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On Clustering and Retrieval of Video Shots Through
Temporal Slices Analysis

Chong-Wah NgpMember, IEEETing-Chuen Pong, and Hong-Jiang ZhaBgnior Member, IEEE

Abstract—Based on the analysis of temporal slices, we proposethis problem [3], [5], [6], [22], more specifically, to exploit and
novel approaches for clustering and retrieval of video shots. Tem- ytilize the motion information along the temporal dimension for
poral slices are a set of two—dimensional (2-D) images extracted retrieval.

along the time dimension of an image volume. They encode rich In thi f . lusteri d retrieving th
set of visual patterns for similarity measure. In this paper, we first n this paper, we Tocus ISSUES on clustering and retrieving the

demonstrate that tensor histogram features extracted from tem- content of video shots. The major contributions are as follows.
poral slices are suitable for motion retrieval. Subsequently, we inte- « Motion Retrieval We utilize various texture features such

grate both tensor and color histograms for constructing a two-level
hierarchical clustering structure. Each cluster in the top level con-
tains shots with similar color while each cluster in bottom level con-
sists of shots with similar motion. The constructed structure is then
used for the cluster-based retrieval. The proposed approaches are
found to be useful particularly for sports games, where motion and

as tensor histogram [19], Gabor features [15] and the sta-
tistical features of co-occurrence matrix [9] extracted di-
rectly from temporal slices for motion retrieval. We com-
pare the performance of these features with the histogram
of MPEG motion vectors. Experimental results show that

color are important visual cues when searching and browsing the

. ; tensor histogram offers good compromise in term of re-
desired video shots. g g p

trieval accuracy and indexing speed.
Index' Terms—Hier_archicaI clustering, motion retrieval, tem- « Hierarchical Clustering By incorporating motion and
poral slices, tensor histogram. color features, we propose a two-level hierarchical clus-
tering structure to organize and index the content of video
shots.
» Cluster-Based vs. Cluster-Free Retrievdle investigate
the effectiveness and efficiency of retrieving with (cluster-
based) and without (cluster-free) clustering structure.
r approach is based on the analysis and processing of
tterns in temporal slice images. Temporal slices is a set
FrjE%él/o—dimensional (2-D) images extracted along the time
nsion of an image volume. They encode rich set of motion

I. INTRODUCTION

LUSTERING is a natural solution to abbreviate and orga-

nize the content of a video. A preview of the video content
can simply be generated by showing a subset of clusters or th%u
representative frames of each cluster. Similarly, retrieval can
performed in an efficient way since similar shots are indexég
under the same cluster. Regardless of these advantages, gen

soluyong for clustlermg video data.|s ahard pmb'e',’“- For cert. lles as oriented textures for shot similarity measure. Previous
appllcathns, motion features dominate the clustering resu!ts, brks on the analysis of temporal slices include visual motion

others, visual cues such as color and texture are more imp I5del [1], [10], [23], [26], epipolar plane image analysis [2]
tant. Moreover, for certain types of applications, decoupling Q ’ ' ' ; '

d obiect moti ht to be d o o clust rveillance monitoring [13], periodicity analysis [14], video
camera and object Motions oUght fo e done Priorto clustering rtitioning [18], motion characterization and segmentation
Video retrieval techniques, to date, are mostly extended

e X . ! 9]. We contribute to this area of studies the utilization of
rectly or indirectly from image retrieval techniques. Exampl

. , . &xture features extracted directly from temporal slices for
include first selecting keyframes from shots and then extractl(}%eo clustering and motion retrieval

image features such as color and texture features from thosgv

kevf for indexi dretrieval. Th ¢ h e focus our attention for sport video domain, however, no
eytrames for indexing andretrieval. The SUCCess Irom SUCh & ife qomain knowledge is being utilized. We demonstrate
tension, however, is doubtful since the spatio—temporal relati

. . . ) ) at these videos are well represented as a two-level hierarchy.
ship among video frames is not fully exploited. Due to this cony

derati " ks h b dedicated to add he top level is clustered by color features while the bottom
sideration, recently more works have been dedicated 10 addigsa is clustered by motion features. The top level contains var-

ious clusters including wide-angle, medium-angle and close-up
Manuscript received March 29, 2001; revised March 7, 2002. This workhots of players fr(_)m different tea_mEaCh cluster can refer to
was supported in part by RGC Grants HKUST661/95E, HKUST6072/978, Sport event. For instance, the wide-angle shots of a basketball

coordinating the review of this paper and approving it for publication was Prof. '

Alberto Del Bimbo. angle shots of a soccer video normally correspond to bird view
C. W. Ngo is with the Department of Computer Science, City University gdcenes. The shots inside each cluster can be further partitioned

Hong Kong, Kowloon Tong, Hong Kong (e-mail: cwngo@cs.cityu.edu.hk). gccording to their motion intensity. In this way, for example, the
T. C. Pong is with the Department of Computer Science, The Hon

Kong University of Science & Technology, Kowloon, Hong Kong (e-mail.ﬁjbdus’(er of a close-up shot can correspond either to “players
tcpong@cs.ust.hk). running across the soccer field,” or “players standing on the
H. J. Zhang is with Microsoft Research Asia, Beijing 100 080, China (e-mail:
hjzhang@microsoft.com).
Digital Object Identifier 10.1109/TMM.2002.802022

IThe classification of wide-angle, medium-angle and close-up shots are
roughly based on the distance between the camera lens and the targeted scene.
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Fig. 1. Patterns in a spatio—temporal slice.

field.” Such organization facilitates not only video browsing an
retrieval, but also some high-level video processing tasks. F  activizy Horizontal Slice Vertical Slice Video frame
instance, to perform player recognition, only those shots in t
cluster that correspond to close-up shots of players are picl
up for processing. To perform motion-based background recc  Dive
struction, the subcluster corresponds to “players running acrt
the soccer field” is further selected for processing.

For motion retrieval, unlike [5], [6], neither object tracking
nor motion decomposition is performed for explicitly isolating
dominant camera motion from object motion prior to featuree: .
traction. This is because camera motion in part plays an impi  (periodic)
tant role in conveying the content of sport videos. In contrast
other video sources where the motion of camera is unrestrict 1,mmer
sport videos are usually captured by several fixed camerast flying
are mounted in the stand. These camera motion are mostly r
ular and driven by the pace of sport games or the events that ~ Relay
taken place on spot. Most importantly, when coupling with th (close view)
object motion of a particular event in sport videos, a unique te
ture pattern can always be observed in temporal slices. Relay

The remaining of paper is organized as follows. Section (bird view)
describes various texture patterns formed in temporal slic
due to different activities in sports. Section Il proposes variol  Penalty
methods to extract texture features from temporal slices 1 "
motion retrieval. Section IV starts by proposing a two-leve
hierarchical clustering structure. Issues on cluster-based — close-up
cluster-free retrieval are then investigated. Section V concluc tracking
our proposed works.

Full court
advance

Audience

Fig. 2. Patterns in both horizontal and vertical slices.
Il. SPATIO-TEMPORAL PATTERN ANALYSIS

. . . . A. Patterns in Temporal Slices
Temporal slices are a set of 2-D images in an image volumeé

with one dimension irt, and the other i or y, for instance. Fig. 2 further shows the patterns of various activities in the
Fig. 1 shows a temporal slice extracted from a video compos@@rizontal ¢ — ¢ dimensions) and verticay(— ¢ dimensions)

of six shots; the horizontal axis is while the vertical axis is Slices. Itis worthwhile to observe the following details.

x. A temporal slice, by first impression, is composed of color ¢ For diving, since the motion proceeds in vertical direc-
and texture components. On one hand, the discontinuity of color tion, the vertical slices depict camera tilting while the hor-
and texture infers the occurrence of a new event; on the other izontal slices explore panoramic information. A full court
hand, the orientation of texture depicts camera and object mo- advance in basket videos, on the other hand, has the hor-
tions. The patterns in temporal slices, perceptibly, can be ex- izontal slices depict camera panning while the vertical
ploited for video partitioning [18], motion characterization and  slices explore panoramic information.

segmentation [19]. As seen in Fig. 1, motion can be inferred di- * The periodic motion in the boat-race shot is indicated in
rectly from the texture pattern. For instance, the horizontal lines  the horizontal slices.

denote static motion; the slanted lines depict panning; the lines+ The camera motion which tracks a flying hammer in a
expanded in V-shape pattern depict camera zooming; two dis- parabolic-like direction is depicted in the slanted lines of
similar texture patterns in a shot indicate multiple motions. vertical slices.
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» The close-view and bird-view of a scene will also givéhe DC image volume which is easily constructed by extracting
two different perception patterns on temporal slices. Tlthe DC componentsof MPEG video.
delineation of scene is vividly observed in the former case, 1) Tensor Histogram:Tensor histogram encodes the distri-
however, is smeared in the later case. bution of local orientation in temporal slices. It is computed
» The incoherent motion of camera and objects is also deased on the structure tensor introduced in [7], [13] to estimate
picted in temporal slices. For the penalty shot in bask#ie orientations of slices. This feature has been used byeNgo
videos, the trajectory of ball is weakly seen in the verticall. for motion characterization and segmentation [19].
slices when the cameratilts. For the close-up tracking shot,The structural tensdr of slice H can be expressed as
the nonrigid motion of a player is seen in both horizontal
and vertical slices when the camera pans. Z H? Z H.H,
» For the audience scene, the temporal slices show - _ {Jm J:ct} _ w w
stationary motion pattern with random noise due to ot Ju Z H,H, Z H?
w w
are partial derivatives along the spatial and

audiences’ movement.

As seen in the examples, the diversities of texture patterns WﬁereHm andH,
encoded in both horizontal and vertical slices by different Sp%tmporal dimensions respectively. The window of suppois
activities. Intuitively, motion retrieval can be done by extrac:tinget to 3x 3 throughout the experiments. The rotation arfigé
texture patterns directly from slices. In principle, all tempora}L indicates the direction of a gray level changeinRotating
slices, both horizontal and vertical, should be processed for MAa principle axes of by 6, we have
tion pattern analysis. Nevertheless, computational time can be
saved (while better analytical results can be acquired) if a subset Jow Jot | o Ae O
of slices are randomly (or intelligently) selected for processing. R [th Jtt} R" = [ 0 )\t]
In this paper, unless being stated, all slices are used for feature
extraction. where

1)

)

cosfl sinf
I1l. M OTION RETRIEVAL R= {_sm [ Cosﬁ] )

the motion trajectories of objects [5], principle components fom (2), since we have three equations with three unknowns,
MPEG motion vectors [22], and temporal texture [6]. In thi can be solved and expressed as

section, we propose new ways of computing and extracting 1, ., 2T

temporal texture. Temporal texture was primarily proposed 0 = §tan T3, 3)

by Polana and Nelson to describe the dynamic of temporal

events [17]. As image texture, temporal texture can be modelB@e local orientation of aw in slices is computed as

as co-occurrence matrix [3], [17], autoregressive model [24],

Motion features that have been used for retrieval inclug

™
wold decomposition [14] and Gibbs random field [6]. Except -5 0>0, o
Fablet and Bouthemy, who described the use of temporal ¢ = T _ ¢ = [—5, 5}. (4)
texture for video retrieval [6], this feature is mostly utilized b+ 57 otherwise

for recognizing complex dynamic motion such as rivers and

crowds [3], [17], [24], and detecting periodic motion such as Itis useful to add in a certainty measure to describe how well
walking and swimming [14]. ¢ approximates the local orientation ef The certaintyc is

For most approaches [6], [17], the input to temporal texture @stimated as

optical flow or normal flow field. In other words, motion infor- (oo — J42)? + 432 A= )2
mation need to be explicitly computed before the generation of c= 22 il 5 zt < i t) (5)
temporal texture. Consequently, the effectiveness of the com- (oo + Jt2) Aw + At

puted temporal feature is dependent on the reliability of inpyf, 4. — [0, 1]. For an ideal local orientation,= 1 when either
motion information. Unfortunately, motion information suchas  _ ) o A, = 0. For an isotropic structure, i.e\, = \;

optical flow is not only computationally expensive but also noisgm: 0.

sensitive. Our proposed methods, with contrary to these aprpg gistribution of local orientations across time inherently
proaches, computes temporal texture by taking the gray-leveljgfiects the motion trajectories in an image volume. A 2-D
formation of temporal slices as input. In this section, we presggt, sy histogranM(¢, ¢) with the dimensions as a one—di-

?
our proposed methods to extract and represent the texture pathsional (1-D) orientation histogram and time respectively,

terns in slices as tensor histogram [19], Gabor feature [15], 30th pe constructed to model the distribution. Mathematically,
co-occurrence matrix [9] for motion retrieval. the histogram can be expressed as

A. Feature Extraction M(¢, t) = Z «(Q) (6)
For computational and storage efficiency, all the features are Q(¢, 1)

extracted from the temporal SI'C.eS th_at are Obta'ned_ directlyorhe aigorithm introduced by Yeo and Liu [27] is applied to estimate DC

from the compressed video domain. Slices can be obtained fretmponents from P-frames and B-frames.
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whereQ(¢, t) = {H(z, t)|T'(z, t) = ¢} which means that Sm(d, §) and contrast featureSon(d, §) are then computed
each pixel in slices votes for the b, ¢) with the certainty directly from these matrices by

valuec.
For motion retrieval, a 1-D tensor histograi (k) is com- Sm(d, ) =Y > P*(i, j; d, 0) (10)
puted directly by i

Con(d, 6) =3 3 (1= 7)*P(i, i d,0).  (11)
M) =SS M@ Ve Q) =k () s
ot

The resulting feature vector has lengthx 2 x 2 = 60.

whereQ(¢') is a quantization function, and= {1, 2, ..., 8} B. Distance Measure

rgpre;ents alquan.tized Ieve!. The histogram is uniformly quan-the L, and L, norms are two of the most frequently used
tized into 8 bins with each bin has a ranges. The computed gistance metrics for comparing two feature vectors. In practice,
motion features describe the motion intensity and direction ghwever,,; norm performs better thak, norm since it is more
shots. In our experiment, the tensor histograms of both hogspyst to outliers [20]. Furthermoré, norm is more computa-
zontal and vertical slices are used for feature computation. Aﬁ@ha”y efficient and robust. The distance between two nonzero

2) Gabor Feature: Gabor feature is frequently used for

browsing and retrieval of texture images, and have been shown 1 n 1/k
to give good results [15]. A Gabor filter(z, ¢) can be written DF, F')= ———+ Z |F (i) — .7~"(z’)|k (12)
as ' Z(F, F P

1 1/22 2 where
Gz, t) = expd —= | 5 + — exp{2njWuz}
210,04 2\0}  oj RS e N
®) Z(F, F)y=Y F@)+Y_ Fi (13)
=1 i=1
whereo, ando; are smoothing parameters,= v—1, W = s a normalizing function. In (12); = 1 for L, norm andk = 2

vu? 4 v* and(u, v) is the center of the desired frequency. Aor L, norm. For tensor histogram, we ukg norm as distance
self-similar filter Gos (, t) can be obtained by the appropriateneasure. For Gabor feature and co-occurrence matrix, because

rotationd and scalingS of G(z, t) [4], [15]. the range of different feature components can significantly vary,
The Gabor filtered image of a slidd is we use the following distance measure
Hys = H « Gys 9 N e | F () = F (i)
D(]:77)—ZTZ.) (14)

where x is a convolution operator. A feature vector is con- =1

structed by using the means and the standard deviatiods  wherea(i) is the standard deviation of thith feature compo-
of all Hys as components. In the experimeht= 6 andS = 2. npent over the entire database.
The resulting feature vector has lengtkx 2 x 2 x 2 = 48 in

the following form C. Experiments
We conduct experiments on basketball, soccer, and TV
1“007 0005 fto1; 001, - -- [451, O51, sport video databases. The basketball video consists of 76
for horizontal slices shots (approximately 18 000 frames); the soccer video consists
1005 000, [o1s 001, - - - 51, 051) . Of 404 shots (approximately 100000 frames); and the TV
~ o vortionl slicos ”  sport video consists of 180 shots (about 37 000 frames). We

adopt RP (recall-precision) and ANMRR (average normalized

3) Co-Occurrence Matrix:Gray level co-occurrence matrix modified retrieval rank) to evaluate the retrieval accuracy.
is frequently utilized to describe image texture [9]. The secom@bth performance measures are popularly used in the current
order statistical features can be computed directly from a maerature [16]. The values of RP and ANMRR range between
trix to characterize the spatial relationships of gray level profd, 1]. A high value of RP denotes the superior ability in
erties. The co-occurrence matrix of a slice can be represenpedsenting relevant shots in the top retrievals, while a low value
by P(i, j; d, 9). It specifies the frequencies of two neighboring@f ANMRR indicates the high retrieval rate with relevant shots
pixels separated by distandeat orientatiord in the temporal ranked at the top (see Appendixes A and B for details).
slices, one with gray levéland the other with gray level Besides comparing the performance among the features ex-

In our experiment,d = {1,2,3,4,5} and # = tracted from temporal slices, we also contrast their retrieval ac-
{—45°, 0°, 45°}. The co-occurrence matrices of horizontaturacy with MPEG motion vectors which are computed through
and vertical slices are computed, summed and normalizibeé block-based motion estimation algorithm. Only motion vec-
separately, hence, there are thirty matrices used to motek from P-frames are used and they are represented by a his-
the spatial relationships of slices. The smoothness featutegram that is composed of eight bins. Each bin corresponds to
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TABLE | TABLE I
RETRIEVAL ON BASKETBALL DATABASE RETRIEVAL ON SOCCERDATABASE
Approach Mean Precision UNMRR Approach Mean Precision | ANMRR
Tensor histogram 0.553* 0.399* Tensor histogram 0.457* 0.377*
Gabor 0.502 0.431 Gabor 0.435 0.430
Co-occurrence matrix 0.426 0.543 Co-occurrence matrix 0.400 0.492
MPEG motion vector 0.470 0.498 MPEG motion vector 0.321 0.590
The mark * indicates the best performance. The mark * indicates the best performance.
one of the eight neighborhood directions in the discrete space. TABLE il
N .. . . RETRIEVAL ON SPORT DATABASE
To take motion intensity into account, each bin contains the total
Ie_ngth, mstgaq of frequency,_ of the motion vgctors having same Approach Mean Precision | ANMRR
direction. Similar to tensor histogramh; norm is employed for
distance measure Tensor histogram 0.511* 0.456*
1) Retrieval Accuracy:For each database, we manually an- Gabor 0.482 0.481
notate and categorize the video content for performance evalu- Co-occurrence matrix 0.393 0.577
ation. A number of queries which are checked to have unique MPEG motion vector 0.413 0557

answers are selected from these categories for testing. These
gueries are executed on the database and not on the categorized
data. The retrieval results will be compared against the manu-
ally categorized data and evaluated by RP and ANMRR.  from these categories are selected for testing. The experimental
In the basketball database, the shots are categorized into ftélsults, as shown in Table Ill, indicate that tensor histogram on
court-advance (FCA), close-up shots of player, penalty sho&serage gives the best performance. To better illustrate the su-
shooting shots, and audience scene. Such categorization is basebrity of features extracted from temporal slices, Table IV
not only on the semantic events of basketball videos, but afswther compares its performance with MPEG motion vector on
mainly based on the motion content of shots. For instanceyarious sport events. Among the twelve sport activities, tem-
FCA shot is usually associated with a camera that is panned poral texture feature gives the best performance for nine events.
ward the direction when the ball is being advanced from ote Fig. 3(a) and (b), two examples of motion retrieval are shown
end of the court to the other; a penalty shot is accompaniejether with the results given by tensor histogram and MPEG
with a camera that tilt up when the ball is shot; a shooting shatotion vectors. These examples demonstrate the superior capa-
is normally associated with a zoom to emphasize the momdaility of tensor histogram in ranking and retrieving the shots that
of shooting; while a audience scene which is captured byage similar to the queries. Histogram of MPEG motion vectors,
static camera exhibits random motion patterns due to audiendestontrast, retrieves shots that are perceptually very different
cheering. In addition, the close-up of players are further clasfiem the queries.
fied into players moving to the left, players moving to the right, 2) Speed EfficiencyTable V compares the performance ef-
and players with no motion. ficiency in term of the feature vector length and the feature ex-
In this database, twenty queries that are manually checkealction time (second per image frame). Because all horizontal
to have good answers are picked for testing. The retrieval pand vertical slices are used for feature extraction, the features ex-
formance is given in Table I. The stars marked in the table emacted from temporal slices are not as efficient as motion vector
tries indicate the best experimental results among all the testestogram. Among these features, tensor histogram is compu-
approaches. In this experiment, tensor histogram outperfortatonally superior to other two approaches. It is about eleven
other approaches in term of mean precision and ANMRR. Thienes faster than Gabor feature and about two times faster than
mean precision is the average of precision values at different c®-occurrence matrix.
call levels. 3) Number of Slices Usedin most cases, temporal slices in
The categorization of the soccer database is similar to the bas-image volume are highly correlated. For computational effi-
ketball database. The shots in the database are classified mémcy, probably only a few selected slices instead of a whole
bird views, medium shots, close-up shots of players, shootimgage volume are sufficient for motion feature extraction. We
scenes and audience scenes. A total of fifty three queries freaonduct an experiment by uniformly sampling the temporal
these categories are selected for testing. The experimentalsieses and picking only a subset of slices for processing. At
sults are shown in Table Il. Similarly, tensor histogram outpethe extreme level, only two slices (i.e., a vertical slice and a
forms other approaches in term of mean precision and ANMRRorizontal slice located at the center of an image volume) are
The sport database contains a diversity of sport games g@lected.
cluding diving, golf and race. We categorize the shots accordingTable VI shows the experimental results of the tensor his-
to the type of sport games. Some games are further categoriagtam approach. Each time when the number of slices are re-
into bird view or close-up shots. The close-up shots are also cditced by half, the speed of feature extraction is improved by
egorized into tracking or stationary shots. A total of 124 sho&pproximately 1.2 to 1.7 times without significantly degrading

The mark * indicates the best performance.
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TABLE IV
EVENT RETRIEVAL ON SPORT DATABASE
ANMRR
Event Temporal texture MPEG Number of
feature motion vector queries

Diving 0.241* 0.410 31
Golf-shooting 0.094* 0.468 6
Golf-flying 0.108* 0.530 8
Hammer-throwing 0.664 0.627* 5
Hammer-flying 0.415* 0.672 5
Relay (close-up view) 0.531 0.467* 18
Relay (bird-view) 0.491* 0.636 8
Boat-race (close-up view) 0.475 0.434" 3
Boat-race (bird-view) 0.052* 0.453 4
Static motion 0.534* .0.553 12
People tracking 0.542* 0.648 18
Audience 0.515* 0.780 6

The ANMRR values of temporal texture feature are represented by the ANMRR values of
tensor histogram, Gabor or co-occurrence matriz with best performance.
The mark * indicates the better performance.

Query Shot Query Shot

AN

i

Retrieve by tensor histogram Retrieve by tensor histogram

_ \

i
5.

N

Fig. 3. Motion retrieval examples (show the three most similar shots, stars mark the correct answers).

the retrieval performance. Appropriate reduction of slices wilhat, for all the tested database, when only two slices are used,
generally improve the retrieval accuracy. This may due to tliee processing speed of the tensor histogram is comparable to
elimination of some slices that contain homogeneous regioM®EG motion vector histogram while the retrieval accuracy is

or image noise during feature extraction. It should be notetill superior to all other approaches.
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TABLE V IV. CLUSTERING AND RETRIEVAL
SPEED EFFICIENCY OF VARIOUS APPROACHES

Approach Feature Vector Length | Feature Extraction (sec) 1 thig section, we further utilize the results of motion re-

Tensor histogram 16 0.072 ~ trieval shown in Section Ill for clustering and retrieval. A hier-
Gabor 48 0.791 archical structure which provides indexing scheme for retrieval
Co-ocourrence matrix 60 0.130 is constructed by incorporating motion and color features. Since
: N tensor histogram offers good compromise between retrieval ef-

MPEG motion vector 8 0.017 . .. L. . .

fectiveness and speed efficiency, it is utilized as motion fea-

The mark * indicates the best performance. tures. In addition, based on the experimental results indicated
in Table VI, we use only one-quarter of horizontal and vertical
slices, instead of the whole image volume, for motion feature

TABLE Vi computation. Besides clustering, the fundamental difference be-
PERFORMANCE OFTENSORHISTOGRAM tween cluster-based and cluster-free retrieval is studied. The
performance of motion retrieval, color retrieval, and the integra-

Number || Feature Extraction ANMRR tion of motion and color retrieval are compared and contrasted.
of slices time (sec) Basketball | Soccer | Sport For clustering algorithms, basically they can be grouped into
All 0.072 0.399 0.393 | 0.456 two categories:.partitional and h-i(.erarchical [12]. Hanjalic and
Half 0.042 0.399 0392 | 0.453 Zhan_g [8] have introduced a partitional clustering of video data
by utilizing the color features of selected keyframes. Here, we
One-third 0.033 0.397 | 0.392* | 0.450 . . . . . )
introduce a two-level hierarchical clustering algorithm by inte-
One-quarter 0.028 0.392" || 0.394 | 0.448 grating both color and motion features. The proposed clustering
Two 0.015* 0.416 0.416 | 0.471 algorithm is unsupervised, the number of clusters is determined
The mark * indicates the best performance. automatically by the cluster validity analysis [12]. Supervised
version of clustering algorithms by Hidden Markov Models can
_ _ be found in [11], [22], and by decision rules can be found in
D. Discussion [25].

Three new temporal texture features based on the analysis of
temporal slices have been presented and applied to motionAe—
trieval in sport video databases. Among the proposed features,
tensor histogram is empirically found to be superior to other , .
features in term of retrieval accuracy and speed efficiency. Fur-Ve present methods to ex'tract motion and color features di-
thermore, the computational time of tensor histogram can Bty from shots. Both motion and color features are repre-
as fast as the histogram of MPEG motion vectors by reduci_ﬁﬁmed as hlstograms,_smce this r_epresentatlon is effective and
the number of slices being processed without significantly dil€xpensive for clustering and retrieval. o
grading the retrieval performance. . 1) Motlon Fgature: Unlike previous section, monon direc-

The main advantage of tensor histogram is that it can accﬂ?—nal information compqted by structure .tefr)sor 'S n_ot encoded
rately encode the visual patterns inherent in temporal slices 3 e targetour applications for sport act|V|F|es that |pvolye two
contrast to MPEG motion vector histogram which does not take2Ms such as basketball and soccer. Motion direction in these
into account the texture information of image region, tensor higctivities does not provide additional clue for clustering. For in-
togram takes the certainty measure [(5)] into consideration. A&NCe, itis not useful to put players moving in different direc-

a result, less weights are contributed by nontexture regions (Hfs into distinct clusters. o o B
weight of homogenous region is zero) compared to texture re With reference to (7), the quantization function is modmed
gion, as indicated in (6). When parts of video shots are occupid2(¢') = (8 x [¢'|)/m where¢’ = [—(x/2), =/2]. Since

by nontexture regions (this situation happens frequently in vide® | = 0, the motion feature is directionless and the quantized
clips with diving, golf-shooting and bird view scenes), tensdgvel & = {1, 2, 3, 4}. The resulting feature vector length is
histogram performs better than MPEG motion vectors. 4x2=28.

Nevertheless, currently only the visual patterns of 2-D hori- 2) Color Feature: The color feature of a shot, represented as
zontal and vertical slices are considered, tensor histogram suthree-dimensional color histogram, is computed directly in the
fers from the imprecise description of the rotational and di¥UV color space of its DC image sequence. A color histogram
agonal motions. Typical examples include the close-up rel@gscribes the global color distribution in a shot. Itis easy to com-
shots where racers approach from top left-hand screen to bottute and is insensitive to small changes in viewing positions and
right-hand screen, the hammer-throwing shots where the ropartial occlusion. As a feature vector for clustering and retrieval,
tional motion crosses diagonally through most of the temporiélis susceptible to false alarms. In our experiments, each color
slices. Such problems, however, can be handled by modeling ¢hannel of YUV is uniformly quantized to four bins, results in a
relationship among temporal slices, or simply by encoding ti6& dimensional color feature vector. Each color histogram will
texture patterns of diagonal slices. be further normalized by the number of frames in a shot.

Feature Extraction
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B. Hierarchical Clustering

We employ a two-level hierarchical clustering approach to % ueen e T T
group shots with similar color and motion. The algorithm is LA ey S N
implemented in a top-down fashion, where color features are ' D :
utilized at the top level, while motion features are used at the (O comwoid w X
bottom level. At the top level, the color feature space is par- < oox X
titioned to k. clusters. At the bottom level, eadh cluster is ) X g
further partitioned intd,, clusters. %

1) K-Mean Algorithm: The k-mean algorithm is the most X x
frequently used clustering algorithm due to its simplicity and X
efficiency. The algorithm is employed to cluster shots at each
level of hierarchy independently. Thhemean algorithm is im-
plemented as Fig. 4. When a query locates at the boundary of two classes, the retrieval

cluster

2®

. Step 1 Chooseu;, s 11, as initial cluster centroids results of the cluster-based and cluster-free approach will be quite different.
» Step 2 Classify each featur& to the cluster with the
smallest distance C. Retrieval
b= 12§§k111111D(7:’ Hs)- (15) Given a query represented by low-level features, motion

and color in our case, a retrieval system returns a set of items
» Step 3 Based on the classification, update cluster ceseorting in ascending order according to their respective dis-

troids as tances to the query. This is normally referred to dsrearest
n; neighbor (KNN) search problem, which is actively studied
[ = 1 Z 7:i(i> (16) by both computational geometry and multimedia retrieval
LY Rt communities. By coupling clustering issues with retrieval

) problems, the clustering structure, on one hand, inherently
wheren; is the number of shots in clustgrand7;”’ is  provides an indexing scheme for retrieval, while on the other

the ith feature vector in cluster. hand, intuitively speed up the retrieval time. We refer to this
* Step 41f any cluster centroid changes value, g8iep 2 issue as a cluster-based retrieval problem. The fundamental
otherwise stop. difference between cluster-based and cluster-free retrieval are

2) Cluster Validity: The number of clusters needs to be illustrated in Fig. 4. Suppose a query is located at the boundary
explicitly specified for the;-mean algorithm. However, in mostof two classes, cluster-free retrieval will include items from
casesfk is not exactly known in advance. In order to find arboth classes, i.e., items inside the dotted circle in Fig. 4, at
optimal number of clusters, we have employed the cluster \the top of a ranked list. In contrast, clustered-based retrieval
lidity analysis [12]. The intuition is to find clusters that min-compares the distance between the query and each cluster
imize intra-cluster distance while maximize inter-cluster dissentroid, and ranks the items whose cluster centroid is nearer
tance. The cluster separation measu(fe) is defined as to the query at the top of a list.

1) Cluster-Based Retrievalln a hierarchical clustering
77i+77j} structure, a centroid at the top level represents the color
T characteristics of a cluster, while a centroid at the bottom
level represents the motion characteristics of a cluster. During
where retrieval, cluster centroids at the top level of hierarchy are first

compared with the color feature of a query. A cluster with the
1 ) nearest centroid is first located. Then, its subclusters in the
nj=—>3y D (7'_, ) Mj) (18) pottom level are further compared with the query. The items
=1 in one of these subclusters whose centroid is the nearest to the
&ij = D (i, p17) (19)  motion feature of the query, are sorted in ascending order of

) ) ) ) ) ) their distance to the query, and put accordingly at the top of a
1; is the intra-cluster distance of clusigwhile §;; is the inter-  anked Jist. The retrieval is processed in a depth-first-search-like
cluster distance of clustefsand;. In the experiments, the 0p-manner, meaning that after all subclusters of the most similar
timal number of clusters is selected as cluster are sorted, the next similar cluster is handled in the

. ] same way. This process is repeated until the few most similar
k= (o p(k). (20)  or all clusters are visited.
o 2) Cluster-Free Retrievalilf a clustering structure is not
In other words, the k-mean algorithm is tested foravailable, we can merge the ranked lists given by both motion
kE = {1,2,...,10}, and the one which gives the lowestand color features. A straightforward way is to linearly weight
value ofp(k) is chosen. the distance measures given by both features. DepoteC)
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Fig. 5. Clustering result of basketball video by usiignorm as distance measuf€(Y"): X is cluster label an® is the number of shots in a cluster.
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Fig. 6. Recall and precision curves for basketball videoL(ahorm distance measure and (b) norm distance measure.

and(M/’, C’) as two pairs of motion and color feature vectors, 1) Basketball Video:Fig. 5 depicts the clustering results by

we have
D((M, C), (M, C"Y) = ap DM, M') + acD(C, C)
(21)

wherea, andage are weights, and ( + a¢ = 1.0. To equally
weight both features, we satyy = a¢ = 0.5.

D. Experiments

using L; norm as the distance measure. Shots that are nearest
to cluster centroids are shown in the figure to represent clusters.
The top level has four clusters, while the bottom level consists
of ten subclusters. By manual investigation of the clustering re-
sults, we summarize the characteristics of each cluster as fol-
lows.

» Clusterc.1 mostly consists of penalty shots, audience
scene and few close up shots.

To test the effectiveness of the proposed clustering and re-+ Clusterc.2 basically consists of players from both teams.
trieval approach, we conduct experiments on both the basket- The players can not be classified according to their teams
ball and soccer videos. The basketball video composed of 122 due to the unsegmented cluttered background. The sub-
shots (approximately 24 000 frames) while the soccer video is  clustersm.2.1landm.2.2contain shots with slight motion,
composed of 404 shots (approximately 100 000 frames). The while the subclustens.2.3andm.2.4consist of shots that
tested videos are first partitioned into shots and then 2-D tensor track players along the court. In additions, most shots in
histograms are computed for each shot. For clustering, the mo- m.2.2andm.2.4are contaminated with camera flashing.
tion and color features are extracted, respectively, from the 2-D ¢ Clusterc.3 has mainly the FCA shots. These shots are
tensor histograms and image volumes of shots. In addition, the grouped accordingly in the subcluster.3.1by motion
performance of both the cluster-based and the cluster-free re- features. The subclusten.3.2consists of four non-FCA
trieval approach is investigated. For the cluster-free retrieval, we  shots which are classified incorrectly by color features.
examine also the retrieval by motion feature, retrieval by color ¢ Clusterc.4 consists of the logo sequence which is ap-
feature, and retrieval by both color and motion features. For all  peared prior to the replay of slow motion sequence.
the tested approaches, we investigate the retrieval performance&o evaluate the retrieval performance, a query set which con-
of employingL; norm andL, norm as distance measure. Fosists of 25 queries are manually picked and checked to have
cluster-based retrieval, both clustering structureslpynorm good answers. They consist of close up of players from different
and L, norm are constructed for retrieval. The retrieval perfoteams, FCA, penalty and shooting shots. Players from different

mance is evaluated in terms of recall and precision.

teams are placed in different classes. Similarly, players captured
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by different camera motions (e.g., track and zoom) are put in dif- TABLE VII
ferent classes MEAN PRECISION OF DIFFERENT RETRIEVAL APPROACHES

. .. FOR BASKETBALL VIDEO
Fig. 6(a) shows the recall-precision of the tested approaches

by usingL; norm as distance measure, while Fig. 6(b) shows Mean Precision
the recall-precision by usind, norm as distance measure. Approach L, norm | Ly norm
Table VIl summarizes the 11-point average precision values of

various approaches. As indicated from the experimental results, Cluster-based Retrieval 0-532" | 0.526
the retrieval performance based fn norm distance measure Retrieval by motion and color | 0.510 | 0.426
is robuster thar., norm. Throughout the experiments, motion Retrieval by motion 0.530 0.530
features alone give better retrieval performance compared Retrieval by color 0.432 0.417

with color features. The retrieval performance of cluster-based
and cluster-free retrieval by motion, in general, does not
show significantly different results. Nevertheless, the merit of
cluster-based retrieval is that it offers higher precision at recall
level less than or equal to1. This is generally true for almost

all the queries that we have tested. We expect this desirable
characteristic could provide a good start for relevancy feedback
mechanism [21] since users can quickly identify relevant video
clips by browsing a small set of retrieved items. At recall level
equals tol.0, however, the performance ofuster-based ap-
proachis generally not as good as the approachetfieval by
motion This may due to the use of color feature. As indicated
in Table VII, color feature alone is not as discriminatory as
motion feature. Even when color feature is combined with
motion feature, the performance is still worse compared to tﬁg
use of motion feature alone. Integration of multiple features f

The mark * indicates the best performance.

¢ Clusterc.4 has mainly the bird view of the soccer game.
In m.4.1 the camera motion is stationary; m.4.2 the
camera pans to the left and to the right when one team
attacks the other.

¢ Clusterc.5has mostly the medium shots of players passing
the ball around. The camera motionnn5.1is stationary,
while the camera motion im.5.2tracks the players when
ditching the ball and facing opponents.

¢ Clusterc.6 has one shot screening the sky. This shot is
different from others in terms of color and content.

To test the retrieval performance, a query set which consists

53 queries are manually picked and checked to have good an-

ers. They consist of close up of players from different teams,

effective retrieval is still an open research issue. Our propos 'Eld View gnd medium shots, aud|en_ce from d'ﬁ?re”‘ teams,

work shows that when color and motion are combined in d shootmg Sh.OtS' Players and "’?“O."e”ce from d'fferef“ teams

e placed in different classes. Similarly, shots with different

hierarchical manner, certain degree of improvement is attain&

2) Soccer Video:We refer to the two soccer teams as tean@mera motions are put in different classes. Thus, the effective-

A and B respectively. The color of the audiences’ clothing fless of discriminating shots by color and motion can be exper-

) : ted.
same as the players whom they support. Fig. 7 depicts the cllgen -
tering results by usind.; norm as the distance measure. Sim- Fig. 8(a) shows the recall-precision of the tested approaches

ilarly, shots that are the nearest to cluster centroids are sho nUSInng norm as distance measure, while Fig. 8(b) shows

in the figure to represent clusters. The top level has six cluste e recall-precision by using norm as distance measure.

while the bottom level consists of eleven subclusters. By man g\‘ple Vi summarlzeslthcla L1-point avera}ge precision values of
; yarious approaches. Similar to the experiment on the basketball

video, 1,; norm is superior td., norm in term of mean preci-
sion. The main results based én norm are: retrieval by both

» Clusterc.1 mostly consists of players and audiences afolor and motion features is constantly superior to retrieval by
team A, coaches of both teams, referees, and shotsegher one feature; the recall of cluster-based retrieval is better
players being hurt accidentally. The audiences of teamthan that of cluster-free retrieval.

are all clustered in the subcluster.1.2 Meanwhile, the  3) Speed EfficiencyTable IX compares the motion and
player tracking shots are included in the subclustel.1  color features in term of the feature extraction time per image
Clusterc.2basically consists of players from both teamdfame, and the feature vector length. The DC image size is
with more players from team B. Nevertheless, the ced0 x 44. For the basketball video (122 shots), the clustering al-
troid of the subclustersn.2.1andm.2.2are the players gorithm takes about 45 second to form a two-level hierarchical
from team A. This is due to the fact that the backgroungtructure, while for the soccer video (404 shots), the algorithm
color of these two shots is similar to the players’ clothintpkes approximately 380 sec (6.34 min). Table X further shows
in team B. This directly implies the need for foregroundhe average retrieval speed of 400 queries by the four tested
and background segmentation. In cluste?, the audi- approaches in the soccer video database. Cluster-based retrieval
ence of team B are all clusterednm2.1 This subcluster approach is about two times faster than of cluster-free approach
mainly consists of snapshots of players with slight motiofiretrieval by motion and color features).

Meanwhile, the subclusten.2.2comprises players being
tracked in the soccer field.

Clusterc.3 has only two shots which are shown prior to We have presented the proposed two-level hierarchical clus-
the start of the soccer game. tering algorithm, together with the cluster-based vs. cluster-free

acteristics of each cluster as follows.

E. Discussion
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Fig. 7. Clustering result of soccer video by usihg norm as distance measur€(Y"): X is cluster label and” is the number of shots in a cluster.
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Fig. 8. Recall and precision curves for soccer videoL(anorm distance measure and (b) norm distance measure.
TABLE VIl TABLE IX
MEAN PRECISION OFDIFFERENT RETRIEVAL APPROACHES FOFRSOCCERVIDEO PERFORMANCE OFMOTION AND COLOR FEATURES
(ON A PENTIUM Ill PLATFORM)
Mean Precision
Approach L, norm | L, norm Motion | Color
Cluster-based Retrieval 0.553* 0.441 Feature extraction (sec) || 0.028 | 0.0054
Retrieval by motion and color 0.538 0.470 Feature vector length 8 64
Retrieval by motion 0.409 0.407
Retrieval by color 0.471 0.450 . . - .
— i tation and hand-crafted domain specific knowledge will further

The mark * indicates the best performance. improve the classification results. For retrieval, cluster-based

approach in general gives slightly better results than that of
retrieval methods. Through experiments, the clustering algduster-free approach.

rithm can successfully classify the content of basketball andCurrently, the precision of cluster validity analysis is as-
soccer videos. Nevertheless, it is expected that player segmsgssed indirectly through the performance effectiveness of
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TABLE X Recallandprecisionare in the interval of [0, 1]. The recall-pre-
RETRIEVAL SPEED ON A DATABASE OF 404 ${0Ts cision curve indicates a system’s ability in ranking the relevant
(ON A SUN SPARC ULTRA-1 MACHINE) . ..
items. Ideally, precision values should be equal to one across all
Approach speed (sec per shot) recall values.
Cluster-based Retrieval 0.144 APPENDIX B
Retrieval by motion and color 0.433 AVERAGE NORMALIZED MODIFIED RETRIEVAL RANK
Retrieval by motion 0.146 (ANMRR)

Retrieval by color 0310 Let @ as the number of queries addlas the number of items

in a database. For a queryR(q) is defined as the set of relevant

items in a database fgr andN R(q) as the number of items in
cluster-based retrievalWe would expect satisfactory retrievalp(;). Then, ANMRR is computed as

accuracy if the precision is high. Nevertheless, if some error ex- Q

ists in clustering, currently there is no mechanism to get better oo~ L Z MRR(gq)

retrieval results. However, it is possible to correct the error Q = C(q)+0.5—-0.5x NR(q)
through relevancy feedback (RF) mechanism [21]. The issues !

of updating cluster structure through RF will be considered By€re

us in future. O(q) = min {4 x NR(q), 2 x max NR(k)}

k=1

(22)

V. CONCLUSION

1 ol NR

We have described the issues of clustering and retrieval foMRR(¢) = NR(q) {Z Rank(k, q)} — 05— Q(q)'
video abstraction and browsing. We start by proposing various k=1
methods to extract texture features from temporal slices for mbhe functionRank(k, q) computes a value for an item which is
tion retrieval. Since tensor histogram features offer the best pegtrieved as théth most similar item to query as
formance, we further combine tensor histograms and color his- k. if k < C(q) andkthiteme R(q)
tograms for clustering and retrieving of video shots. The validi i _ . e
of the proposed approaches have been confirmed by extenS|\%lk<k’ 09) =4 Clg)+1, ifk>C(g) andkthiteme £(g)
and rigorous experimentations in sport video domain. 0, otherwise.

To apply the proposed methods to other video sources suiite value of ANMRR will be in the range of [0.0, 1.0]. A
as movie and documentary films, the current works need to legver value of ANMRR indicates a higher retrieval rate. Ideally,
further pursued in two directions: motion segmentation and tA&NMRR = 0 if the relevant items of all queries are appeared at
integration of various video features. Unlike sport videos, thtbe top of rank lists.
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