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Selective Object Stabilization for Home Video 
Consumers 

Zailiang Pan and Chong-Wah Ngo 

 
Abstract — This paper describes a unified approach for 

video stabilization. The essential goal is to stabilize image 
sequences that consist of moving foreground objects, which 
appear frequently in today's home videos captured by hand-
held consumer cameras. Our proposed techniques mainly 
rely on the analysis of motion content. Three major 
components are: initialization, segmentation and 
stabilization. In motion initialization, we propose a novel 
algorithm to efficiently search for the best possible frame in a 
sequence to start segmentation. Our segmentation algorithm 
is based on Expectation-Maximization (EM) framework 
which provides the mechanism for simultaneous estimation of 
motion models and their layers of support. Based on the 
framework of Kalman filter and EM motion estimation, our 
proposed algorithm has the flexibility of allowing selective 
stabilization with respect to background or/and foreground 
objects, subject to the preferences of customers1.
 

Index Terms — Digital Image Stabilization, Motion 
Segmentation, Kalman Filter.  

I. INTRODUCTION 
Nowadays, digital cameras are widely used to capture 

personal and family lives. However many valuable videos are 
simply discarded due to their shaking artifacts. These artifacts 
are commonly seen in consumer videos due to the amateurish 
operations of cameras, particularly when the holders are in 
motion or in moving vehicles. A digital image stabilization 
(DIS) system is needed to produce compensated video 
sequence so that the inevitable and undesirable camera 
motions can be removed. Moreover, it would be worthwhile 
to design a DIS scheme that can further stabilize the video 
visual effects, not only restricted to the camera motion, but 
also other visual components, such as the foreground objects. 

In general, digital image stabilization system consists of 
two parts: motion estimation and motion correction 
subsystems. The motion estimation system aims to estimate 
the global inter-frame motion. The global motion is usually 
represented by 2D or 3D geometry transformation models of 
the scene. 3D model, although desirable, is generally an ill-
posed problem. The typical 2D models include 2-parameter 
translation model [11, 14], 4-parameter rigid model [12, 17] 
and 6-paramter affine model [5, 18]. The affine model can 

precisely describe purely rotation, panning, zooming and 
translation. For most of indoor and outdoor scenes, the affine 
model is enough for estimation. A variety of approaches for 
motion model estimation has also been proposed. For 
instance, block matching algorithms, which search for the 
best matching of blocks between two images, are popularly 
used [13, 15, 16], due to its simplicity. More precise 
approaches are also proposed by minimizing the cost 
functions based on salient features [2, 3, 5] or image 
intensities [18].  
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The motion estimation part forms the basis of a DIS system. 
Accurate motion estimation is critical. To date, most existing 
works assume non-foreground-objects or static foreground 
objects. This assumption, nevertheless, does not hold in most 
home videos. The frequent presence of moving foreground 
objects in home videos indeed causes DIS a challenging task. 
To tackle this problem, the approaches in [15, 16] propose to 
estimate the background and foreground motions respectively 
based on the predefined foreground and background regions. 
However, these regions are usually small and fixed, and 
prohibit the precise estimation of motion due to either 
foreground or background objects.  

In order to remove undesirable motion in home videos, the 
intentional camera motion should be estimated from the 
global inter-frame motion. One way is to smooth the camera 
motion by low-pass filtering [19], regardless of the spatial 
dynamics of camera motion. A flexible approach is motion 
vector integration (MVI) [13, 15, 16], which uses a damping 
factor to compress the motion fluctuation in spatial domain. 
This can somewhat approximate, although not precise enough, 
the intentional motions. More accurate motion estimation 
algorithm based on Kalman filtering (KF) is proposed in [14, 
18]. In KF framework, intentional motion is represented by a 
physically meaningful state-space model, while undesirable 
motion is described by random noise. However, the estimated 
motion trajectory by KF is usually delayed with respect to the 
actual intentional movement. This is because the traditional 
KF only utilizes the observations in the past.   

Our DIS system described in this paper is also composed 
of two parts: motion estimation and motion correction 
subsystems. For motion estimation, we propose to 
automatically and simultaneously estimate the motions of 
foreground and background objects, and their support layers 
by expectation-maximization (EM) segmentation algorithm 
[10]. The EM-based motion estimation algorithm can be 
regarded as minimizing cost function on multiple image 
layers each with an affine motion model. This indeed leads to 
accurate motion estimation of video objects. Here we regard 



 

background as a specific object. Then an image sequence can 
be decomposed into several object layer sequences and their 
associated motion trajectories. For motion correction, we 
propose a dual Kalman filtering (DKF) in both forward and 
backward temporal directions for video stabilization. The 
delay of traditional KF algorithm can be counteracted in the 
dual Kalman filter stabilizer by the combination of forward 
and backward Kalman filtering. Ultimately, motion 
correction can be achieved by warping the current frame to 
the desirable intentional trajectory. Undefined regions of 
warped frame can be filled by dynamic mosaics.  

Traditional DIS systems only stabilize video camera since 
physically shaking artifacts are the cause of irregular 
movement. However, stabilization with respect to camera 
motion only may not be enough and appropriate. For instance, 
in many circumstances, camera stabilization can lead to awful 
foreground movement and make the visual quality even 
worse. Thus a good DIS system should have the flexibility of 
allowing the selective stabilization of video components. In 
our approach, by exploiting EM algorithm for compact video 
decomposition, we develop a stabilization algorithm with 
object selectivity function. It permits the stabilization of 
background, foreground, or a combination of arbitrary 
objects, subject to the choices of consumers. 

One significant component in our selective object 
stabilization algorithm is EM motion estimation. However, 
EM-based algorithm is usually sensitive to initial conditions, 
and thus cannot be directly applied to home videos. When 
bad initial conditions are intertwined with poor quality 
frames caused by shaking artifacts or low visual resolution, 
the results of estimation are unreliable. One prominent 
solution to this problem is to look for the best possible frame, 
in a bunch of jerky frames, to estimate initial conditions, and 
then initialize others frames with the estimated conditions. 
Motivated by this idea, we propose a novel initialization 
technique to rapidly locate the best possible frame in an 
image sequence to start initialization. Our technique is 
developed based upon 3D tensor representation and robust 
clustering algorithm. The best possible initial frames are 
usually the video frames where their optical flows can be 
unambiguously clustered into few distinct moving groups. 

By the proposed motion initialization, the EM algorithm 
can start temporally forward and backward at the selected 
frame for simultaneous segmentation and estimation. The 
clusters of objects, found by motion initialization, are utilized 
to initialize the proposed EM algorithm. Since the initial 
conditions are estimated based on the best possible frame, 
more trust is given to the initial conditions. Taking this into 
account, we modify and improve the existing EM algorithm 
in [10]. The modification leads to more reliable estimation, 
particularly in homogenous image regions. Most importantly, 
it is found to be appropriate for home videos that are suffered 
from low visual quality.  

The remaining part of this paper is organized as follows. 
Section II presents the overview of our approach. Section III 
proposes the estimation of initial condition based on 3D 

tensors and robust clustering. Section IV describes the 
modified EM motion estimation algorithm. Section V 
presents our proposed algorithm for supporting selective 
object stabilization. A dual Kalman filtering and 
combinational stabilizer is proposed to stabilize arbitrary 
objects selected by consumers. Finally Section VI presents 
the experiment results and Section VII concludes this paper.  

II. OVERVIEW OF OUR APPROACH 
Fig. 1 illustrates the proposed framework for DIS. Three 

major components are: motion initialization, estimation and 
stabilization. The goal of motion initialization is to 
temporally locate the best possible initial positions in a 
sequence for segmentation. Basically, the good starting 
frames that have good initial conditions are obtained by 
analyzing the optical flows in a 3D image volume. We adopt 
3D structural tensor representation for motion estimation due 
to its robustness and efficiency. This representation allows 
each optical flow vector, computed over a 3D spatio-
temporal block, associated with a saliency measure. By 
incorporating the saliency measures into motion clustering, 
the initial frame for motion estimation is selected based on 
the quality of clustering.  

Motion estimation started at the selected initial frames is 
carried out progressively in a bi-directional fashion along the 
temporal dimension, by giving the initial layers of support 
obtained from motion clustering. To accurately estimate the 
motions with multiple foreground objects, EM algorithm is 
used for the simultaneous estimation of multiple parametric 
motion models and their layers of support. The final 
segmented layers are then utilized for video stabilization. In 
our framework, stabilization is viewed as a process of 
estimating the intentional trajectories of video objects. Our 
stabilization algorithm allows the selective stabilization with 
respect to objects specified by consumers. 

 

 



 
Fig. 1. The overview of our approach. (a) Motion initialization. (b) 
Motion estimation. (c) Motion stabilization. 

III. MOTION INITIALIZATION 
In this section, we start with 3D structure tensor 

computation and representation. The computed optical flows 
and their associated saliency (or fidelity) measures are 
utilized directly for clustering. 

A. 3D Tensor Representation 
Let  be the space-time intensity of a point in a 

3D image volume. Assume  remains constant 
along a motion trajectory, a constraint condition of optical 
flow can be derived as  
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where u  and v  represent the components of local spatial 
velocity, namely optical flow, and ε  is a noise variable 
assumed to be independent, white and zero-mean Gaussian. 
Eqn (1), more precisely, is the inner product of a 
homogeneous velocity vector V  and a spatio-temporal 
gradient  , i.e.  I∇
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been widely applied in motion estimation algorithms. In 
particular, the noise term  is frequently used as a fidelity 
measure of the optical flow. Nevertheless, any fidelity 
measure that involves only 

2ε

ε  cannot fully exploit the fact 
that the estimated local velocity in a region with high 
intensity variability is more reliable than in a region with low 
variability. To tackle this deficiency, we introduce a fidelity 
term based on 3D tensor representation for robust estimation. 

Under the assumption that the flows are constant over a 3D 
volume R , the total sum of  in 2ε R  can be derived as  
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 The central term is a symmetric tensor which represents the 
local structure of R  in space-time dimension. The tensor has 
the form  
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Given the tensor representation in Eqn (4), the optical flow 
can be estimated by minimizing the cost function E  in Eqn 
(3). The diagonal components of a tensor which represent the 
intensity variation in spatio-temporal coordinate can be 
exploited for fidelity measure. Thus, our proposed fidelity 
termλ , which depicts the certainty of estimated optical flow 
in R , is defined as  

yyxx JJE
E
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 The fidelity term has following favorable properties: i) It is 
maximal for ideal flows, i.e. . ii）It is minimal if no 
spatial intensity variation, i.e. . iii) Its value is 

normalized between [0, 1]. 
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B. Initialization 

Given the flows  and their fidelities }{ iv }{ iλ  at time t  
as described in Section II-A, we employ k-means algorithm to 
cluster optical flows in each frame. The number of clusters, 
g ,  is initially set to a reasonably large value. Then the 
clusters are merged one by one according to the distance 
between each two clusters. The algorithm is described in 
Algorithm 1. The results are then used to define motion 
saliency based on scattering of both inter and intra classes as 
follows,  
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where  and  are defined in Algorithm 1, jj CM , jp wη  and 

bη  are the expected intra and inter distances respectively. 
The more distinct the motions are, the larger the saliency η  
would be.  

 Therefore the motion saliency is an appropriate criterion to 
measure the frame’s motion quality. We actually select the 
frame with largest saliency value as the best frame , *t

)(maxarg*
t

t
t η= .        (6) 

An apparent advantage of this approach is that the g  and 

 in the selected initial frame can be passed as initial 

parameters for motion segmentation described in the next 
section. 
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1.  Given the cluster number g , initial classification }{ iju  is calculated by k-means algorithm on N optical flows 

}{ iv  incorporating with fidelities }{ iλ , where 1=iju  if iv  belongs to the thj  cluster and 0=iju  otherwise. 

2.  Calculate the cluster probability }{ jp  ,  
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3. Compute the cluster means }{ jM  and covariance matrices }{ jC  by using the robust estimator, minimum volume 

ellipsoid (MVE) algorithm [9].  
4. Calculate the distance kld  between each two cluster k  and l  as follows 
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where glk L1, ∈  and )/( lkk ppps +=  . 

5. Select the closest two clusters ∗k  and ∗l  , ∗∗ < lk  , such that }{min ijijlk dd =∗∗   

6. If τ<∗∗lk
d  , a threshold, merge the two clusters. That is to set  
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uNiu L , 
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− ,  

1−= gg . 
7. Go to step 2, until no clusters are merged. 

Algorithm 1. Motion clustering. 
 

IV. MOTION ESTIMATION 
The shaky artifacts in home videos are mostly due to 

irregular camera motion. To remove these artifacts, an 
essential step is to estimate the trajectory of the camera 
motion.  The camera motion estimation, nevertheless, is not 
straightforward due to the presence of moving foreground 
objects. Direct estimation without foreground and background 
segmentation can normally lead to bias computation. In this 
section, we adopt an EM framework, similar to the excellent 
works of Sawhney & Ayer in [10], for simultaneous motion 
segmentation and parameter estimation. 

A. The Motion Model 
We use a common approach to describe the motion by a set 

of parameters with an assumption that the observed scene 
undergo a geometry transformation.  The 6-parameter affine 
model is adopted as the trade-off between model stability and 
representative capacity. The affine transformation of a pixel 
position  between frames  and  is given by p tI 1+tI
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With the assumption of no moving objects, the affine 
parameters ][ ttt A b,=θ  can be estimated by robust M-
estimator as in [10].  

B. Expectation-Maximization Motion Segmentation 

Only one affine motion model is not enough to describe the 
scene changes with multiple moving objects. However we can 
regard the reference frame at time t  as being generated by the 
frame at time 1−t  with multiple affine models corresponding 
to the moving camera and objects. Thus each intensity  
at pixel p  of reference frame can be viewed as arising from 

the mixture of a finite number of images 
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 Given the ith  population iI~ , the conditional probability 

density function of intensity  is assumed to be a normal 

distribution 
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Let vector  denote all the unknown 
parameters, proportions , variances 

 and motion parameters . The 

log likelihood function can now be written as  
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where n is total number of pixels in current frame. The 
solution to Eqn (9) is usually obtained by maximizing through 
EM algorithm by introducing the hidden variable, ownership 
indicator  that,  }{ ijzZ =
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B. Extending E-step 
In the case where initial conditions are absent that randomly 

initialized conditions are used, the update of ownership, 
calculated in a way as [10], is reasonable. In our case, 
however, the ownership of the starting frame, obtained from 
Section III-B, is known. Since the initial conditions are 
estimated in the best frame, we have the confidence that they 
are close to the segmentation result of EM algorithm. This 
prior information would make the EM algorithm more robust 
if it can be considered in EM iteration. Therefore we extend 
the E-step of EM motion segmentation algorithm in [10] by 
assuming ownership Z  is propagated by a given transit 
matrix . Then in the iteration, the expectation Μ thl ijτ  of 

current ownership  at  pixel for  population, is given 

by, 
ijz thj thi

)|1(),|)((
)|1(),|)((

)|1(),1|)((
)|1(),1|)((

),),(|1(

),),(|(

)1()(
1

)1()(

)1()()(
1

)1()()(

)1()(

)1()(

−
=

−

−
=

−

−

−

=∑

=
=

=Ψ=∑

=Ψ=
=

Ψ==

Ψ=

ll
kjkkjt

g
k

ll
ijiijt

ll
kj

l
kjjt

g
k

ll
ij

l
ijjt

l
jt

l
ij

l
jt

l
ijij

ZzpxIp
ZzpxIp

ZzpzxIp
ZzpzxIp

ZxIzp

ZxIzE

σθ
σθ

τ

 

where 

gkzmZzp
g

i

l
ijki

ll
kj :1)|1(

1

)1()1()( ∈∀== ∑
=

−−  

Here gijijm :1}{ ==Μ  is the transit probability matrix, which 

describes our confidence on the initial segment results given 
by the clustering algorithm in Section III-B. One advantage of 
extended E-step, from the practical point of view, is that the 
EM framework, in contrast to typical ownership update, is 
more robust in homogeneous segmentation. In a typical EM 
solution like [10], a population  whose proportion is 
relatively small compared with other populations , is more 

likely to vanish after update. This is a common scenario 
particularly for some foreground objects which occupy small 
regions in home videos. 
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C. M-step 
As shown in [10], given the current population ownership 

expectation ijτ , the maximum likelihood estimate of 

parameterΨ , Ψ̂ , satisfies the following equations:  
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In our approach, Gaussian-Newton algorithm with robust M-
estimator is used to solve Eqn (12) as in [10]. 

 The E-step and M-step are iterated until some conditions 
such as the predefined change of successive motion model or 
number of iteration are reached. At last, the segmentation 
divides the current frame into g layers . Each layer is 
given by  

}{ iL

},|{ ikL kjijji ≠>= ττp . 

The corresponding affine model parameter iθ  is estimated by 
Eqn. (12). Starting from the selected frame, this procedure is 
carried on in both forward and backward temporal directions. 
In a new frame, the initial ownership indicators are 
transformed from the ownership and motions estimated in the 
previous frame. In this manner, we have g sequence of 

 for the whole image sequence.   j
ttL },{ θ

V. SELECTIVE OBJECT STABLIZATION 
In a typical home video, there could be many annoying 

perturbations caused by irregularities in camera motion. If the 



 

irregularities are regarded as the noise of a motion trajectory, 
video stabilization can be viewed as a filter that estimates the 
intentional camera motion trajectory from the observed 
trajectory corrupted by unwanted motions. Rather than using 
either overly simple assumption of camera motions or smooth 
filtering in frequency domain without care of physical 
movement of the camera, we use Kalman filtering from 
recursive estimation theory. In the framework of Kalman 
filtering, we propose dynamic motion model that can 
physically describe the intentional camera movement, on the 
other hand, the undesirable motions can be removed by 
regarding as the measurement noise. To overcome the delay 
problem of intentional trajectory estimation by a single 
forward Kalman, we propose a dual Kalman filtering in both 
forward and backward directions. The delay can be 
counteracted in this way. 

More importantly, since the image sequence is decomposed 
into several layer sequences by EM segmentation algorithm 
(Section IV), we are not restricted only on the stabilization of 
the camera. All the moving objects including the camera and 
foreground objects can be subjectively selected and stabilized. 
This selective object stabilization provides flexibility and 
user-friendly interface for the consumers. 

A. Motion Feature Extraction 
To establish the dynamics of motion, we need to know the 

physical meanings. The affine parameter A  (Eqn (7)) is lack 
of this attribute.  We decompose A  to extract the motion 
features by QR decomposition, 
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whereθ  and φ  are the rotation and skew angles respectively. 

The  and  are zoom factors in horizontal and vertical 
directions respectively. Together with the translation b , we 
have a six-motion-feature vector 

1k 2k

],1k,,,,[ 221 kbb φθ=x  
associated with each two successive frames.  

B. Intentional Motion Estimation 
To estimate the intentional trajectory, we should carefully 

establish the dynamics of the motion. Based on the physical 
meaning of x , we assume that each of the cumulative of , 

and 
1b
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, changes with a constant 

velocity, denoted by , and , which is subject to 
random noise. The dynamics of, say the horizontal translation, 
is given by 
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where  ),0( bN σ  is Gaussian distribution with variance bσ .  

The remaining motion features are assumed to be constant 
with random noise. That is, for example, 
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Then the whole dynamics of motion is given by, 
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where ],,,,,,,[ˆ 212211 kkbbbb vvv φθθ
)))

=x  is the state vector, 
Φ  is the transition matrix and Q is process noise. The 
measurement model is given by 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

≡+=

),0(
),0(
),0(
),0(
),0(
),0(

10000
1000

1000
0100

0010
00001

ˆ

2

1

2

2

1

1

2

1

2

1

k

k

b

b

t

v

v

v

t

tt

N
N
N
N
N
N

k
k

b

b

b

b

k
k

b
b

RH

σ
σ

σ
σ
σ
σ

φ
θ

θ
φ
θ

φ

θ)

)

)

L

MM

L

)

)

)

xx                           

 (15) 

where ],,,,,[ 2121 kkbb φθ
)))

=z is the observation, H is 
measurement matrix and R is the measurement noise. By 
Kalman filtering, the time update and measurement update are 
given in the following equations:  

 Time update equations 
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where  (  ) is the −
tP̂ tP̂ priori (posteriori) estimate state error 

covariance,  ( ) is the −
tx̂ tx̂ priori (posteriori) state estimate, 

and  is Kalman gain matrix.  tK
If carried out only in forward direction, Kalman filtering 

usually results in motion trajectory that is delayed to 
intentional movement, since only past data are used. To take 
into account the future data for motion smoothing, we employ 
a dual Kalman filtering that consists of two Kalman filtering 
in both forward and backward directions. Given the trajectory 
observations , we first use a forward Kalman filtering 

(described in Section V-A) to estimate the trajectory  and 

covariance . Then we employ a backward Kalman filtering 

started with the last observation and carried on temporally 
backward, and have another estimated trajectory  and 

covariance . These two Kalman filters are combined 
together by, 
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C. Combinational Stabilization of Multiple Objects 
Kalman filtering, intuitively, should only be carried out for 

the segmented camera motion. Foreground motion can be 
discarded as useless visual cues. Nevertheless, the consumers 
may like to stabilize the foreground objects in some cases. For 
instance, stabilize with respect to a walking person or a 
moving car − the focus of video capture. In contrast to 

traditional DIS system, our approach has the capability of 
stabilizing multiple video objects selected by a consumer. 
Given two selected objects, we have trajectory observations 

 and  for object A and B respectively by the EM 
segmentation algorithm (Section IV). The combinational 
stabilizer is carried out as follows: 

}{ az }{ bz

1. Estimate the intentional trajectory of  and  
independently using the dual Kalman filtering as described in 
Section V-B. Then we have , , and  corresponding 

covariance matrices  and . 
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}ˆ{ ax }ˆ{ bx
}ˆ{ aP }ˆ{ bP

2. Combine the two trajectory by transforming  to , 
then the new intentional trajectories of object A and B, 

bx̂ ax̂
ax and 

bx , is given by, 
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where 10 ≤≤ c , is a control parameter of the 
combinational stabilizer. If is smaller, the object A would be 
more stable. While if c is larger, the object B will be more 
stable. The above procedure is carried out in a similar way if 
more than two objects are selected. 

c
c

 

 
Fig. 2. The cumulative horizontal translations ( 1b

)
) estimated by ours, SGM and LMedS methods. 

 



 

 
Fig. 3. The cumulative horizontal movements of EM foreground, SGM and LMedS background with respect to EM camera motion. 

VI. EXPERIMENTS 
We test our selective object stabilizer on two video 

sequences: Walking and Beach.  Walking captures a walking 
person in close distance while Beach is a shaky video 
captured by a person walking along the beach. At the 
beginning of Walking, the size of foreground object is 
relatively small, about half of the background regions. As the 
person moves closer and closer to the camera, the size of 
object gradually increases until about two times larger than 
the background. This video, technically presents intense 
challenge for traditional DIS due to large and unstable 
foreground object motion. In the remaining part, we will 
demonstrate, mainly with Walking, the advantages of our 
approaches in handling large moving objects, and in 
stabilizing with respect to different objects.  

Generally speaking, the most crucial part of DIS system is 
motion estimation. The global motion between two 
successive frames must be estimated accurately, otherwise 
annoying discontinuities would be introduced in the 
stabilized videos. Since no ground-truth motions are available 
for real sequence and the testing by synthetic video is limited, 
we compare our approach with two other well-known motion 
estimation algorithms. The first approach is similar to our 
EM motion estimation, but assumes only single Gaussian 
model (SGM). In other words, only camera motion is 
assumed to be present. The motion parameters are estimated 
by maximizing the likelihood of two frames. The M-
Estimator and Gaussian-Newton methods are used to solve 
the ML problem [10]. The second approach is based on 
RANSAC-like robust estimator least-median-of-square 
(LMedS) method. The feature matching of two frames is first 
estimated by optical flows (Sec. III), then LMedS is used to 
estimate the dominant motion model based on feature 
matching [20]. 

Fig. 2 shows the cumulative horizontal background 
translations estimated by SGM, LMedS and our methods. 
Although the fluctuations of the three trajectories look similar, 
the amplitudes are different. We observe that the differences 
between ours and other two methods are caused by the 

disturbance of foreground object movement. Thus the 
differences should follow the same fluctuation as the 
foreground object, that is 
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where ,  and  are background motions estimated by 

ours, SGM and LMedS methods respectively. is the 

foreground motion by ours method. To verify this 
observation, we remove the influence of background by 
subtracting  from both sides of Eqn. (18). Fig. 3 shows 

the cumulative of (blue solid), (red 

dotted) and (green dashed). Note that the 

trajectories have similar fluctuations, which means the results 
of SGM and LMedS are impacted by the foreground objects. 
Fig. 3 also illustrates the influence of foreground object size. 
In the initial part of Walking, the object size is relatively 
small, and less influence is introduced. However, when the 
size of object gets larger, significant influence is observed.   
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The accuracy of EM motion estimation depends on the 
quality of the object layer segmentation. The well-known EM 
motion segmentation algorithm [10] is prejudicially in favor 
of the objects with relative large image region. Our modified 
EM segmentation algorithm, in contrast, can robustly 
segment the objects by taking advantage of good motion 
initialization (Sec. IV). Fig. 4 shows the segmentation results 
in two frames (first column). The first row shows the results 
with small foreground object, while the second row shows 
the results with a relatively large foreground object. The 
foreground object detections (in white color) by traditional 
EM [10] are shown in the second column, where 
homogenous regions in the relatively small object have 
incorrect assignment. In contrast, the results by our approach, 
shown in the third column, are more accurate. 



 

 
Fig. 4. Results of EM motion segmentation.  Column 1: original frame. Column 2: the segmentation by traditional EM [10]. Column 3: the segmentation 
by our modified EM algorithm. Column 4: the segmented objects by our approach. 

 
Fig. 5. From left to right: the image alignment results of ours, SGM and LMedS methods. 

More visual comparison is illustrated in Fig. 5, which are 
the alignment results of multiple frames: 346-352, using ours, 
SGM and LMedS methods respectively. In these frames, the 
upper body swings in horizontal direction. The V-shape 
alignment of SGM (middle) obviously shows the impact of 
the body’s movement. The right one shows the results of 
LMedS. In this mosaic, the background is discontinuous 
whereas the foreground is aligned. This is because relatively 
more features are detected in the body than in the white wall. 
Among the three methods, the best alignment result is 
achieved by our proposed motion estimation algorithm after 
taking into account the moving foreground objects, although, 
in some frames, undesirable effect of edge cascade might 
appear due to inaccurate segmentation in the edges of the 
foreground objects, as shown in the first column of Fig.5. In 
practice, this effect can be compressed by applying a 
temporal median filter near the edges of object. 

A. Dual Kalman Smoothing 
Fig. 6 and Fig. 7 show the intentional motion trajectory 

estimated by forward, backward and dual Kalman filtering 
(see Section V). The blue line is the observed cumulative 
horizontal translation movement.  The red dashed curve is the 
estimated intentional motion by applying Kalman filtering in 
forward temporal dimension, while the green dotted curve is 
the result of backward Kalman filtering.  The black curve is 
the final result which is estimated by the dual Kalman, the 
combination of forward and backward Kalman filtering. In 
Fig. 6 and Fig. 7, we observe that the trajectories estimated 

by either forward or backward Kalman filtering alone, are 
delayed to the intentional variation of movement, but in 
opposite directions. Therefore the forward and backward 
delays can be counteracted and eliminated by dual Kalman 
filtering, which is a linear combination of forward and 
backward stabilizer. 

B. Selective Object Stabilizer 
Allowing flexibility is a key feature from consumer point 

of view. Our approach has the flexibility of supporting 
selective object stabilization.  A consumer can subjectively 
select and combine different objects for stabilization, and 
then pick the one which produces the best quality. In some 
cases, stabilizing background can lead to more shaking 
foreground. This is particularly worse if the ultimate goal of a 
consumer is to track moving foreground objects. Customers 
should be given priority to customize the stabilization effect 
as they wish. Fig. 8a (Fig. 8b) demonstrates the merit of our 
approach in supporting this facility. The blue curves in both 
subfigures are the original observed trajectory of horizontal 
translation, whereas the green dotted and red dashed curves 
are the estimated intentional trajectories by the dual Kalman 
stabilizer with respect to the foreground and background 
respectively. From the newly generated foreground trajectory 
in Fig 8b (background in Fig 8a) as a result of stabilizing 
background (foreground), we find that foreground object gets 
even unstable when stabilizing the background scene, and 
vice versa. . In this situation, our DIS system allows 
customized stabilization based on the consumer’s selection. 



 

For instance, we choose to stabilize both foreground and 
background by a combinational stabilizer (Eqn. (17)). By 
setting =0.5, the stabilized trajectories are generated as 
depicted by black curves shown in Fig 8.   

c

VII. CONCLUSION 
We have presented a new approach for home video 

stabilization. Particularly, we take into account the effect of 
foreground moving objects. The novelty of our approach lies 
on the utilization of motion initialization in a sequence for the 
selection of initial frame in segmentation. This indeed leads 
to a robust EM based foreground and background 
segmentation algorithm that allows effective stabilization. 
Based on multiple motions and support layers estimated by 

EM algorithm, our selective home video stabilizer can 
stabilize the background as well as foreground objects. 
Furthermore, combinational stabilization algorithm has the 
flexibility of stabilizing arbitrary combination of objects 
selected by consumers.  

Currently, our approach suffers from the problem of 
“incomplete scene”. A stabilized video frame may have holes 
especially at the image border due to the missing of scene 
information. Foreground moving objects may also encounter 
this problem if a camera swings rapidly. Part of the problems 
could probably be solved by image repairing techniques [8, 
21]. Because home videos usually suffer from motion blur 
and lighting variation, effective construction of mosaics is 
another challenging issue for video stabilization. 

 
(a) Horizontal translation estimation 

 
(b) Rotation angle estimation 

Fig. 6. Intentional motion estimation of video Walking by forward, backward and dual Kalman filtering. 
 

 
(a) Skew angle estimation 



 

 
(b) Vertical zoom factor estimation 

Fig.7 Intentional motion estimation of video Beach by forward, backward and dual Kalman filtering. 
 

 
(a) The background estimation 

 
(b) The foreground estimation 

Fig. 8. The intentional motion estimation by dual and combinational Kalman filtering. 
 

ACKNOWLEDGMENT 
The work described in this paper was fully supported by a 

RGC grant CityU1072/02E (project No. 9040693) from the 
Research Grants Council of the Hong Kong SAR. 

REFERENCES 
[1] S. Ayer, P. Schroeter and J. Bigun, “Segmentation of moving objects by 

robust motion parameter estimation over multiple frames,” European 
Conf. on Computer Vision, 1994  

[2] A. Censi, A. Fusiello and V. Roberto, “Image stabilization by features 
tracking,” Int'l Conf. Image Analysis and Processing, pp. 665-667, Sep. 
1999. 

[3] Z. Duric and A. Rosenfeld, “Shooting a smooth video with a shaky 
camera,” Machine Vision and Applications, No. 5-6, pp. 303-313, 2003.  

[4] A. Gelb et al. Applied Optimal Estimation. M.I.T. Press, 1974.  

[5] M. Irani, B. Rousso and S. Peleg, “Recovery of ego-motion using 
image stabilization,” Int’l Conf. Computer Vision and Pattern 
Recognition, pp. 454-460, 1994.  

[6] C. Morimoto and R. Chellappa, “Fast 3D stabilization and mosaic 
construction,” Int’l Conf. Computer Vision and Pattern Recognition, 
pp. 660-665, 1997.  

[7] D. J. Lan, Y. F. Ma & H. J. Zhang, “A systematic framework for 
camera motion analysis for home video,” Int’l Conf. on Image 
Processing, 2003.  

[8] J. Jia, C. K. Tang, “Image repairing: robust image synthesis by adaptive 
ND tensor voting,” Int’l Conf. Computer Vision and Pattern 
Recognition, 2003.  

[9] P. Rousseeuw, Robust Regression and Outlier Detection. Wiley, New 
York, 1987.  

[10] H. S. Sawhney and S. Ayer, “Compact representation of videos through 
dominant and multiple motion estimation,” IEEE Trans. Pattern 
Analysis and Machine Intelligence, Vol. 18, No. 8, pp. 814-830, Aug. 
1996.  

[11] W. Q. Yan and M. S. Kankanhalli, “detection and removal of lighting 
& shaking artifacts in home videos,” ACM Multimedia, 2002.  



 
[12] C. Morimoto and R. Chellappa, “Fast electronic digital image 

stabilization,” Int’l Conf. on Pattern Recognition, vol. 3 pp. 284-288, 
1996. 

[13] Sung-Jea Ko,  Sung-Hee Lee,  Seung-Won Jeon and Eui-Sung Kang, 
“Fast digital image stabilizer based on gray-coded bit-plane matching, ” 
IEEE Trans. Consumer Electronics, vol. 45,  no. 3, pp. 598 – 603, Aug. 
1999. 

[14] S. Erturk, “Digital image stabilization with sub-image phase correlation 
based global motion estimation,” IEEE Trans. Consumer Electronics, 
vol. 49, no. 4, pp. 1320-1325, Nov. 2003. 

[15] F. Vella, A. Castorina. M. Mancuso and G. Messina “Digital image 
stabilization by adaptive block motion vectors filtering,” IEEE Trans. 
Consumer Electronics, vol. 48, no. 3, pp. 796 – 801, Aug. 2002. 

[16] A. Engelsberg and G. Schmidt, “A comparative review of digital image 
stabilising algorithms for mobile video communications,” IEEE Trans. 
Consumer Electronics, vol. 45, no. 3, pp. 591-597, Aug. 1999.  

[17] Jyh-Yeong Chang, Wen-Feng Hu, Mu-Huo Cheng and Bo-Sen Chang,  
“Digital image translational and rotational motion stabilization using 
optical flow technique,” IEEE Trans. Consumer Electronics,  vol. 
48,  no. 1,  pp. 108-115, Feb. 2002. 

[18] A. Litvin, J. Konrad, and W. Karl, “Probabilistic video stabilization 
using Kalman filtering and mosaicking,” Proc. SPIE Image and Video 
Communications and Process, vol. 5022, pp. 663-674, Jan. 2003. 

[19] S. Erturk and T.J. Dennis, “Image sequence stabilisation based on DFT 
filtering,” IEEE Proc. Vision, Image and Signal Processing, vol. 
147,  no. 2, pp. 95-102, Apr. 2000. 

[20] P. Meer, “Robust techniques for computer vision,” Emerging Topics in 
Computer Vision, G. Medioni and S. B. Kang (Eds.), Prentice Hall, 
107-190, 2004. 

[21] Y. Matsushita, E. Ofek, Tang Xiaoou and Shum Heung-Yeung, “Full-
Frame Video Stabilization,” Int’l Conf Computer Vision and Pattern 
Recognition 2005. 


	Selective object stabilization for home video consumers
	Citation

	I. INTRODUCTION 
	II. Overview of our approach 
	III. motion initialization 
	A. 3D Tensor Representation 
	B. Initialization 
	IV. motion estimation 
	A. The Motion Model 
	B. Extending E-step 
	C. M-step 

	V. selective object stablization 
	A. Motion Feature Extraction 
	B. Intentional Motion Estimation 
	C. Combinational Stabilization of Multiple Objects 

	VI. Experiments 
	A. Dual Kalman Smoothing 
	B. Selective Object Stabilizer 

	VII. conclusion 


