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Abstract

We propose and evaluate four trackers for tracking the shape, motion and deformation of a human mouth in video

sequences. The trackers are suitable for use in very low bitrate video coding systems. Ó 1999 Elsevier Science B.V. All

rights reserved.
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1. Introduction

Recent developments in multimedia applica-
tions have emphasized the demand for image se-
quence tracking, analysis and coding. Scene
tracking and analysis are particularly useful in
model-based facial image coding systems which
promise very low bitrate communication (e.g.
Samal and Iyenger, 1992; Aizawa and Huang,
1995). Such systems are suitable for applications
like videophone and videoconferencing. These
applications can be constructed by preparing a 3D
human face model at both the transmitting and
receiving ends of a visual communication system.
Input images at the transmitter are analysed in
terms of motion and deformation and the neces-
sary analysis parameters are then transmitted. At
the receiver, these analysis parameters are used

together with the 3D model to synthesize the
output images. Transmission of the analysis pa-
rameters requires a much smaller bandwidth than
transmission of the actual image data. Therefore,
we have proposed and implemented four trackers
which can encode the shape, deformation and
motion of the tracked feature through re®nement,
synthesis and match of deformable models. We
evaluate the trackers by applying them to the
tracking of a human mouth in video sequences.

The proposed trackers are based on the gener-
alized active contour model or g-snake (Lai and
Chin, 1995). G-snake is capable of describing any
arbitrary contour while retaining its global and
local semantics. We denote two energy functionals,
internal and external, to represent the goodness of
®t between the contour model and the desired
image feature. The internal energy is based on a
shape matrix which represents the shape of the
desired feature. The external energy models local
deformation and attracts the contour to salient
image features. By minimizing the combined
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energies, the contour model will be drawn towards
the contour of the desired feature. In all four
trackers that we have investigated, the initial
contour of the tracked feature is obtained from the
®rst image frame using Gaussian pyramid images,
edge maps, generalized Hough Transform and
energy minimisation (Ngo et al., 1995). For sub-
sequent frames, the four trackers will use di�erent
methods to obtain the new contour. In the ®rst
tracker, the preceeding contour is simply overlaid
on the new image and the deformation process is
restarted to obtain the new contour. The second
tracker imposes a�ne motion smoothness con-
straints to exploit temporal motion redundancy
existing in the image sequence. The third tracker
applies principal component analysis to synthesize
a codebook of contour templates. The last tracker
combines the above ideas and synthesizes tem-
plates along several major modes of motion and
tracks the object by selecting the best matched
template. Since these trackers, with the exception
of the ®rst tracker, require only a few parameters
to describe the shape and motion changes of image
features, they are suitable for very low bitrate
image coding.

Several motion trackers have evolved from the
framework of deformable models (Kass et al.,
1987). These trackers include Kalman snake
(Terzopoulos and Szeliski, 1992), deformable
templates (Yuille et al., 1992) and dynamic con-
tours (Blake et al., 1993; Blake and Isard, 1994).
The proposed g-snake trackers are built upon the
probabilistic framework and consider some special
features such as a�ne invariant shape template in
dynamic contours. They di�er from the other
snake models in the following aspects:
· A contour is represented by a set of points.

Based on 2nd order Markov model, each point
is expressed as a linear combination of its two
neighboring points. With this characteristic,
an a�ne invariant shape matrix can be derived
to tackle both local and global deformations,
and ensure spatial smoothness. The shape rep-
resentation is more general compared to de-
formable templates and is able to model any
arbitrary contour (Lai and Chin, 1995).

· Unlike physical model, we do not consider mass
and damping coe�cients which require expert

knowledge on the target object. Instead, we ap-
ply an adaptive prediction algorithm to exploit
temporal motion smoothness, and analyse
the translation and deformation process of an
object.

· We use principal component analysis to deter-
mine the statistics of the contour points over a
collection of training examples. In this way,
we obtain several main modes of object defor-
mation. We use these modes to ensure temporal
smoothness during tracking. This approach is
di�erent from deformable templates where ev-
ery mode of variation must be de®ned explicitly
by a human expert.

We have also considered some of the techniques
used in face recognition (Pentland et al., 1994). For
example, using principal component analysis, any
face can be generated from a weighted sum of
eigenface. This allows a very e�cient coding of
deformable objects, as the most probable appear-
ance of a tracked feature can be synthesized readily.

By combining the above ideas, we propose a
synthesis and matched paradigm (Lai et al., 1996)
based on the g-snake. Through a motion learning
algorithm, the tracker incorporates the shape as
well as motion constrained in the contour model.
It then synthesizes a few possible match templates
along several major modes of motion and tracks
the feature by selecting the best matched template.
Template matching can be done in parallel so as to
make real-time video tracking possible.

The rest of the paper is organized as follows.
Section 2 describes the setup and formulation of
the four trackers. Section 3 compares the perfor-
mance of these trackers in terms of speed e�-
ciency, tracking accuracy and data compression.
Section 4 discusses the results and Section 5 con-
cludes the paper.

2. Tracking by synthesis and match

We de®ne a contour as the vector containing an
ordered set of points, V � �v1;v2; . . . ;vn�. Each vi

is de®ned on the ®nite grid: v 2 E � f�x; y� :
x; y � 1; 2; . . . ;Mg, thus V 2 En. We also denote
U 2 En, where each ui � vi ÿ g represents the
displacement from an arbitrary reference point g.
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In the subsequent experiments, we use eight points
to represent a mouth contour. Two points are
placed at the two corners of the mouth, and three
points each are spaced along the boundary of the
upper lip and the lower lip.

Given a time series of contours V�1�;V�2�;
. . . ;V�t ÿ 1�, we wish to synthesize V̂�t� such that
it is as close to the actual contour V�t� at time t as
possible. We present four approaches whereby this
can be accomplished. Trackers 2 and 4 incorporate
motion smoothness constraint whereas trackers 1
and 3 do not.

2.1. Tracker: re®nement and tracking

G-snake models and extracts deformable con-
tours by integrating both global and local defor-
mations in a regenerative shape matrix. An
internal energy function can incorporate a global
model, while an external energy function can de-
form the resulting contour to match with the un-
derlying image features. To accurately track a
mouth sequence, we train the shape matrix and
deformation variance from various mouth sam-
ples. The learned contour is eventually applied to a
lip tracking process. Once a g-snake locks on to a
global minimum on the current frame, it restarts
re®nement from the current position to track the
desired features of the next frame.

In general, tracker 1 is an unconstrained g-
snake, where the resulting contours can be dis-
tracted over time, as illustrated in Fig. 1. In this
case, we found that the boundary of the lower lip
is unclear and the teeth generate stronger edges
compared to it. As a result, the stronger edges
cause the resulting contours of tracker 1 to shrink.

2.2. Tracker: a�ne motion smoothness constraints

To overcome the de®ciency of the uncon-
strained snake in tracker 1, tracker 2 exploits the

temporal motion redundancy existing in the image
sequence to predict the motion of the contours.
Let Û�t� and d̂�t� represent the predicted contour
model and predicted displacement at time index t,
respectively. Applying ®rst order smoothness
constraint on global deformation and second or-
der smoothness constraint on displacement, we
can predict the evolution of a contour as follows:

ÛT�t� � T�t�UT�t ÿ 1�; �1�
d̂�t� � x1�t�d�t ÿ 1� � x2�t�d�t ÿ 2�; �2�

where T�t� is a 2� 2 linear transformation matrix
modeling scale change, rotation and dilation;
d�t� � g�t� ÿ g�t ÿ 1� is the displacement; and
x1�t� and x2�t� are the weights for the displace-
ment prediction.

We used the least-square method to obtain T�t�,
x1�t� and x2�t�:
T�t� � UT�t ÿ 1�U�t ÿ 2�

� �UT�t ÿ 2�U�t ÿ 2��ÿ1
; �3�

x1�t�
x2�t�
� �

� d�t� ÿ 1� d�t ÿ 2��ÿ1
d�t�: �4�

T�t� is initialized to the identity matrix for t < 2
and x1�t� � x2�t� � 0 for t < 3.

The performance of this tracker can be seen in
Fig. 2. Unfortunately, the tracking performance
deteriorates when there are sudden changes in
motion or contour shape. Increasing the prediction
to that beyond second order did not yield signi®-
cant improvement, while resulting in more expen-
sive computational cost. This leads to the
development of tracker 3.

2.3. Tracker: contour codebook

Berker (1972) deduced that there are only about
13 visually distinct mouth shapes associated with

Fig. 1. Tracker 1: the resulting contours tend to be distracted.

S. Chan et al. / Pattern Recognition Letters 20 (1999) 879±887 881



vowel and consonant phonemes. Therefore, this
tracker constructs a codebook of templates from
contour samples and later synthesizes the contours
by selecting suitable templates from this codebook.

Firstly, we collect a set of training contours
V�1�;V�2�; . . . ;V�m� from the target object. Next,
we compute the average contour �U and the cor-
relation matrix Ru:

Ru � 1

m

Xm

i

�U�i� ÿ �U��U�i� ÿ �U�T: �5�

We obtain the main mode of deformation from
Ru via principal component analysis. Diagonali-
zing Ru, we have

Ru � UKUT; �6�
where U � �/1;/2; . . . ;/n� consists of /i as its
eigenvectors, and K � diagfk1; k2; . . . ; kng consists
of the corresponding eigenvalues in its diagonal.
The eigenvectors, which are uncorrelated to one
another, are arranged such that /1 represents the
most signi®cant mode of deformation, /2 repre-
sents the next signi®cant mode and so on. Typi-
cally, we retain only the ®rst k eigenvectors ifXk

j�1

kj=tr�Ru�P p; �7�

where p 2 �0; 1� is a threshold, and tr�Ru� is the
trace of the correlation matrix. For example, if
p � 0:7, then the ®rst k eigenvectors account for
more than 70% of the variance in Ru.

We can synthesize the templates in the code-
book via the equation

U�b1; b2; . . . ; bk� � �U �
Xk

j�1

bj/j �8�

by varying the weights bj within the range given by

bj 2
h
ÿ a

����
kj

p
; a

����
kj

p i
; �9�

where a � 2:56 corresponds to the 99% con®dence
level in Gaussian distribution.

Fig. 3 shows the synthesized templates of a
human mouth obtained from 150 training con-
tours using p � 0:5. The vertical columns in Fig. 3
(LHS) show the synthesis along the three most
signi®cant deformation modes. Each horizontal
row shows the e�ect of varying their weights. We
then combine these modes to synthesize 27 di�er-
ent templates in the codebook, as shown in Fig. 3
(RHS).

Using the above templates, we track the lip
motion in the Miss America sequence. Fig. 4
shows the tracking results for the 80±119th frames.
The sequence runs from the top left to the bottom
right. It can be seen that the image is matched
correctly for most of the frames. However, as the
head starts tilting and the mouth changes shape
from 110 to 119th frame, none of the template
match the actual mouth shape accurately. This can
be improved by increasing the number of mouth
templates, by moving the template in a larger area
surrounding the previous local minimum, and/or
by re®ning the initial estimates via g-snake. How-
ever, these solutions will result in longer compu-
tational time.

The codebook method is e�cient as it allows
the encoding of within-class variation, using only
the most probable templates of a target object.
However, this tracker treats each image frame
independently. In the next tracker, we adopt a

Fig. 3. Codebook of human mouth. (LHS) individual mode:

variance� 24.9% (left), 18.4% (center), 14.0% (right); (RHS)

combined mode.

Fig. 2. Tracking the lip area of Miss America sequence by

g-snake prediction algorithm.
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synthesis approach that exploits both the speci®c
information about the target object, as well as the
temporal redundancy existing in the image se-
quence.

2.4. Tracker: modes of motion

This method is motivated by the fact that a real
object typically moves only in several prescribed
manners. We thus reformulate the problem as
such: given the contours V�1�;V�2�; . . . ;V�m�,
®nd the major modes of motion so that every
V̂�t � 1� may be predicted from V�t�. Now, de®ne
D�i� � V�i� ÿ V�iÿ 1�, we compute the mean �D
and the correlation matrix RD:

RD � 1

m

Xm

i

�Di ÿ �D��Di ÿ �D�T: �10�

As in tracker 3, we perform principal component
analysis to obtain

RD � HKHT: �11�
H � fh1; h2; . . . ; hng contains the eigenvectors de-
scribing the major modes of motion. Assuming
that the motion process is stationary, we can now
generate templates for the next possible match
using only k eigenvectors:

U�t � 1; b1; b2; . . . ; bk� � U�t���D�
Xk

j�1

bjhj: �12�

We then select the best matched template syn-
thesized in every frame to track the lip motion in
the Miss America sequence. Fig. 5 shows the re-
sults. It can be seen that the templates give ade-
quate representation of the actual mouth, even
though head tilting is introduced at some stages.
This time the movements of the mouth from 110th
to 119th frame are tracked correctly.

3. Results

The performance of the four trackers in speed
e�ciency, tracking accuracy and data compression
is evaluated. The evaluation is based on a well-
known sequence, Miss Claire, which consists of
168 frames. The tracked feature is a human mouth
on an image of 360� 288 pixels. The evaluation is
conducted on a SUN SPARC 5 workstation with
32 MB primary memory.

3.1. Speed e�ciency

We compare the performance in speed e�ciency
of the four trackers in Table 1. The total amount

Fig. 4. Motion tracking of Miss America sequence by codebook method.
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of time required to read the image ®le, track the
desired feature and display the result on a screen
over the 168 image frames is measured. From this
measure, the number of frames tracked per second
is calculated.

During tracking, the g-snake's internal and ex-
ternal energy is checked against a threshold mea-
sure. Once the resulting energy value exceeds the
threshold measure, the previous local minimum
contour will be discarded. Generalized Hough
transform (GHT) will then take place to re-localize
the initially trained contour and this generates a
reset frame.

Table 1 shows that tracker 4 has the fastest
tracking speed (frame/s). This is because tracker 4
has fewer reset frames (compared to trackers 2 and
3) and it does not perform energy minimization
procedure (compared to trackers 1 and 2). It only
performs contour matching on the vicinity of the

best ®t position of the preceding frame almost
throughout the entire sequence.

3.2. Tracking accuracy

We evaluate the accuracy of the trackers by
computing the mean-square error (MSE) between
the actual and tracked contours:

MSE � 1

n

Xn

i

jjvi ÿ v̂jj2: �13�

The actual contours are selected manually
from the image frames. The results are shown in
Fig. 6.

As expected, tracker 4 has the lowest MSE. The
average MSE of trackers 1, 2, 3 and 4 are 28.4,
40.4, 37.3 and 8.0, respectively. At around the 67th
to 72th frame, all four trackers have relatively
large MSE values. These frames typically involve
3D head rotation and mouth shearing.

3.3. Data compression

Data compression can be achieved by storing or
transmitting the motion parameters instead of the
contour location information. In this experiment,
we have 91 056 bytes of contour information that

Table 1

Speed e�ciency of the four trackers (Energy threshold� 0.5)

Number of

reset frames

Frame/s

Tracker 1 14 0.861

Tracker 2 22 0.811

Tracker 3 32 0.700

Tracker 4 19 0.976

Fig. 5. Motion tracking of Miss America sequence by modes of motion.
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are manually extracted. The contour information
that includes location, shape and deformation
variance parameters, are stored in 168 contour ®les
with 542 bytes each. The amount of data com-
pression achieved by each tracker is shown in
Table 2.

Tracker 1 does not encode any motion param-
eter. Tracker 2 encodes the contour motions by
maintaining an initial contour ®le and an ASCII
®le that describes the transformation matrices and
displacement vectors. Trackers 3 and 4 express
motions in term of eigenvectors and eigenvalues.
In addition to an average contour ®le, they

maintain a codebook of templates and modes of
motion, respectively. The results show that track-
ers 3 and 4 are able to achieve high compression
ratios.

4. Discussions

The performance of the trackers can be a�ected
by the following factors:
· Fidelity measure. There is no standard method

for handling the error accumulation problems
in model-based motion tracking. One major dis-
advantage of employing the energy threshold as
a ®delity measure is that a distracted contour
can still obtain a low energy as long as it locks
on to a strong edge. This can be seen in Fig. 1.
The choice of a suitable measure to distinguish
poor tracking from good tracking is thus im-
portant.

· Training overhead. To overcome the above
problem, trackers 3 and 4 incorporate prior
knowledge to restrict the freedom of a g-snake.
However, intensive training is required in order

Table 2

Results of compressing 91 056 bytes of contour information

Compressed

data (bytes)

Compression

ratio

Tracker 1 91 056 1

Tracker 2 22 478 4

Tracker 3 2 056 44

Tracker 4 2 303 40

Fig. 6. Mean-square error analysis of trackers 1, 2, 3 and 4 (in clockwise direction starting from top left. The X-axis represents the

frame number while the Y-axis shows the mean-square error).
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to obtain the appropriate eigenvectors and ei-
genvalues. In general, this method is good when
the tracked feature is approximately known.

· Codebook size. In trackers 3 and 4, if the code-
book size is small, there may be an abrupt
change to a di�erent mouth shape between
two consecutive frames. This can be improved
by increasing the number of templates (we use
nine templates in our experiments). However,
this increases the codebook size and is likely
to degrade both the speed e�ciency and the da-
ta compression ratio.

· Object motion. All trackers will generally fail
when there is signi®cant object motion between
consecutive frames. However, tracker 2 can pre-
dict the next contour correctly if the object fol-
lows the motion smoothness constraints.
Otherwise, the actual contour will be very di�er-
ent from the predicted contour and the energy
miminization algorithm will not be able to cor-
rect it.

For the third and fourth trackers, if su�cient
computational power is available, the best mat-
ched template V̂�t� can be further re®ned, or de-
formed, to obtain contours that better describe the
image features. Multiple templates can also be
matched to the images using a suitable parallel
architecture.

For model-based coding of head-and-shoulder
type of video sequences, it is necessary to con-
sider the other facial features apart from the
mouth. The motion and deformations of these
features are generally highly correlated. In (Ngo
et al., 1995), we presented encouraging experi-
mental results on tracking the human face, eye
and mouth contours using the ®rst tracker de-
scribed in this paper.

5. Conclusions

Four motion trackers that are based on the
g-snake have been presented. We evaluate the
performance of these trackers using an established
motion sequence, and discuss their respective
merits and demerits. The fourth tracker, which
tracks the object by synthesizing the templates
along several major modes of motion and selecting

the best matched template, is found to be superior
in speed e�ciency, tracking accuracy and com-
pression ratio. It requires only a few parameters to
characterize the motion and is therefore suitable
for low bit rate visual communication tasks, such
as in model-based image coding. In these appli-
cations the templates can be synthesized in ad-
vance and stored in both transmitter and receiver.
For every frame, the transmitter performs motion
tracking and sends the code of the best matched
template to the receiver. The receiver then uses an
appropriate object model, e.g. Parke's wireframe
model together with texture mapping to synthesize
the image. An objective comparison of the track-
ing accuracy with other trackers can then be car-
ried out by examining the original image and the
synthesized image.
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