video summarlzatlonand International Conference on Multimedia Retrieval (ICMR) 2012. His

ACM Multimedia 2009. research interests include video computing and multimedia information re-
[33] S. Tang, Y. Zhang, J. Li, X. Pan, T. Xia, and M. Li, “Rushes Exploitatioqrieval puting

2006 By CAS MCG",NIST TRECVID Worksho2006.

[34] C. M. Taskiran, Z. Pizlo, A. Amir, D. Ponceleon, and E. Delp, “Auto-
mated Video Program Summarization Using Speech Transcrifg&E
Trans. on Multimediavol. 8, no. 4, pp. 775-791, 2006.

Chong-Wah Ngo(M02) received his Ph.D in Com-
puter Science from the Hong Kong University of
Science & Technology in 2000. He received his
MSc and BSc, both in Computer Engineering, from
Nanyang Technological University of Singapore. He
is currently an Associate Professor in City University
of Hong Kong. He was with Beckman Institute of
University of lllinois in Urbana-Champaign as post-
doctoral researcher, and with Microsoft Research
Asia as visiting researcher. He is the program co-



https://www.researchgate.net/publication/224254466

	Summarizing rushes videos by motion, object, and event understanding
	Citation

	tmp.1637640303.pdf.pBh7N

