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Selection of Concept Detectors for Video Search by
Ontology-Enriched Semantic Spaces

Xiao-Yong Wei, Chong-Wah Ngo, and Yu-Gang Jiang

Abstract—This paper describes the construction and utilization
of two novel semantic spaces, namely Ontology-enriched Semantic
Space (OSS) and Ontology-enriched Orthogonal Semantic Space
(OS2), to facilitate the selection of concept detectors for video
search. These two semantic spaces are enriched with ontology
knowledge, while emphasizing consistent and uniform comparison
of ontological relatedness among concepts for query-to-concept
mapping. OS2, in addition to being a linear space like OSS, also
guarantees orthogonality of the semantic space. Compared with
other ontology reasoning measures, both spaces are capable of
providing platforms that offer a global view of concept inter-re-
latedness, by allowing evaluation of concept similarity in metric
spaces. We simulate OSS and OS2 by using LSCOM concepts
and experiment search effectiveness with VIREO-374 concept
detectors. Empirical observations indicate that the proposed se-
mantic spaces enable more effective selection of concept detectors
than eight other existing ontology measures. OS2, in particular, is
better in providing a viable and reasonable solution for fusion of
multiple concept detectors.

Index Terms—Semantic space, ontology, concept-based video
search, semantic detectors.

I. INTRODUCTION

S EMANTIC-BASED retrieval has been one of the
long-term goals of multimedia computing. Traditional

content-based approaches for deriving semantics, purely based
on low-level features, such as color and texture, have shown
their limitations in conquering the so-called “semantic gap.”
Modern approaches enable a semantic search by pooling a set
of concept detectors (e.g., car and building) to extract semantics
from low-level features, and thus forming a semantic space to
facilitate high-level understanding of user queries [1]–[5]. Such
search methodology is usually referred to as concept-based
video search, as illustrated in Fig. 1. The semantic gap from user
queries to raw data is bridged with a pool of concepts enriched
with general-purpose vocabularies, for instance, from ontology
(e.g., WordNet) and external information (e.g., Internet). The
ontology specifies the relationship among concept entities.
Basically, a set of concept detectors is developed to represent
high-level semantics. The detectors are classifiers learnt with
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Fig. 1. General framework of concept-based video search. The semantic gap
between low-level features and user queries is bridged by a set of concept de-
tectors enriched by general knowledge such as ontology.

training examples described by multimodal features. Given a
user query, the best set of concepts to describe the semantics of
the query is reasoned through the vocabularies. A search list is
then produced by ranking items (e.g., shots) according to their
signal responses to the selected concept detectors.

Under the concept-based retrieval framework as depicted
in Fig. 1, an apparent issue is that, given a concept detector
set, mapping ambiguity between queries and concepts needs
to be carefully resolved. Consider, for instance, a query of
“Find shots with snow”, and a concept set with three detectors:
landscape, soccer, fire. The concept similarities between snow,
landscape snow, soccer and snow, fire need to be prop-
erly reasoned in order to assign the best possible detectors with
appropriate weights to answer the query. A common solution is
to consider mapping through ontology reasoning [1], [3], [4],
[6], [7], or more precisely selecting concepts, which minimize
linguistic distance between the concepts and query terms. The
mapping is normally done with a shared knowledge ontology
such as WordNet [8], which is organized as a graph with nodes
that represent concepts and edges that specify the relationships.
Ontology reasoning normally involves only a local view of a
subgraph structure where the two concepts under investigation
reside. A fundamental question is: can the pairwise concept
similarities measured based on the local view be effectively
compared for selecting detectors? Such a reasoning technique
does not allow uniform comparison of concept pairs, since the
locally determined similarities, in principle, are not comparable
from one concept pair to another.

In this paper, we propose a novel construction of semantic
space to measure concept similarity globally. In contrast to the
conventional ontology reasoning, this space enables an uniform

1520-9210/$25.00 © 2008 IEEE
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Fig. 2. Reasoning concept similarity in (a) WordNet ontology: reasoning is
conducted in a subgraph without a global view of the graph structure, (b) OSS:
selected concepts (v ; v ; v ) are represented as bases for vector-based con-
cept similarity measure, and (c) OS : the bases (B ;B ;B ) are computed by
spectral decomposition to represent concept vectors.

and global similarity measure of concepts. In this space, basis
vectors are formed by modeling ontological relationship among
concepts. Each concept is represented as a vector for similarity
measurement purposes. Because ontology knowledge is taken
into account when building the semantic space, we call the
space “ontology enriched”. We propose two variants of the
semantic space by considering orthogonality property of the
space. The first space is named Ontology-enriched Semantic
Space (OSS), originally presented in our recent work [9]. The
second space is called Ontology-enriched Orthogonal Semantic
Space . With reference to Figs. 2(b) and (c), OSS is a
linear space spanned with bases formed by a set of selected
concept vectors. is similar to OSS, but the bases are not
formed by the concepts themselves. Instead, the basis vectors
are computed by spectral decomposition in order to guarantee
the orthogonality of the semantic space.

Fig. 2 illustrates the major ideas of reasoning concept sim-
ilarity in WordNet ontology, OSS and . Let concepts
to as children and to as ancestors. In Fig. 2(a), using
the conventional ontology measures such as Resnik [10], the
concept pairs and could be the same, although

shares another ancestor and intuitively should be
more alike. On the other hand, the similarity scores of
and cannot be reasonably compared as they reside in
different parts of the ontology which carry different statistic
and structural information. In brief, the reasoning is deter-
mined locally without a global ontological view. The uniform
comparison of concept similarity scores cannot be conducted.
OSS and , in contrast, project each concept as a vector in
their semantic spaces for global and uniform concept similarity
measures. In Fig. 2(b), for instance, OSS is formed by selecting
the ancestors to as the basis vectors. The concepts - are
then linearly projected to OSS as vectors for concept similarity

measure. , as shown in Fig. 2(c), emphasizes space orthog-
onality and computes basis vectors by spectral
decomposition. With the bases, the semantic spaces in Fig. 2(b)
and (c) guarantee consistency in comparing the concept pairs

and , by keeping a global view of the concept
relatedness to the basis vectors. Comparing both semantic
spaces, , being an orthogonal space, has higher expressive
ability because redundancy among the basis vectors is kept at a
minimum. The orthogonality property could effectively prevent
employment of basis vectors which might be correlated and
ultimately results in certain subspaces dominating the whole
semantic space. This property is important such that each
basis has an equal contribution to the measurement of concept
similarity.

The remaining sections are organized as follows. Section II
briefly describes the works in current literature, in particular
the ontology-based video search, related to our proposed works.
Section III presents the construction of OSS and , and their
properties. Section IV exploits the proposed semantic spaces for
concept selection and fusion. Finally, Sections V and VI present
experiments on the construction of semantic spaces and the uti-
lization of spaces for video retrieval respectively. Finally Sec-
tion VII concludes this paper.

II. RELATED WORK

In the past few years, concept-based video retrieval has
attracted numerous research attention. Two critical efforts are
detection of semantic concepts and utilization of concepts as
“semantic filters” for query answering. Since 2001, TRECVID
(TREC Video Retrieval Evaluation) [11] sponsored by NIST
has organized annual workshops to publicly release benchmarks
and evaluations to support these efforts. Two tasks organized
by TRECVID are high-level feature extraction (HLFE) and
automatic video search. In HLFE, concept detectors are devel-
oped for video semantic annotation. In order to identify a right
set of detectors to develop, collaborative efforts from various
research organizations have been pooled in to assess the utility,
observability and flexibility of the concept detectors [12].
One typical example is the release of LSCOM (Large-Scale
Concept Ontology for Multimedia, http://www.lscom.org/)
[12] which includes 834 semantic concepts and a collection
of annotations (training examples) for 449 out of the 834
concepts. With LSCOM, two detector sets, Columbia-374 [13]
and VIREO-374 [14], are also publicly released to share the
sets of detectors developed based on the concepts in LSCOM.
Another detector set commonly used is MediaMill-101 [15]
which provides 101 concept detectors.

With the availability of various concept detector sets, the au-
tomatic video search in TRECVID is often straightforward to
perform based on the concept-based retrieval framework de-
picted in Fig. 1. Various studies [2]–[4], [16] have been reported
regarding the usefulness of concepts for video search, compared
to search with low-level features and text keywords. The com-
pleteness, accuracy and utility of LSCOM concepts towards ef-
fective search performance is also investigated in [17]. Recently,
the fundamental question of how many detectors are enough for
effective video search is studied in [18]. In this work, it is re-
ported that fewer than 5000 concepts, detected with minimal
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accuracy of 10%, is likely to provide satisfactory retrieval per-
formance.

In this section, we begin by briefly describing the existing
concept similarity measures for ontology reasoning in Sec-
tion II.A. The related works in ontology-based video search
will be further presented in Section II.B. A brief comparison
of anchor-based selection approaches to our proposed semantic
spaces will also be discussed in Section II.C.

A. Ontology Reasoning

Ontology reasoning is an ongoing research topic of linguistic
computing [19]. Different measures have been proposed to eval-
uate relatedness of two concepts by querying ontologies such
as WordNet for relatedness reasoning. The relatedness is nor-
mally based on ontology distance which utilizes the hyponym
(is-a relationship) of concepts. With WordNet as an example,
the is-a relationship can be viewed as a graph with nodes rep-
resenting concepts and edges representing the concept related-
ness. The distance between two concepts is dependent on infor-
mation content (IC) and specificity of concepts, or path length
from one concept to the other by traversing the edges. The IC
is inversely proportional to the probability of a concept being
observed. The specificity of a concept is defined by the depth
of the concept in the graph, where depth is ordered according
to the levels of is-a relationship. For instance, the concept car is
under its ancestor vehicle and thus resides deeper than vehicle
in WordNet.

Popular measures for concept similarity includes Leacock
and Chodorow (LCH) [20], Wu and Palmer (WUP) [21], Resnik
(RES) [10], Lin (LIN) [22], Jiang and Conrath (JCN) [23], Lesk
[24], Gloss Vector (Vect) [25] and Pairwise Gloss Vector (VP)
[25]. LCH and WUP use path length information, while the re-
maining measures utilize information content (RES, LIN, JCN)
and definition of word sense (Lesk, Vect, VP). Denote as the
depth and as the IC of a concept, as the path length between
two concepts, and as the common ancestor of concepts
and . Some of these measures are defined as

(1)

(2)

(3)

(4)

(5)

where denotes the maximum depth of WordNet. The IC is es-
timated based on the one-million-word Brown Corpus of Amer-
ican English [26]. Lesk utilizes the number of shared words
(overlaps) in the definitions (glosses) of concepts. Vect repre-
sents concepts as gloss vectors using the co-occurrence informa-
tion derived from glosses. The cosine similarity between gloss
vectors is used to measure the concept relatedness. VP is sim-
ilar to Vect, but different in the way it augments the glosses of
concepts with adjacent glosses [25].

B. Ontology-Based Video Search

Depending on the modalities of search queries (visual and/or
text), there exist various ways to perform mapping from queries

to concepts. For text queries, the approaches in [3], [4], [16] con-
duct mapping by the concept similarity measures as presented
in Section II-A. In addition to ontology reasoning, some ap-
proaches also explore the mapping by comparing queries against
the text descriptions associated with concepts [4], or to expand
queries with related terms [1], [3]. The expanded terms as well
as their weights are learnt from training examples [1] or external
information such as Internet [3]. For queries with image or video
examples, the mapping is often done by selecting the concept
detectors which output high confidence to query examples, in-
dicating the likelihood of corresponding concepts presented in
the queries. When multiple detectors are selected, the weight of
a detector is normally assigned based on the detection score of
the detector to image/video examples [27], or the ontology sim-
ilarity of the concept to text query [3].

A different strategy of query-to-concept mapping is via con-
struction of semantic space or vector space for modeling con-
cepts. The pioneering work in [5], [28] constructs a semantic
space, or more precisely a vector space, formed by a set of avail-
able concept detectors. In this space, a retrieval item (e.g., shot)
is represented as a vector of model scores. The scores are com-
puted based on the signal responses of the detectors to the item.
Contrasting to other approaches based on ontology reasoning
[4], [16], no specific detector is selected, but rather all detectors
are involved in the video search though each detector carries
different weights. In [27], the idea of tf-idf originated from in-
formation retrieval, which weights the importance of a detector
according to its appearance frequency, is adopted to further im-
prove the search performance of vector space representation.

Conducting search based on ontology construction has also
been previously studied in [4], [29]–[31]. The construction
mostly involves manual mapping of visual elements to textual
concept entities provided by shared vocabularies. In [29],
WordNet is extended with visual tags describing properties
such as visibility, motion and frequency of occurrence. In [31],
based on WordNet and MPEG-7, a visual ontology is created
by linking visual and general concepts. In view of the richness
of human vocabularies and the need for domain experts in
tagging or creating links, the scalability of these approaches
still remains unclear. A relatively straightforward approach is
recently proposed in [4] by directly attaching concept detectors
to WordNet synsets. The semantically enriched detectors can
thus utilize contextual information provided by WordNet. In
addition to the ontologies built on the basis of general-purpose
vocabularies, domain specific multimedia ontology is also in-
vestigated. For instance, in [32], two animal domain ontologies
are constructed respectively for textual and visual descriptions
for semantic search.

C. Anchor-Based Selection

Considering the way that the proposed semantic spaces are
built by selecting and constructing the bases, our work is also
related to the anchor-based selection approaches [33]–[36]. In
these approaches, anchor space is built by selecting a subset of
objects from database as global reference axes. The selected
objects are named as foci [33], anchor [34] or vantage points
[35]. The main challenges of anchor-based selection are which
and how many objects should be selected as anchors. The re-
cent work in [33], for instance, proposes HF (Hull-of-Foci) al-
gorithm for the selection of anchor objects. The idea of using
anchors to build anchor-space has actually been used in various
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applications including database indexing [33], music classifica-
tion [34], image retrieval [35], and animal sound classification
[36].

III. MODELING SEMANTIC SPACE WITH ONTOLOGY

This section presents the construction of ontology-enriched
semantic space. Given a vocabulary set of

concepts, we want to represent each concept in a vector
form in the semantic space. Denote as the -by- concept
matrix which captures the vectors, defined as

(6)

where is a -dimensional vector representing concept . With
, the semantic space can be estimated as

(7)

where ideally the concept vectors together form the bases that
approximate the real world space . To estimate the semantic
space, there exist two major issues: the estimation of the con-
cept matrix , and the orthogonality and compactness of the
semantic space.

A. Constructing OSS

OSS, originally proposed in [9], aims to make the semantic
space in (7) as compact and complete as possible. Similar to the
anchor selection approaches, OSS achieves the aim by identi-
fying a subset of concepts in appropriate to serve as the basis
vectors of the semantic space. To estimate , OSS computes the
ontological relationships of concepts by measuring their pair-
wise similarity. The WUP measure in (2) is employed to com-
pute the similarity of each concept pair. This forms the matrix

where each component represents the simi-
larity of a concept pair . basically approximates and
encapsulates the all-pair WUP similarities of concepts. Each
column vector in outlines the similarities of the concept
to other concepts.

To minimize the redundancy among concepts, OSS adopts
clustering approach which groups the concept vectors in
into clusters, and then selects one medoid from each
cluster to form the set of basis vectors. The OSS is thus spanned
by medoid concepts. With bases, the matrix is reduced
to of -by- size. In OSS, each concept can be easily rep-
resented as a vector in dimensions, by measuring the WUP
similarity of the concept to medoids. An advantage of OSS is
that the bases are interpretable with each basis represented by a
semantic concept. Nevertheless, the space is not strictly orthog-
onal, and the basis vectors are thus somewhat correlated.

B. Constructing

aims to construct an orthogonal semantic space to depict
(7). Similar to OSS, first assumes the concept matrix
can be modeled with matrix computed with WUP measure.
Further assuming that each concept vector in is normalized,
we can have

(8)

To solve , spectral decomposition [37] is applied to :

(9)

where is a matrix with all the eigenvalues of on its diag-
onal, and is the corresponding eigenvector matrix. As a con-
sequence, a particular solution that can describe is

(10)

With the spectral decomposition, the semantic space formed
by is orthogonal and spanned with the eigenvectors which
are computed by Schur decomposition [37] in our approach. The
concept vectors in are obtained directly via the transformation
in (10). Comparing to OSS, the axes of are not represented
by the original concept vectors. Instead, each basis vector is the
linear combination of concept vectors and orthogonal to each
other.

1) Representing Unseen Concept: Because each basis vector
is not directly interpretable, representing the unseen concepts
not found in the vocabulary set is not as straightforward as
OSS. Given a concept , the corresponding concept vector

is predicted as

(11)

where is a -dimensional vector, representing the ontolog-
ical relatedness of to the concepts in with WUP simi-
larity. Note that the matrix might be singular as the concepts
in are not completely independent (e.g., concept car vs. ve-
hicle), causing the not having a unique solution. In our case,
we solve the inversion of with generalized inverse [38].
The Moore–Penrose pseudoinverse is adopted which can always
make sure that (11) is solvable.

2) Minimizing Concept Redundancy and Re-Estimate :
While the solution of with spectral decomposition and gen-
eralized inverse sounds feasible, theoretically the solution could
be accurately estimated only when the initial given set of vocab-
ulary contains no redundant concept. By checking the concept
sets such as the ones provided in LSCOM and MediaMill-101,
there always exist redundant concepts, which make spectral de-
composition unstable. Moreover, the approximation error will
be further amplified by Moore–Penrose pseudoinverse, causing
the prediction of unseen concepts imprecise.

To tackle this problem, also adopts the clustering ap-
proach, prior to spectral decomposition, to group concepts while
finding the optimal number of clusters in . The aim is to reduce
concept redundancy and then use a more compact concept set
to estimate the semantic space. This process is similar to OSS
where the medoid of each cluster is picked to formed the new set

of concepts. A reduced matrix of -by- size is
computed, and then decomposed via (9). The coordinate system
of is then estimated and represented with the eigenvectors
of (9). The semantic space is spanned by basis concepts,
and thus is compact and relatively efficient when predicting the
unseen concepts using (11). Fig. 3(b) illustrates the advantage
of estimation with by showing a partial view of the LSCOM
dendrogram created by with . Compared to the original
dendrogram created with in 3(a), the new dendrogram is more
intuitive. For instance, the concept boat is correctly merged at a
higher abstract level of the dendrogram in 3(b) than in 3(a).

C. Properties of OSS and

1) Metric Space: Since the spaces formed by OSS and
are linear, many known metrics can be employed to characterize
distance. In this paper, we use cosine similarity for measuring
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Fig. 3. Partial view of LSCOM dendrograms created by OS with (a) the orig-
inal vocabulary set ; (b) a compact vocabulary set ^ . When concept redun-
dancy is minimized in ^ , the general concept boat resides at a higher abstract
level of the hierarchy in (b) than (a).

Fig. 4. Path length based ontology measures are not metric. For instance, the
distance from concept b to c is equal to the length of path b ! e ! . . . !
f ! . . . ! d ! c. Obviously (b; c) � (b; a) + (a; c).

the relatedness of concept vectors. Given two concepts and ,
the cosine similarity between them is

(12)

Note that the concept similarity is not only based on the on-
tology relationship between concepts and , but is also with
respect to their relatedness to the medoid concepts obtained
through clustering. Compared to OSS, has the extra ad-
vantage that concept vectors are uniformly measured in the or-
thogonal space.

Compared to other ontology measures such as Resnik [10]
and WUP [21], both OSS and are metric spaces that allow
the consistent comparison of concept similarities. It is not hard
to show that other measures violate metric properties. Take
the graph structure in Fig. 4 as an example, the path length of

violates triangle inequality. Similarly,
suppose each node is attached with information content (IC),
then . Since IC is used as a similarity
measure and inversely proportional to distance, IC based ap-
proach is also not a metric.

2) Comparison to Wordnet: To fully reveal the benefit of
OSS and , we contrast the major difference of measuring
concept similarity in these two spaces and in the original
ontology space (WordNet). Fig. 5 illustrates two typical cases
where the linguistic-based similarity measures such as WUP
fail in distinguishing the relatedness between concepts. For
ease of elaboration, we assume concepts and resides at
the same level of depth, and concepts and are the ancestors.
In Fig. 5(a), the concept shares the same WUP similarity with
both and , although resides in a family different from
and . With (or OSS), suppose and are the medoid
concepts in the set (or basis vectors in OSS), where is
more related to Family-1 while is more related to Family-2.
By (12), we can easily show that . This is
simply because the concept vectors and are compared on
a space that accounts the inter-concept relatedness. Similarly

Fig. 5. Measuring the concept similarity in WordNet with WUP. (a) The
similarity of (a; b) is the same as (a; c), although a and b reside in a branch
(Family-1) different from c (Family-2), and thus should have higher similarity.
(b) The concept pairs (a; b); (a; c); (c; b) have the same WUP similarity,
although a and b have another common ancestor d in addition to e, and thus
should be more similar.

Fig. 6. Assigning weights to the top-3 similar detectors fd ; d ; d g of the
query term q. The weight of a detector is equal to the cosine similarity of the
detector to query term in the semantic space.

in Fig. 5(b), the concepts pairs and all have
the same WUP similarity, although and are more related
because of sharing another common ancestor. Assuming the
concept is close to while concept is close to , we can
easily prove that in OSS and .

In brief, the concept similarity in either OSS or is
globally measured with the constructed semantic axes. While
in WordNet, most linguistic reasoning methods utilize the
local structure (depth, path length, specificity) peculiar to a
sub-graph for measuring similarity. Consequently, an uniform
and objective comparison of similarity scores obtained from
different sub-graphs of WordNet becomes difficult.

IV. CONCEPT-BASED VIDEO SEARCH BY OSS AND

Given a text query of terms and the
detector set of concepts, we measure
the pairwise term-to-concept similarity. The detectors are then
ranked according to their similarities to the query terms. The
top- most related detectors to the query are subsequently se-
lected for concept-based video search. Because whether in OSS
or the detectors and query terms are represented as vectors
(see Fig. 6), we can adopt the same strategies for concept selec-
tion and fusion in both spaces.

A. Concept Selection and Fusion

The similarity between a query term and a detector is
computed via the cosine similarity in (12). The top-1 detector is
straightforwardly selected as

(13)
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The selection of top- detectors are conducted in a similar
way as (13), by picking up the th most related detector one
at a time. By having detectors, a fundamental issue is the
fusion of detectors, specifically how to assign weights to dif-
ferent detectors, for retrieval. Because OSS and are linear
spaces, the weights can be determined by simply equaling their
values to the similarities of terms and concepts. With Fig. 6 as
an example, supposing the top-3 selected concept detectors are

, and the most similar query term to these detectors
is . The weight assigned to a detector is equal to its cosine simi-
larity to . In other words, the weight is inversely proportional to
the angle between query vector and concept vector. The smaller
the angle, the larger the weight. In Fig. 6, the detector is as-
signed the highest weight, followed by and .

Let be a retrieval item (e.g., shot) and be the set of top-
detectors. The similarity of a query to is determined by the
weighted linear fusion of detectors as follows

(14)

where is the most similar query term to is the
weight assigned to the detector , and is the output
score of when detecting the corresponding concept on item

.

B. Word Sense Disambiguation (WSD)

A query term is normally associated with multiple senses
or meanings. The exact sense of a term can be inferred by
knowing the contextual relationship of neighboring terms in a
query. For example, map has two senses in WordNet: graphic
map or mapping function. Given the query “map of Iraq”, map
is assigned to the former sense by knowing Iraq is a country.
Word sense disambiguation (WSD) is a query preprocessing
technique commonly used for inferring the word sense and
predicting the search intention of queries which are short and
imprecise [24].

We formulate WSD as a greedy search approach which can be
implemented directly in OSS and . The approach estimates
the actual sense of a term jointly with other senses of terms
in the query . Suppose each term has senses, there are
ways of interpreting . Greedy search is adopted to find a com-
bination that maximizes the overlap of senses for all terms in .
With as example, the approach is implemented by repre-
senting each sense with (11) and then measuring the similarity
of senses via (12). Denote as the sense of in th combina-
tion, the actual query sense is computed as

(15)

where

(16)

The query , which associates the predicted sense of each term,
is then used for concept selection and fusion as presented in
Section IV-A.

V. EXPERIMENT-I: CONSTRUCTION OF SEMANTIC SPACE

The aim of this section is to experiment with the construction
of OSS and for effective video search. In particular, the se-

lection and computation of basis vectors are evaluated. Compar-
ison to the anchor-based selection approach in [33] is also given
to verify the effectiveness of the clustering algorithm adopted in
OSS and .

In Section V-A, we use LSCOM concepts as the vocabulary
set for the construction of semantic space. The test set of
TRECVID 2006 video dataset [11] is further used to verify
the search effectiveness in Sections V-B and V-C. The video
archive consists of about 150 hours (79 484 reference shots) of
broadcast videos collecting from multilingual sources including
English, Chinese and Arabic languages. Twenty-four search
topics (see Table III), together with their ground-truth provided
by TRECVID 2006, are used as queries. We only use the text
queries of search topics for experiments, imagining that most
searchers use to perform search with a short description of
words.

For semantic concepts, we use VIREO-374 concept detectors
[14] trained using TRECVID 2005 development set. Each de-
tector is associated with three SVM classifiers trained with local
interest point features, grid-based color moment and wavelet
texture respectively. The outputs of three classifiers are com-
bined as the detection score with average fusion. We remove
those detectors that have different description in LSCOM and
WordNet, resulting in a detector set of 244 concepts. In the
experiments, we test the selection of single and multiple con-
cepts per search topic respectively. The retrieved items (shots)
are ranked according to their score to the selected concept de-
tector(s). The search performance is then evaluated with mean
average precision (MAP), where AP is defined as

(17)

where is the number of relevant shots to a search topic,
is the number of relevant shots in the top- retrieved shots, and

if the shot ranked at th position is relevant and 0 other-
wise. We set , following the standard of search task in
TRECVID. MAP is the mean AP over all search topics.

A. Constructing OSS and

We adopt agglomerative hierarchical clustering algorithm
[39] to find the best set of concepts to construct OSS and .
The initial vocabulary set is formed by the concepts from
LSCOM. We select 572 concepts from LSCOM and include
them in , by discarding those concepts not defined in WordNet
or being synonym of the existing concepts. The actual senses of
the selected concepts in WordNet are then manually assigned
based on visual impression. For ease of evaluation, we only
assign one sense to each concept, although multiple sense
assignment is possible.

By the agglomerative hierarchical clustering algorithm [39], a
dendrogram of 572 concepts is formed. We employ the inconsis-
tency coefficient [39] to find the best possible concept clusters
in the dendrogram. Denote as a link connecting two clusters,
the inconsistency coefficient of the link is computed as

(18)
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Fig. 7. Obtaining different number of concept clusters by thresholding the in-
consistency coefficient �(l) at different values. The best number of clusters hap-
pens when the curve remains steady at point where there are 366 clusters.

TABLE I
EXAMPLES OF THE SELECTED MEDOID CONCEPTS BY AGGLOMERATIVE

HIERARCHICAL CLUSTERING AND INCONSISTENCY COEFFICIENT

where is the length of link , defined as the centroid dis-
tance between two clusters connected by . The and
specify the average length and standard deviation of all links
under respectively. The coefficient basically character-
izes the tightness of a grouping under the link , by comparing
its length with all links under this grouping. The lower the value
of , the more similar the concepts under the link. At the lowest
level of dendrogram, since only two concepts are under
.

Fig. 7 shows the number of clusters (y-axis) whose links are
below a given coefficient value (x-axis). The result indicates that
the best possible case happens when there are 366 concept clus-
ters, where the increases slightly from 0 but with a dramatic
jump of 572 to 366 concepts. Table I shows few examples of
the 366 concept clusters and their medoids. The medoid con-
cepts are selected as the basis vectors of OSS, while for

Fig. 8. Experimenting search performance when different numbers of concept
clusters are used for constructing semantic space. The best performances of OSS
and OS are achieved when there are 370 clusters.

the medoids form the reduced vocabulary set for spectral de-
composition in (9). The next subsection will further investigate
the impact of concept clusters to the search performance.

B. Impact on Video Search Performance

To verify that the selection of 366 concept clusters is the best
possible choice for OSS and , we compare the search per-
formance in terms of MAP by varying the number of concept
clusters. Figs. 8(a) and (b) show the MAP of 24 TRECVID
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search topics against different choices from 2 to 572 concept
clusters1 for OSS and respectively. We experiment both
single and multiple concept selection. For multiple concepts,
the top-3 detectors are selected for query answering. As indi-
cated in the figures, the search performance basically improves
when more medoids are included to learn the semantic space.
The MAP reaches the highest when the number of axes is equal
to 370 and 361 for OSS and respectively. The performance
starts to drop from this point onwards when more medoids are
considered. The results of peak at 370 and 361 are slightly devi-
ated from the ideal theoretical peak of having 366 medoid con-
cepts. The results are not surprised since the performance to cer-
tain extent is also dependent on the reliability of detectors. The
empirical evidence, overall, shows that 366 clusters, or slightly
deviated from this number, are enough to represent the 572 con-
cepts in LSCOM.

The performance of OSS could be explained by the space
completeness. Underestimating the number of axes results in
the lack of bases to span the semantic space. The incomplete-
ness causes the deficiency of vector representation in the space.
Overestimating the number of basis vectors, on the other hand,
could results in over emphasis of certain concepts which are
correlated. Similarly for , the space should be completed
with abundant concepts. Furthermore, concept redundancy
ought to be minimized. Otherwise, the concept vectors might
not be properly predicted with (11). From the results in Fig. 8,
the performances of OSS and are similar and attain the
best, for single and multiple concept selections, when there are
abundant concepts with less correlation selected to build the
semantic space.

Considering when there is lack of concepts to span the se-
mantic space, OSS shows better MAP for single concept se-
lection, as indicated in Fig. 8 before reaching the peak perfor-
mance. This difference is mainly due to their fundamental con-
siderations: OSS is built purposely with the real concepts as
their bases, but this is not the case for . Due to the require-
ment of space transformation, could suffer from computa-
tional instability if there are no abundant concepts available in
the vocabulary set . On the other hand, has higher ability
in offering consistent query-concept similarity for the fusion of
multiple concept detectors. Particularly, if the number of basis
vectors is over-estimated, is able to show more stable and
better performance than OSS. This is mainly due to the advan-
tage of having orthogonal bases where the redundancy is tackled
during the stage of space transformation. OSS, without taking
into account the space orthogonality, deteriorates considerably
when redundant concept clusters are included, as indicated in
Fig. 8(a).

C. Comparison to Anchor-Based Selection Algorithm

In constructing OSS and , there are various ways of se-
lecting concepts which ultimately form the semantic spaces. In
this subsection, we verify the choice of adopting hierarchical
clustering in OSS and , in comparison with the “Hull of
Foci” (HF) algorithm recently proposed in [33]. HF is basically

1In Fig. 8, the step size of the number of concept clusters is set to 25. The step
size is further refined to 1 in the range of 300 and 400 in order to find the best
search performance.

TABLE II
COMPARING HIERARCHICAL CLUSTERING AND HF ALGORITHM IN

CONSTRUCTING THE SEMANTIC SPACE FOR VIDEO SEARCH

a greedy search algorithm to select a number of anchors from
a given dataset as global reference points. In OSS, for instance,
the anchors can be directly treated as the basis vectors of the
semantic space. In [33], the number of anchors is estimated by
approximating the intrinsic dimension of a dataset. In our im-
plementation, we employ the algorithm in [40] to approximate
the intrinsic dimension.

Table II lists the search performance of employing hierar-
chical clustering and HF algorithm for constructing OSS and

. For HF, there are 347 anchors being selected to form the
basis vectors. As shown in Table II, for both single and multiple
concept selections, the hierarchical clustering outperforms HF
algorithm. We investigate the results and find that hierarchical
clustering indeed has a better capability in removing concept re-
dundancy in our application. For instance, the concepts military
personnel and military are both selected as anchors by HF but
not by hierarchical clustering.

VI. EXPERIMENT-II: CONCEPT-BASED VIDEO SEARCH

In this section, we study the search performance of OSS and
from three different aspects: effectiveness of concept fu-

sion, influence of detector set, and comparison to eight other on-
tology reasoning measures used in the literature. OSS and
are constructed based on the results presented in Section V-A,
where there are 366 concept clusters being selected to build the
semantic spaces.

In order to have more sample queries for experiments, we use
the testing sets of TRECVID 2005 and 2006 in this section. This
results in a total of 48 testing queries. The topics, ranging from
ID 149 to 196, are listed in Table III. The topic-ID is named and
assigned by TRECVID. Note that the topics 149–172 are con-
ducted on TRECVID 2005 dataset, while the topics 173–196 are
conducted on TRECVID 2006 dataset. There are 85 (150) hours
of videos and 45 765 (79 484) reference shots in the testing set
of TRECVID 2005 (2006) dataset.

A. Comparison of Concept Fusion Strategies

To investigate the effectiveness of fusing multiple concepts in
OSS and , two fusion strategies based on Borda voting and
detection reliability are used as the baselines for performance
comparison. In Borda voting, the rank positions of a shot re-
trieved by different detectors are summed as the score. In detec-
tion reliability, the reliability of a detector is used as the weight
for fusion. There are various ways to determine the reliability of
a detector. In our implementation, the weights of detectors are
set equal to their APs estimated based on a subset of training
data obtained from TRECVID 2005 development set. In the ex-
periment, the top three detectors of a search topic are first se-
lected and then the rank lists are produced respectively by four
different fusion strategies. Table IV shows the comparison of
various fusion strategies. shows the best MAP for 48 search
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TABLE III
SEARCH TOPICS (TOPICS 149 TO 172 ARE FROM TRECVID 2005; TOPICS

173–196 ARE FROM TRECVID 2006)

TABLE IV
COMPARISON OF CONCEPT FUSION STRATEGIES FOR VIDEO SEARCH

USING VIREO-374 DETECTOR SET

topics followed by OSS. Both fusion strategies show signifi-
cantly better search performance than the baselines by Borda
voting and detection reliability.

TABLE V
SEARCH PERFORMANCE WITH COLUMBIA-374 DETECTOR SET

TABLE VI
SEARCH PERFORMANCE OF TEN ONTOLOGY MEASURES.

THE BEST RESULTS ARE BOLD

B. Influence of Detector Set

To study the influence of detectors towards the search perfor-
mance, we conduct an experiment by using Columbia-374 [13],
instead of VIREO-374, as the set of detectors. Columbia-374,
trained using the same dataset as VIREO-374, use grid-based
color moment and Gabor texture as features. Table V shows the
MAP of using the Columbia-374 detector set for single and mul-
tiple concept selections. Obviously, the performance is signifi-
cantly impacted by the choice of detector set. Comparing to the
MAP of 0.0424 (TRECVID 2006) by VIREO-374 and of 0.0261
by Columbia-374 in the case of multiple concept selection with

, the performance difference is indeed significant.

C. Comparison of Concept Similarity Measures

In this section, we compare OSS and to eight other pop-
ular ontology measures: LCH [20], WUP [21], RES [10], LIN
[22], JCN [23], Lesk [24], Gloss Vector (Vect) [25] and Pairwise
Gloss Vector (VP) [25]. In the experiment, except OSS and ,
all measures employ Lesk algorithm [24] for word sense disam-
biguation. estimates the actual senses of query terms in its
own semantic space as presented in Section IV-B. For multiple
concept selection, linear fusion as presented in (14) is employed.
Depending on the ontology measure being used, the weight of
a selected detector is set equal to its similarity to query.

Table VI shows the performance comparison of ten different
measures. The search result indicates that outperforms
other measures, particularly for the multiple concept selection.
This again demonstrates the capability of in offering pair-
wise concept similarities appropriate for the fusion of detector
outputs. Comparing the MAP, multiconcept selection strategy
basically improves the search performance of all measures
(except Vect) over single-concept. While Vect shows very
competitive performance in single concept selection, the MAP
degrades significantly when multiple concepts are considered.
The similarity value given by Vect appears to be less reliable
and can be easily distorted with noise in WordNet.

Table VII further details the search performance of each mea-
sure in multiple concept selection. Among the 48 search topics,
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TABLE VII
AVERAGE PRECISION OF VARIOUS ONTOLOGY MEASURES FOR MULTIPLE CONCEPT SELECTION ON TRECVID 2005 AND 2006. THE BEST RESULTS ARE BOLD

obtains the best performance in 23 topics, followed by OSS
which performs the best in 12 topics. For certain categories of
search topics, such as topics involve name entity (e.g., ID-149)
and motion or event (e.g., ID-173), the advantage of having se-
mantic axes is not apparent. Among all the search queries, topics
ID-156 and ID-195 have the most positive influence towards the
overall performance. By removing these two queries from ex-
periments, and OSS still obtain the best MAP performance.

Table VIII lists the top-3 selected VIREO-374 detectors by
. By manually browsing the detectors selected by various

ontology measures, is always able to pick up the seman-
tically appropriate top-3 detectors. The AP of few topics (ID:
179, 180, 188, 190, 191, 194), nevertheless, is lower than 0.001.
There are several reasons. For topics including name entities like
topics 178, 179 and 194, text search is more appropriate than
concept-based search in general. In addition, as we do not con-
sider detector reliability, fusing with unreliable detectors will
also degrade the performance. For instance, consider the de-

tector tie in topic-180 and firefighter in topic-188. While both
detectors are correctly picked, the detection performance is too
low for expecting a reasonable search result. On the other hand,
the specificity and coverage of concept detectors, which to cer-
tain extent can affect search performance, is not considered in
our work. For instance, in topic-190, all the selected concepts
are related to person but not book. The search performance can
be improved, if by knowing that book is more specific than
person, or by having a mechanism to select the set of detectors
which are more diverse. These issues are outside the scope of
this paper, but will be included in our future studies.

1) Significance Test: To verify whether the performances of
OSS and are by chance, we further conduct significance
test. The test is based on the randomization test [41] suggested
by TRECVID, where the target number of iterations used in the
randomization is 100 000. At the 0.05 level of significance, OSS
and are significantly better than all the other measures in
terms of single and multiple concept selections. The only ex-
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TABLE VIII
THE TOP THREE DETECTORS SELECTED BY OS

ON SEARCH TOPICS OF TRECVID 2006

ception is Vect where the performance is indistinguishable from
OSS and for single concept selection. Comparing the two
proposed semantic spaces, is considered better than OSS
for multiple concept selection at the 0.15 level of significance.
There is no significant difference between and OSS for
single concept selection.

VII. CONCLUSION AND FUTURE WORK

We have presented our approaches in constructing two vari-
ants of ontology-enriched semantic space: OSS and for
concept-based video search. Both spaces can guarantee a con-
sistent way of comparing concept similarity scores when per-
forming query-to-concept mapping. Using VIREO-374 detec-
tors, experimental results over 235 hours videos on 48 search
topics of TRECVID 2005 and TRECVID 2006 have indicated
and confirmed the feasibility of OSS and for large-scale
video search. Compared with the traditional measures such as
Resnik and WUP, both semantic spaces offer better search per-
formance. Compared with OSS, shows better performance
in the fusion of multiple concept detectors due to the employ-
ment of orthogonal bases.

While encouraging, there are a couple of issues not being
addressed in our current work and worth for future consider-
ation. For instance, the occurrence of concepts, in addition to
their ontological relatedness, can be explored for modeling a
semantic space more viable for multimedia search. The co-oc-
currence statistics ideally hint the observability and discrimi-
nativeness of multimedia-based concepts. Incorporating this in-
formation could possibly enlighten the construction of a space
that provides hint to select the most diverse and discriminant set
of concepts for query answering. In addition to the positively
correlated concepts, the set of negative concepts (e.g., indoor
versus outdoor) is also a useful piece of information for the fast

pruning of search results as presented in [42]. Whether and how
the frequently, positively and negatively correlated concepts can
be embedded in a semantic space for effective video search will
be the topic of our future studies.
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