Singapore Management University

Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and

Information Systems School of Computing and Information Systems

8-2008

Simulating a smartboard by real-time gesture detection in lecture
videos

Feng WANG

Chong-wah NGO
Singapore Management University, cwngo@smu.edu.sg

Ting-Chuen PONG

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

6‘ Part of the Graphics and Human Computer Interfaces Commons

Citation
]

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.


https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

926

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 5, AUGUST 2008

Simulating a Smartboard by Real-Time Gesture
Detection in Lecture Videos

Feng Wang, Chong-Wah Ngo, Member, IEEE, and Ting-Chuen Pong

Abstract—Gesture plays an important role for recognizing lec-
ture activities in video content analysis. In this paper, we propose
a real-time gesture detection algorithm by integrating cues from
visual, speech and electronic slides. In contrast to the conventional
“complete gesture” recognition, we emphasize detection by the
prediction from “incomplete gesture”. Specifically, intentional
gestures are predicted by the modified hidden Markov model
(HMM) which can recognize incomplete gestures before the whole
gesture paths are observed. The multimodal correspondence
between speech and gesture is exploited to increase the accuracy
and responsiveness of gesture detection. In lecture presentation,
this algorithm enables the on-the-fly editing of lecture slides by
simulating appropriate camera motion to highlight the intention
and flow of lecturing. We develop a real-time application, namely
simulated smartboard, and demonstrate the feasibility of our
prediction algorithm using hand gesture and laser pen with simple
setup without involving expensive hardware.

Index Terms—Gesture detection, lecture video, real-time simu-
lated smartboard.

1. INTRODUCTION

N the past few years, multimedia in education has attracted
I numerous research attentions. With the aid of hardware
and software, researchers attempt to find innovative ways of
teaching, and thus enhance the quality of learning. Typical
demonstrated systems include Classroom 2000 [1], BMRC
lecture browser [20], and SCORM [22]. Due to the popularity
of e-learning, lecture videos are widely available for online ac-
cess. A lecture is captured by different devices equipped in the
classroom, such as video cameras, microphones and electronic
board. The recorded data is then used for offline video editing
or online broadcasting. To automate this process, video content
analysis is usually essential to understand the activities during
the lecture.

Numerous issues have been addressed for the content analysis
of lecture or instructional videos. These issues include topical
detection, synchronization, gesture detection, pose estimation,
video summarization, and editing. In topical detection, a lecture
video is structured according to the topics of discussion by audio
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[13], visual [10], [13], [16], text [25] or cinematic expressive
cues [19]. The detected topics are synchronized (or linked) with
external documents for effective indexing, retrieval and editing
[4], [10], [16], [25]. To facilitate browsing and summarization,
keyframes [9], mosaics [11] and statistical highlights [2], [7] are
also extracted. Texts in the projected slides [25] and whiteboard
[8] are detected and recognized to be aware of the content under
discussion. Gesture detection [3], [26] and pose estimation [18],
[27] are employed to recognize the presenter’s activities. Based
on the results of content analysis, lecture videos are then edited
in either offline [5], [29] or online manners [21], [32], [18] to
better deliver the quality of teaching and learning.

Advances in video content analysis have brought us oppor-
tunities to create not only efficient ways of learning, but also
convenient tools for presentation. In this paper, we first pro-
pose a gesture prediction algorithm by fusing multimodality
cues including visual, speech, and slides. The algorithm is then
applied for the real-time simulation of smartboard where the
lecture slides projected on the screen are on-the-fly edited by
simulated camera motion and gesture annotations. The editing
aims to capture the flow of lecturing naturally without involving
heavy hardware setup.

Gesture is a popular kind of lecture activity. Most gestures
used by presenters belong to dietic gestures to direct the audi-
ences’ attentions to the content under discussion. In this con-
text, gesture has been addressed in [3], [12], [5], and [18]. Most
of them employ simple features such as frame difference and
skin-color for gesture detection. In [3], frame difference is em-
ployed to detect gestures present in the slide region. Once a ges-
ture is detected, appropriate commands are sent to a camera on
the floor to zoom in/out. In [12], although no specific gesture de-
tection is mentioned, some gestures can be noticed by the frame
difference calculated by a wide angle camera to control another
camera for video capture. In [18], an algorithm is proposed to
keep detecting three skin-color blocks in the whiteboard region,
which are assumed to be the presenter’s face and hands. Ges-
tures are extracted according to the relative locations of the three
skin-color blocks.

The challenge in gesture detection is that there is no salient
feature to describe the hand in the video due to the small size
and irregular shape. Any simple or single feature is not robust
enough. Frame difference can be triggered by any moving ob-
jects, while some noisy skin-similar colors are usually intro-
duced. In addition, intentional gestures are always intertwined
with non-gesture movement of hands, which makes existing ap-
proaches less tolerant to noise. For instance, a presenter can
move freely in front of class and thus the hand may interact
with the slide even when there is no dietic gesture pointing to
the screen. This indeed results in the difficulty of determing the
intention or the information to be conveyed by the gesture.

1520-9210/$25.00 © 2008 IEEE
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Fig. 1. Real-time simulated smartboard based on gesture prediction.

In [26] and [29], we have proposed an algorithm for off-line
gesture detection and recognition in lecture videos. To be ro-
bust, frame difference and skin color are combined to detect and
track the candidate gestures. Gesture recognition is then em-
ployed to recognize and extract intentional gestures from the
gesture paths. Here we define a gesture as an intentional inter-
action between the presenter’s hand and some object instances
(e.g., a paragraph or a figure) in the slide. Three kinds of gestures
(lining, circling, and pointing) are recognized by three hidden
Markov models (HMMs). By gesture recognition, we extract
intentional gestures and eliminate non-gesture movements. A
gesture is detected only when it is verified by gesture recogni-
tion.

In this paper, we address the detection and recognition of ges-
tures in lecture videos for real-time applications. The major dif-
ference between this work and [26] lies in two aspects. First, to
cope with the efficiency requirements of real-time applications,
the responsiveness and accuracy of gesture detection are jointly
considered. For example, in an automatic camera management
system, when a gesture is present, a camera is expected to focus
on the region of interaction. The action from the camera should
be as rapid as possible so that the interaction can be captured
and used for editing in real-time. In [26], [29], for off-line video
editing, a gesture is verified when the full gesture path is com-
pleted, which is too late for the camera to respond to the ges-
ture. To tackle the responsiveness problem, our new algorithm
predicts and reacts as early as possible before a gesture path is
fully observed. Second, besides visual cue, we combine speech
and electronic slides to improve the accuracy and reduce the re-
sponse time of gesture detection.

Gesture in lecture videos has been proven to be a very im-
portant and useful hint in recognizing the lecture activities for
offline [5], [29] or online [21], [32], [18] video editing to pro-
vide the students with an efficient and effective way of learning.
However, how to employ gestures and other lecture activities to
create tools for teaching has seldom been attempted before. In
[24], an experimental system called magic boards is proposed.
Given a lecture video with some interactions around a chalk-
board, the user who is familiar with the interactions is presented
with a small set of images. Each image represents a single idea
written on the board. The user then replaces each image with a
picture, video or animation to better represent each idea. A new
video is rendered using the replaced pictures and videos in place
of the writing on the board. Due to the offline nature, the system
cannot be used in course of the presentation. The whole proce-
dure is manual, which could be highly time-consuming.

Based on our initial work in [28] for gesture prediction, we
propose and develop a simulated smartboard for real-time lec-
ture video editing. With the smartboard, a presenter can interact,
by hand or using a laser pen, with the projected slides to gen-
erate a novel view of the slide. The interactions include anno-
tating the slides, controlling the slide show, and highlighting
specific compound objects in slides. With response to the in-
teractions, the projected slides are sort of edited automatically
by analyzing the video streams captured by a camera mounted
at the back of the classroom. Technically, the incomplete ges-
tures in videos are first detected illusively through prediction.
The appropriate actions such as camera zoom and superimpo-
sition of gesture annotation are then simulated and projected
to the screen on-the-fly. This process is illustrated in Fig. 1.
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In Fig. 1(a), a candidate gesture interacting with the slide is
detected and tracked. In Fig. 1(b), the gesture path is then su-
perimposed on the electronic slide and recognized as “circling”
gesture. The region-of-interest (ROI) pointed by the gesture is
localized. In the next few frames, the ROI is highlighted by a
simulated zoom-in on-the-fly as shown in Fig. 1(c). Due to the
real-time capability, the smartboard can be used during presen-
tation and simulate most functions of a real smartboard. Com-
pared to the high expenditure of a smartboard, our setup be-
comes relatively simple and economic with the content-based
solution.

The remainder of this paper is organized as follows. In
Section II, we revise the HMMs for complete gesture recogni-
tion in our previous work [26] to recognize incomplete gestures.
In Section III, speech and electronic slides are fused with visual
cue to improve the accuracy and responsiveness of gesture
detection. Section IV describes the design and implementation
of the simulated smartboard. Experimental results are shown in
Section V. Finally, Section VI concludes this paper.

II. GESTURE DETECTION BY VISUAL CUE

To extract intentional gestures, three kinds of gestures fre-
quently used by presenters are defined: lining, circling, and
pointing. Intentional gestures are then recognized and extracted
by gesture recognition. Similar to our previous works [26],
[29], skin-color and frame difference are fused as evidence
for candidate gesture detection and tracking. In [29], gesture
recognition is activated after the full gesture path is observed,
without considering the responsiveness constraint. In this
section, we modify the HMMs in [26] and [29] to recognize
the incomplete gestures so that gestures can be detected and
verified earlier to cope with the efficiency requirements for
real-time applications.

A. HMM for Complete Gesture Recognition

HMM has been proven to be useful in sign gesture recogni-
tion [23]. A detailed tutorial on HMM can be found in [31]. In
[26], we employ HMM to recognize the dietic gestures in lec-
ture videos. Three HMM models are trained to recognize the
three defined gestures.

Given an observation O = (01,09,...,07), where each
0;(i=1,2,...,T) is a sampled point on the gesture path, ges-
ture recognition problem can be regarded as that of computing

arg m?x{P(gi |O)} (1)

where g; is the ith gesture. By using Bayes’ Rule, we have

P(gi| 0) = £LO19) Plgi)

P(O) @)

Thus, for a given set of prior probabilities P(g; ), the most prob-
able gesture depends only on the likelihood P(O | g;). Given
the dimensionality of the observation sequence O, the direct
estimation of the joint conditional probability P(o1, 02, ... | g;)
from examples of gestures is not practicable. However, if a
parametric model of gesture production such as a Markov
model is assumed, then estimation from data is possible since
the problem of estimating the class conditional observation
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Fig. 2. HMM for complete gesture recognition.

densities P(O | ¢;) is replaced by the much simpler problem of
estimating the Markov model parameters.

In HMM-based gesture recognition, it is assumed that the ob-
servation sequence corresponding to each gesture is generated
by a Markov model as shown in Fig. 2. A Markov model is a
finite state machine which changes state once for every observa-
tion point. The joint probability that O is generated by the model
M moving through the state sequence X = z1,x9,...,27 i
calculated simply as the product of the transition probabilities
and the output probabilities

T
O X|M = H Ty Ot amt$t+1 (3)

where b, (0;) is the probability that o; is observed in state z;,
and ag,,,, is the probability that the state transition from z;
to ;41 is taken. However, in practice, only the observation
sequence O is known and the underlying state sequence X is
hidden. This is why it is called a Hidden Markov Model. Given
that X is unknown, the required likelihood is computed by sum-
ming over all possible state sequences, that is

pPo|M)=Y" H b (01 1. “

X t=1

In [31], by using Bayes’ Rule and approximation, (1) is de-
duced to calculating the likelihood

T
]3(0 | M) = max {H be, (04) e, } ®)

t=1

where X = x1,x9, ..., 27 is the state sequence that O moves
through the model M. Notice that if (1) is computable, then
the recognition problem is solved. Given a set of HMM models
{M;} corresponding to gestures {g;}, (1) is solved by using (2)
and assuming that

P(Olg:) =

In HMM models, a;; and b;( - ) are estimated by Baum-Welch
algorithm in the training phase. For gesture recognition, (5) is
calculated by employing the Viterbi algorithm. The details of
the two algorithms can be found in [31].

P(O| M;). (6)

B. Modified HMM for Incomplete Gesture Recognition

The HMM models introduced in Section II-A are used for
gesture recognition in offline systems. Each gesture is recog-
nized after the complete path is observed. However, this is too
late in some real-time applications. For instance, in a system of
automatic camera control for lecture capture, once a gesture is
present, the camera is expected to zoom in on the corresponding
region to highlight the interaction in a short period. For real-time
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Fig. 4. (a), (b) Incomplete circling gestures. (c) Complete circling gesture.

processing, besides accuracy, the response time is an important
criterion. To respond to the presenter’s gestures as soon as pos-
sible, gesture recognition and verification need to be carried out
before the gesture is finally completed. We modify the HMM
models in Section II-A to predict and recognize incomplete ges-
tures.

Different from complete gestures, an incomplete gesture
usually cannot move through the HMM model to the state
exit in Fig. 2, but just reaches one of the intermediate states
1,2,..., N. Given an observation O which corresponds to an
incomplete gesture, the incomplete gesture recognition can be
regarded as that of computing

arg max P(gi.s | O) )

where S is the last intermediate state that O reaches when it goes
through the HMM model corresponding to gesture g;. In the
topology of HMM model shown in Fig. 2, the final nonemitting
state exit can be reached only through the last state IV, which
means a complete gesture must reach the state N before it is
completed. To recognize incomplete gestures that may stop at
any intermediate state, we modify the HMM models by adding a
forward state transition from each intermediate state to the state
exit in Fig. 3. The joint probability that O moves through an
HMM model M and stops at an intermediate state S can be
approximated by

s
[5(0 | M,S) = max {H be,(0¢)0z,2,4, } (®)

t=1

where x5 is the exit state.

Fig. 4 shows the trajectory of a circling gesture. Fig. 4(c) is
the complete gesture, and Fig. 4(a) and (b) are two incomplete
gestures stopping at different intermediate states. By comparing
Fig. 4(a) and (b), we are more confident that the current obser-
vation will compose a gesture if it moves further through the
HMM model or stops at a state nearer to the state /N. Based on

this finding, we take into account the stopping state for the prob-
ability calculation and modify (8) to be

P'(O|M,S) = = max { (H be, (04 QMM> .e%} )

where ¢(°/N) is introduced to assign a higher probability to the
gesture when the stopping state S is nearer to the final state V.
Let a;j = aije(J’z/N), and (9) can be rewritten as

S
P'(O|M,S) = max {H bmi(ot)afmztﬂ} . (10)

t=1

Thus, the Viterbi algorithm can still be used for the calculation
of (10). The probability that O is an incomplete gesture modeled
by M is

P(O|M) = mSaLx]S'(O|M, 9)

S
/
max tl_[l b, (0)@, 0, ¢ -

Equation (1) can be solved by Bayes’ Rule and assuming that

P(O]gi) =

Y

P(O| M;). (12)

C. Gesture Verification by Recognition

Given an observation sequence O (incomplete or complete
gesture path), for the three defined gestures, three confidence
values are calculated based on the modified HMMs that indicate
how likely O will be a gesture g;

Ci = P(g;,0). (13)
C; values are used to verify whether O is an intentional gesture
or not. A confidence value Cl;sya; On the presence of a gesture
is calculated by visual cue as

Omax
Zi &

where Clhax = max; C;. When an incomplete gesture is
moving on, Cyisua 18 calculated for each sample point. To
determine the best point to predict, a gating parameter is
required. Due to the tradeoff between responsiveness and
accuracy, finding an optimal parameter is application tailored.
We determine the gating parameter Cgat. empirically, and start
gesture verification whenever Clisual > Clgate. In general,
the further O moves through the corresponding HMM model,
the more confident that there is a gesture; however, the longer
response time is required.

Cvvisual = ' Cmax (14)

III. GESTURE DETECTION BY FUSING VISUAL,
SPEECH, AND ELECTRONIC SLIDES

The proposed gesture prediction from incomplete observa-
tion is mainly relying on visual cue. In lecture videos, speech
also provides complementary hints for detecting the presence
of gestures. In this section, we first describe the multimodal re-
lations among visual, speech and slides. Then we present our
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approach to employ these relations to improve the accuracy and
responsiveness of gesture detection by combining speech and
semantic information extracted from electronic slides.

A. Relations Between Visual, Speech and Slides

Imagine the scenario where a presenter interacts with the
projected slides while spelling out keywords. In a multimodal
environment, ideally we can sample the gesture and speech,
then verify the gesture with the words found in electronic slides
to determine the region of focus. By jointly considering these
cues, both the accuracy and response time of gesture prediction
can be improved. The scenario is illustrated in Fig. 5. When
a gesture is pointing to a paragraph in the slide, a keyword
“construct” is found in speech, which lies in the paragraph in-
teracting with the gesture. This case frequently happens during
a lecture since the presenter tends to read out the keywords to
be highlighted. We exploit such correspondence between ges-
ture and speech to boost the performance of prediction. Fig. 5
models the relations between three multimodal cues. Ges-
ture-speech correspondence plays an essential role in our task.
It is worth noticing that the correspondence cannot be directly
estimated, but rather relies on the semantic information from
slides which indirectly bridges the gesture-speech relationship.
Visual-slide correspondence recovers the geometric alignment
between video and slide, while speech-slide correspondence
matches keywords found in voice and text sources. By mapping
both speech and gesture to slides, the correspondence between
them are indirectly estimated. In visual-slide correspondence,
the alignment is achieved through the synchronization of videos
and slides with video text analysis based on our work in [25],
[26]. Basically texts from both video and slides are extracted
for matching, and the spatial correspondence is recovered
by computing homography. In speech-slide correspondence,
speech are online recognized and matched with words available
in current slides with edit distance.

B. Gesture-Speech Correspondence for Gesture Detection

Two pieces of information are available: video text interacting
with gesture through visual-slide alignment, and speech tran-
script generated by an automatic speech recognition (ASR) en-
gine. By matching both information with slides respectively, the
ROI where they coincide can be estimated. In our approach, the

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 10, NO. 5, AUGUST 2008

layout of each electronic slide is first structured into groups of
semantic instance. Due to visual-slide correspondence, the se-
mantic region that a recognized gesture highlights can be lo-
cated. The words found in the region are then matched against
the speech transcript. A confidence value is computed to hint
the existence of gesture-speech correspondence. If such corre-
spondence is found, there is more likely an intentional gesture
present and thus boosts the accuracy and responsiveness of ges-
ture detection.

With the PowerPoint slide in Fig. 5 as an example, the layout
is semantically grouped into separate object instances. By con-
structing the one-to-one mapping between the instances in slides
and videos through homography projection, we can easily or-
ganize and structure the layout of videos [29]. In Fig. 5, the
projected slide region is partitioned into different regions-of-in-
terest (ROIs). Each ROl is a unit that gesture may interact with
at any instance of time. The video texts in ROIs are known since
the mapping between ROIs and semantic instances in the elec-
tronic slide is aware of. Whenever a candidate gesture is inter-
acting with an ROI, we search the matches between the words
in ROI and speech transcript. Since the significance of matched
words can vary, we weight the importance of words with tradi-
tional information retrieval techniques. Initially, the methods of
stemming and stop word removal are applied to the texts in every
slide. By treating each ROI as a document,term frequency (TF)
and inverse document frequency (IDF) are computed for the re-
maining keywords to distinguish different ROIs. A confidence
value Cspeech is calculated based on the the TF and IDF values
of the keywords as

C(speech = E

wew

log(1 + TF,, - IDF,,)
1+ Aty

15)

where W is the set of matched keywords, and At,, is the time
interval between the presence of the gesture and of the keyword
w in speech. Because the gesture and speech are not always
temporally aligned, we also consider speech at time before and
after the gesture is predicted. For robustness, At,, is used to
degrade the importance of words which are not synchronized
with gesture.

C. Gesture Detection by Fusing Speech and Visual

If the correspondence between visual and speech discussed in
Section III-B can be detected, we are more confident that there is
a gesture present, and thus speech can be combined with visual
for gesture verification. When a candidate gesture is detected
by visual cue, we keep tracking it and calculating the visual ev-
idence Clisyal in (14). Meanwhile the transcripts of speech are
generated by ASR. We search the keywords in the transcripts
that match with the texts in the ROI interacting with the candi-
date gesture. Once a correspondence between speech and visual
is detected, Cspeech is then calculated. The visual-speech confi-
dence C' is computed and fused as

C= /\1) Cvisual + )\s Cspeech (16)
where A, + As = 1 and both parameters are weights to linearly
rationale the significance of visual and speech. Since the quality
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of speech is not high and the output of ASR could be noisy,
higher weight is expected for visual evidence.

IV. SIMULATED SMARTBOARD

With the advance of HCI (Human-Computer Interaction)
technologies, smartboard has been equipped and used in some
conference rooms as a convenient tool for presentation. A
presenter can write, make annotations and control the showing
of the slides by using the touch screen and accessory tools such
as markers and a wiper. In this section, we demonstrate that
the smartboard can be software simulated with content-based
solution as presented in Sections II and III.

A. System Setup and Interface

The system is set up in a classroom with a normal slide
screen, an LCD projector, and a stationary video camera facing
the screen. Fig. 6 shows the interface of the simulated smart-
board. Prior to presentation, the electronic slides are uploaded
to the computer. When the application is started, the slides
are projected and displayed on the screen as shown in Fig. 6.
Various tools, including the virtual buttons for circling, lining,
rubber, forward, backward, and a scrolling bar are projected
to the screen for the presenter to use. Notice that it is optional
to use the buttons when making gestures. Our system can
automatically predict and recognize the gesture of circling,
lining and pointing. The gesture will be superimposed on top
of the slide as soon as the gesture is detected. The buttons, if
being pressed, can improve the response time of the system. To
interact with the interface, a presenter can use either hand or
laser pen, for instance, to press buttons and make gestures. The
interactions are captured by the video camera and transferred
to the computer through an IEEE 1394 cable for real-time
processing. When an interaction is detected and recognized,
the corresponding operation is performed and projected to the
slide screen.

B. Functions

The system provides three levels of interactions: 1) automatic
gesture recognition and camera motion simulation; 2) detection
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Fig. 7. Functions of the simulated smartboard. (a) Button gesture for slide
control. (b) Annotation by using laser pen. (c) Dietic gesture for content high-
lighting: detected gesture (left); content highlighting by zoom-in (right).

of predefined gestures and actions; and 3) slide annotation with
laser pen. Some example video clips can be found online [30].
In (1), a presenter can interact with the slide by gesturing near
the ROIs. The system predicts and recognizes three types of
gestures: circling, lining and pointing based on the algorithms
proposed in Sections II and III. Naturally the response can be
quicker if the presenter reads out some of the words in the ROI
when gesturing. Once a gesture is detected, the ROI under in-
teraction will be highlighted with simulated camera motion like
zoom-in by employing the similar editing rules in our previous
work [29]. For instance, in Fig. 7(c), a lining gesture pointing to
atextline is detected. After a delay of several frames, the textline
is shown in the center of the frame with a higher resolution.
By highlighting the ROI, on one hand, the presenter can draw
the audience’s attentions to the content under discussion; on the
other hand, the texts in higher resolution are easier to read as
illustrated in Fig. 7(c).

In (2), a presenter can predefine the intended gestures by
pressing buttons in the interface shown in Fig. 6. The buttons
can be pressed with finger or laser pen. The functions of buttons
are briefly summarized as follows.

* Circle: to draw a circle around an object (a word, equation

or figure) on the slide.

* Line: to draw a line under an object (text or equation) on

the slide.

* Wiper: to delete a marker (a circle, a line or an annotation)

on the screen.

* Forward/Backward: to go to the next/previous slide.

* Scroll bar: to scroll up or down the slide.

To press a button, the hand needs to stay on top of it for at
least 0.5 s so that the system can distinguish whether the hand
is pressing the button or just sliding over it. Fig. 7(a) shows an
example. When the button forward is pressed by the presenter,
the next slide will be shown on the screen.
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In (3), the presenter may make simple annotations by
drawing or writing on the screen with a laser pen as illustrated
in Fig. 7(b). The path of the laser pen is then tracked and
displayed on the screen. Due to the precision and efficiency
considerations, we do not support annotations or handwritings
in small scales. Practically the laser pen should not be moved
too fast. The presenter is expected to turn on and off the laser
pen before and after making annotations. Therefore, the de-
tected and tracked laser paths are assumed to be intentional
when the pen is on.

C. Implementation Issues

To implement the three levels of functions described in the
previous section, the system needs to be aware of three kinds
of interactions: hand gesture highlighting, button-pressing, and
laser pen annotation. The hand gestures are identified jointly
by skin-color and frame difference cues [26], [29], while the
trace of laser pen is mainly detected by tracking the color of
the projected spot. The color cue from laser pen is not always
reliable due to the reflection and varying background. Thus, if
the hand holding a laser pen is not occluded, we also detect the
hand around the laser spot to refine the detection of laser pen.
If the laser pen is pointed in a distance from the screen and the
hand cannot be detected along with the laser spot, laser light
color becomes the only useful cue.

The detection of button pressing by hand or laser pen can be
handled effectively. Since the buttons are fixed in position, only
few regions from the incoming video streams need to be contin-
uously monitored. To avoid false alarms such as the case when a
hand slides over a button but without pressing, the trajectory of
hand or laser pen needs to be aware of before any potential de-
tection. In addition, we assume that the button pressing should
last for at least 0.5 s to validate the action. Whenever pressed, a
button will be displayed in the state of being pressed to indicate
the activation of the command. After the gesture is finished and
displayed on the slide, the button is then deactivated.

In response to the interactions, appropriate actions such as
scrolling, zooming, writing, adding and removing annotations
take place directly on the projected slides. To facilitate the easy
manipulation of slides, the uploaded electronic slides are au-
tomatically converted to and saved as images. The semantic in-
stances such as the textlines, figures and tables are extracted and
indexed with their content and spatial positions. With this or-
ganization, we can efficiently operate the slides to project and
display the editing decisions in real time.

The simulated smartboard can analyze 5-10 frames/s. From
our experiment, the frame rate is enough for real-time tracking
of hand gesture and laser pen movement. Currently we sample
8 frames/s for content analysis. The response time of the system
is mainly dependent on the responsiveness of gesture detec-
tion and laser pen tracking, which can be considered as accept-
able according to our experiments in Section V. Once a ges-
ture for highlighting is recognized, a gradual camera zoom-in
is simulated which takes about 2—4 s s to avoid abrupt visual
changes. The speed of simulated camera motion can be ad-
justed according to the user’s preference. The response to the
button-pressing gesture and laser pen annotation is usually more
efficient without recognition or simulating camera motion.
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V. EXPERIMENTS

We conduct two separate experiments for performance eval-
uation. The first experiment (Section V-A) is to verify the per-
formance of gesture prediction with video-taped lectures. In this
setup, the presenters are not aware of the smartboard or the algo-
rithms for tracing their gestures. They present as usual in normal
classroom environment. Our aim is to investigate the accuracy
and responsiveness of our prediction algorithm. In the second
experiment (Section V-B), the presenters can interact freely with
the simulated smartboard, while they observe the editing effects
projected on the slide screen during the presentation. We inves-
tigate, under the real scenario, the performance of our system
with respect to different settings such as gesturing with hand in-
struction and laser pen.

A. Gesture Detection in Video-Taped Lectures

We conduct experiments on 5-h videos consisting of 15 pre-
sentations given by ten lecturers and tutors. The presenters in-
clude five males and five females. The presentations are given
in one seminar room and three classrooms of different sizes,
layouts, and lighting designs. A stationary camera is used to
capture the projected slide and the presenter. There are five
videos captured in the seminar room. Due to the reflection from
the screen, performing text recognition and gesture detection in
these videos are more difficult compared with those captured in
the classrooms.

We compare two approaches: gesture prediction with visual-
only cue, and with multimodal cues. In the dataset, there are
2060 gestures manually identified and marked. The average du-
ration of a gesture is 4.62 s. For each gesture class, we use 200
samples to train the HMM. The training data is composed of
gestures from another lecture video and some man-drawn fig-
ures such as ellipses and lines. Our previous experiments in [26]
show that these training data works for recognizing real gestures
from lecture videos.

We employ Microsoft Speech SDK 5.1 for speech recogni-
tion. The overall recognition rate is no more than 20% due to
the environmental noise in audio track. Considering the fact that
the performance of speech recognition is not high in general, vi-
sual cue is given a higher weight in multimodality fusion. As a
result, the parameters in (16) are empirically set to A, = 0.7
and A; = 0.3. In addition, a parameter Cj,t. is also required to
gate the confidence of detection in both (14) and (16). Practi-
cally, gestures with lower detection confidence will be regarded
as noises. A larger value of Cy.te usually means more competi-
tive performance but with the expense of longer response time.
Empirically, we set Cgate = 0.45.

Table I and Fig. 8 summarize and compare the performance
by showing the recall and precision of gesture detection when
varying the responsiveness constraints (delays). Obviously, al-
lowing longer response time leads to better performance. With
visual-only cue, 65% of all gestures can be correctly predicted
(precision = 0.75) with a delay of 2.5 s after the gestures start.
In contrast, when multimodal cues are jointly considered, 85%
of gestures can be recognized (precision = 0.77) with only 1.8
s delay. From Fig. 8, to achieve the same accuracy, less response
time is required when speech is combined with visual cue. The
results indicate the significance of multimodal cues where the
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TABLE I
RESULTS OF GESTURE DETECTION [V, : TOTAL NUMBER OF GESTURES; N4:
NUMBER OF GESTURES DETECTED; N ;: NUMBER OF GESTURES FALSELY
DETECTED; N,,,: NUMBER OF GESTURES MISSED; /V.: NUMBER OF GESTURES
CORRECTLY DETECTED. Recall = (N./N,), Precision = (N./N4)]

N, 2060
Gesture | Average 4.62 sec
duration | Standard Deviation 1.83 sec
Method | Delay (sec) | 0.6 [ 12 [ 18 [ 25 | 40 |
Ny 449 736 1255 | 1783 | 1966
Ny 217 320 412 435 308
Visual N, 1828 | 1644 | 1217 712 402
N, 232 416 843 1348 | 1658
Recall (%) 11.3 20.2 | 40.9 65.4 80.5
Precision (%) | 51.7 | 56.5 | 67.2 | 75.6 | 84.3
) Ng 980 1391 | 2275 | 2252 | 2170
Visual 7 376 | 501 | 533 | 447 | 319
+ Nom 1456 | 1170 | 318 | 255 | 209
Speech 7 604 | 890 | 1742 | 1805 | 1851
* Recall (%) 203 | 432 | 846 | 87.6 | 89.9
Slides  “precision (%) | 61.6 | 64.0 | 76.6 | 80.2 | 85.3
100 — T T T T T T T
90 5
80 1
70 b
60 - 1
& 50t .
40t 1
30 —&— Recall (visual) 1
20 | —=&— Precision (visual) i
—=8— Recall (visual+speech+slides)
10 —=4A— Precision (visual+speech+slides)| |
ol ; . i . . . i
0.5 1 1.5 2 25 3 3.5 4
Delay (sec)

Fig. 8. Recall and precision of gesture detection. (The results are the same as
in Table I, but presented to visualize the relationships between the performance
of sing- and multimodality approaches).

majority of gestures can be correctly recognized half way be-
fore the complete gesture paths are observed. An interesting
note found in the experiments is that most presenters, in addi-
tion to gesturing, tend to highlight keywords when explaining
important concepts under lecturing. This, indeed, not only im-
proves the recognition rate of speech, but also greatly signifies
the benefit of gesture-speech correspondence, which boosts the
recognition performance while shortening the response time.
The parameter Cygate can impact the performance if the value
is not selected within a proper range. Fig. 9 shows the sensi-
tivity of the parameter Cg,te towards the performance and the
response time. When Cyate > 0.4, the algorithm performs sat-
isfactorily in terms of both precision and recall values. A small
gating confidence usually introduces many false alarms, while a
very high value results small decline of the recall, which means
some gestures are missed. When the gating confidence becomes

larger, higher precision is achieved with an expense of longer re-
sponse time. As seen in Fig. 9, setting the value of Cgate in the
range of 0.4—0.6 can compromise the accuracy and speed.
Currently, the proposed gesture prediction algorithm can
process approximately 13 frames/s. The frames are evenly
sampled along the timeline, and the sampling rate is enough to
depict the trajectories of gestures. Given the processing speed,
our algorithm is efficient enough for real-time applications.

B. Performance of Simulated Smartboard

We evaluate the performance of simulated smartboard in pro-
viding the three levels of interactions: hand-based gesture high-
lighting (dietic gesture), gesturing with button pressing (button
gesture), and laser pen annotation. A total of 3-h videos of pre-
sentation using the smartboard are captured for performance
analysis in terms of gesture detection and laser pen tracking.

1) Gesture Detection: Table II shows the calculated Recall
and Precision values of gesture detection. For button gesture,
few gestures are missed due to the occlusion caused by the pre-
senter and other objects. Some false alarms are inserted when
the hand stays near or is projected onto the buttons. For dietic
gesture, since a rather high Cyaie (= 0.5) value is used to avoid
false alarms in real scenarios, about 85% of all gestures can be
correctly detected.

Fig. 10 summarizes the response time for gesture detection.
The video rate is 24 frames/s, and the response time is expressed
as the number of frames being delayed after an action is taken.
For button gesture, we calculate the response time as the time
interval from the hand interacting with the button to the activa-
tion of the command. To detect dietic gesture for content high-
lighting, we set Cgate = 0.5. A gesture is verified only after the
calculated confidence value is larger than this gating evidence.
The responsiveness is evaluated by the time interval from the
beginning of a gesture to the gesture being detected. With the
fixed Cgate, the response time is out of direct control and can
be up to the lifetime of the gesture. As shown in Fig. 10, the
response time for more than 90% of all gestures is less than 3
s, which is considered as acceptable, and most gestures can be
detected in the halfway of the gesture paths.

2) Laser Pen Tracking: In tracking laser spot, the projected
annotation is usually deviated slightly from the real trajectory
of the spot. To investigate this effect, we manually mark the
laser spot trajectories and calculate the distance between the real
and projected annotations. The deviation is generally within 0-5
pixels with the mean and standard deviation of 3.19 and 1.85,
respectively. The deviation is considered acceptable and does
not distort the intended annotations when assessing the effects
of captured videos subjectively.

We sample eight frames every second for laser spot detection
and tracking. The sample rate is enough to depict the annota-
tion given that the laser pen is not moving too fast. To evaluate
the responsiveness, for each point on the path of the annotation,
we calculate the average time being delayed to display the laser
point on the slide after it is projected by the pen. From exper-
iments, the response time is usually less than one second with
the mean and standard deviation of 17.43 and 4.44 frames, re-
spectively.
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Fig. 9. Performance and response time of gesture detection with different gating confidence values.

TABLE II
ACCURACY OF GESTURE DETECTION [N, : THE TOTAL NUMBER OF
GESTURES; N;: THE NUMBER OF GESTURES DETECTED; N.: THE
NUMBER OF GESTURES CORRECTLY DETECTED; N,,,: THE NUMBER OF
GESTURES MISSED; V;: THE NUMBER OF GESTURES FALSELY INSERTED;
Recall = (N./N,); Precision = (N./Ny)]

L | Na | N
Button gesture || 108 | 113 | 101 | 7 12 93.5 89.4
Hand gesture || 104 | 97 | 88 | 12 | 9 84.6 90.7
Fraction (%)
12
Mean SD
5276 1397 |

10
Button gesture / V —=26.59 5.99
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Fig. 10. Response time of gesture detection.

VI. CONCLUSION

We have presented a real-time gesture detection algorithm
powered with prediction ability. Using the proposed modified
HMM models, an intentional gesture can be efficiently predicted
and verified. By further considering the gesture-speech multi-
modal correspondence, most gestures can be effectively recog-
nized half way before the whole gesture path is completed. With
this algorithm, we demonstrate the flexibility of building a simu-
lated smartboard which supports on-the-fly presentation editing
through three levels of interaction particularly with hand ges-
turing and laser pen annotation. With simulated smartboard as
example, the experimental results indicate that our algorithm

can cope with the requirement of real-time applications with
high enough recall and precision performance.

For future work, the performance of speech recognition
should be improved, and the fusion of different cues needs to
be further studied. Other applications such as automatic camera
management can be developed by employing the algorithm
proposed in this work. Besides gesture, head posture proves to
be another useful hint for lecture video content analysis [29].
In [27], we have proposed an efficient algorithm for head pose
estimation which could be combined with gesture for real-time
lecture video editing in the future.
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