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Abstract. In this paper, we present a new framework to automatically group similar shots into one scene, where
a scene is generally referred to as a group of shots taken place in the same site. Two major components in this
framework are based on the motion characterization and background segmentation. The former component leads
to an effective video representation scheme by adaptively selecting and forming keyframes. The later is considered
novel in that background reconstruction is incorporated into the detection of scene change. These two components,
combined with the color histogram intersection, establish our basic concept on assessing the similarity of scenes.

Keywords: scene change detection, spatio-temporal slice, keyframe formation, background reconstruction

1. Introduction

A video usually consists of scenes, and each scene
includes one or more shots. A shot is an uninterrupted
segment of video frame sequence with static or contin-
uous camera motion, while a scene is a series of con-
secutive shots that are coherent from the narrative point
of view. These shots are either shot in the same place or
they share similar thematic content. By decomposing a
video into scenes, we can facilitate content-based video
browsing and summary. Figure 1 depicts the structural
content of a typical video. The goal of this paper is
to propose a framework for structuring the content of

videos in a bottom-up manner, as illustrated in Fig. 1,
while abstracting the main content from video frames.

1.1.  Challenge

Intuitively, scene change detection can be tackled from
two aspects: comparing the similarity of background
scenes in shots and analyzing the content of audio
features. Nevertheless, there are several research prob-
lems along this thought: (i) background and fore-
ground segmentation; (ii) background and foreground
identification; (iii) similarity measure; and (iv) word
spotting from audio signal. The first problem can be
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Figure 1. Video structure.

solved satisfactorily only when the background and
foreground objects have different motion patterns. The
second problem requires high-level knowledge and, in
most cases, necessitates manual feedback from human.
The third problem has been addressed seriously since
the beginning of content-based image and video re-
trieval (Flickner et al., 1995; Gudivada and Raghavan,
1995) research. A good piece of work on similarity
matching can be found in Jacobs et al. (2000) and
Santini and Jain (1999). The last problem is still re-
garded as hard since video soundtracks are complex
and often mixed with many sound sources.

Scene change detection, in general, is considered a
difficult task based on the problems discussed above. A
fully automatic system cannot be easily realized. Since
a complete and reliable segmentation cannot be done
prior to the detection of a scene, shot representation and
similarity measure need to be reconsidered, in order to
automate this process.

1.2.  Related Works

Previous work on scene change detection includes
(Corridoni and Del. Bimbo, 1998; Hanjalic et al., 1999;
Sundaram and Chang, 2000; Huang et al., 1998; Rui
et al., 1998; Sahouria and Zakhor, 1999; Yeung and
Yeo, 1997). Basically there are two major approaches:
one adopts the time-constraint clustering algorithm to
group shots which are visually similar and temporally
closed as a scene (Corridoni and Del. Bimbo, 1998;
Hanjalic et al., 1999; Rui et al., 1998; Sahouria and
Zakhor, 1999; Yeung and Yeo, 1997); the other em-
ploys audiovisual characteristics to detect scene bound-
aries (Sundaram and Chang, 2000; Huang et al., 1998).
In general, the success of these approaches relies on

)

\J

details

the video representation scheme and shot similarity
measure. The former aims at representing a video in
a compact yet semantically meaningful way, while the
later attempts to mimic human perception capability.
In most systems, shots are represented by a set of se-
lected keyframes, and the similarities among the shots
are soly or partially! dependent on the color similarity
of those keyframes (Corridoni and Del. Bimbo, 1998;
Hanjalic et al., 1999; Rui et al., 1998; Yeung and Yeo,
1997).

In this paper, we propose a motion-based video rep-
resentation scheme for scene change detection, by inte-
grating our previous works on video partitioning (Ngo
et al.,, 1999, 2000a, 2001), motion characterization
(Ngo et al., 2000b) and foreground vs background seg-
mentation (Ngo et al., 2000b; Ngo, 2000). We tackle
the problem from four different aspects: (i) represent
shots adaptively and compactly through motion char-
acterization; (ii) reconstruct background in the multiple
motion case; (iii) reduce the distraction of foreground
objects by histogram intersection (Swain and Ballard,
1991); and (iv) impose time-constraint to group shots
that are temporally closed. Compared with Corridoni
and Del. Bimbo (1998), Hanjalic et al. (1999), Huang
et al. (1998), Rui et al. (1998), Sahouria and Zakhor
(1999), and Yeung and Yeo (1997), aspects (i), (ii) and
(iii) are considered new features to scene change de-
tection. The issue of compact video representation for
shot similarity measure has not yet been fully addressed
by previous approaches. For instance, the approach
in (Hanjalic et al., 1999) simply selects a few image
frames as keyframes for similarity measure. The simi-
larity of two shots is computed to be the color similarity
of two image frames, which may consequently lead to
the occurrence of missed detections. In contrast, our ap-
proach not only selects keyframes from shots, but also
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reconstruct new images such as background panoramas
as new keyframes based on the annotated motion of
shots. Since the proposed video representation scheme
is compact, the histogram intersection which measures
similarity between features based on the intersection of
feature points, can be more effectively performed for
scene change detection.

2. Framework

Figure 2 depicts the basic framework of our scene
change detection approach. An input video is first par-
titioned into shots. Those shots that have more than one
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Figure 2. A scheme for scene change detection.

camera motion are temporally segmented into motion
coherent sub-units, and each sub-unit is characterized
according to its camera motion. A test is then con-
ducted to check if a sub-unit has more than one motion
(e.g., both camera and object motion). For multiple
motion cases, the corresponding sub-units are further
spatially decomposed into motion layers. The domi-
nant motion layer of a sub-unit is subsequently recon-
structed to form a background image. For other cases,
keyframe selection and formation are adaptively per-
formed based on the annotated motion to compactly
represent the content of a shot. Finally, scene change is
detected by grouping shots with similar color content.

Our works on video partitioning, motion character-
ization, and background vs foreground segmentation
are based on the pattern analysis and processing of
spatio-temporal slices (STS). In this paper, we will
only concentrate on the approaches for video represen-
tation, similarity measure, and time-constraint group-
ing which basically take the computed results of STS
pattern analysis as input. A brief introduction to STS
pattern analysis is given in the next section.

3. Processing of Spatio-Temporal Slices (STS)

If we view a video as an image volumn with (x, y) im-
age dimension and ¢ temporal dimension, the spatio-
temporal slices are a set of 2D images in a volumn with
one dimension in ¢, and the other in x or y. One example
is given in Fig. 3; the horizontal axis is #, while the ver-
tical axis is x. For our application, we process all slices,
both horizontal and vertical, in a volume to analyze the
spatio-temporal patterns due to various motions. For
simplicity, we denote horizontal slices as H with di-
mension (x, 7), and vertical slices as V with dimension
v, 1).

A spatio-temporal slice, by first impression, is com-
posed of color and texture components. On one hand,
the discontinuity of color and texture represents the
occurrence of a new event; on the other hand, the ori-
entation of texture depicts camera and object motions.
While traditional computer vision and image process-
ing literature tend to formulate methodologies on two
adjacent frames, spatio-temporal slices, in a comple-
mentary way, provide rich visual cues along a larger
temporal scale for video processing and representation.
The former gives a snapshot of motion field; the later,
in contrast, offers a glance of motion events.

Figure 3 shows a spatio-temporal slice extracted
from the center row of a video composed of six shots.
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Figure 3. Patterns in a spatio-temporal slice.

By careful observation of the patterns inherent in this
slice, it is not difficult to perceive the following cues:

e Shot boundary which is located at a place where the
color and texture in a slice show a dramatic change.
This change may involve more than one frame as
indicated by the boundary of shots D and E.

e Camera motion is inferred directly from the tex-
ture pattern. For instance, horizontal lines depict sta-
tionary camera and object motion; slanted lines de-
pict camera panning.” In addition, the orientation of
slanted lines represent motion direction (in shot B,
the camera moves to the left; in shot C, the cam-
era moves to the right), while the gradient of slanted
lines is proportional to motion intensity (the speed of
panning in shot A is faster than shot B). Based on this
observation, it is simple to find that shot A is com-
posed of different camera motions. In this case, shot
A can be temporally segmented into three sub-units.

e Multiple motions are perceived when two dissimilar
texture patterns appear in a shot, as shown in shot C.
In this shot, the yellow region describes a non-rigid
object motion, while the background region indicates
camera panning.

In our approach, shot boundaries are detected by color
and texture segmentation (video partitioning) (Ngo
et al., 1999, 2000a, 2001); the motion information is
estimated through the orientation and gradient of line
patterns (motion characterization) (Ngo et al., 2000b);
motion layers are obtained by decomposing dissimilar
color and texture regions in the spatio-temporal slices
of a shot (background and foreground segmentation)
(Ngo et al., 2000b; Ngo, 2000).

3.1. Computational Issue

For computational and storage efficiency, we propose
to process and analyze spatio-temporal slices directly in

M Airecliion

multiple motions slantc FO0m

L B »
camera break

the compressed video domain (MPEG domain). Slices
can be obtained from the DC image® volume which is
easily constructed by extracting the DC components*
of MPEG video. The resulting data is smoothed while
the amount is reduced by 64 times in the MPEG do-
main. For an image of size M x N, the dimension of
the corresponding DC image is % x & For a shot with
T frames, the dimension of spatio-temporal slices are
reduced from M x T to ¥ x T (or N x T to § x T)
in the compressed domain. Hence, given a video com-
posed of K shots, the number of slices extracted for

: M+N
processing are K x ==

3.2.  Motion Analysis of STS Patterns

Our approach is based on the structure tensor compu-
tation introduced in Jdhne (1991) to estimate the local
orientations of a slice. By investigating the distribu-
tion of orientations in all slices, we can classify motion
types as well as separate different motion layers.

3.2.1. Structure Tensor. The tensor I of a slice® H
can be expressed as

I — Jxx th _ ZwH,%
T Ju >, HiH;

where H, and H; are partial derivatives along the spatial
and temporal dimensions respectively. The window of
support w is set to 3 x 3 throughout the experiments.
The rotation angle 6 of I' indicates the direction of a
gray level change in w. Rotating the principle axes of
I" by 6, we have

R J.XX th RT — A’X 0 (2)
th Jll 0 )"t

H.H,
Zzw 2 } o))
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where the histogram can be expressed as

g | cose sin M($. )= > () (6)
~ | —sin® cos@ a0
where Q(¢, 1) = {H(x, t) | '(x, t) = ¢} which means
From (2), since we have three equations with three that each pixel in slices votes for the bin (¢, #) with the
unknowns, 6 can be solved and expressed as certainty value c. The resulting histogram is associated
with a confidence measure of
0= ! tan~! U 3)
) o — C= Mo, t 7

27 - TxMxNZZ @.00 (D

The local orientation ¢ of a w in slices is computed as . . .
where T is the temporal duration and M x N is the

image size. In principle, a histogram with low C should

be rejected for further analysis.
] (4) Motion trajectories can be traced by tracking the his-

togram peaks over time. These trajectories can corre-
spond to (i) object and/or camera motions; (ii) motion
parallax with respect to different depths. Figure 4
shows two examples, in (a) one trajectory indicates
the non-stationary background, and the other indicates
the moving objects; in (b) the trajectories correspond
to parallax motion.

T
6—— 6>0
2 T
o=1 ¢=[———

0+ B} otherwise

It is useful to introduce a certainty measure to de-
scribe how well ¢ approximates the local orientation
of w. The certainty c is estimated as

I S I e (Ax —M)Z )

2
(Fx Jur) bt b 3.3.  Motion Characterization
and ¢ = [0, 1]. For an ideal local orientation, ¢ = 1 . . .
when either A, = Oor A, = 0. For an isotropic structure Tensor hlstograrps offer useful 1nfqrmat1on. for tem-
e d=A.c=0. poral!y segmenting and Characterlzlng motloqs. Our
algorithm starts by tracking a dominant trajectory
along the temporal dimension. A dominant tra-

3.2.2. Tensor Histogram. The distribution of local jectory p(r) = max_%<¢<%{M(¢,t)} is defined to

orientations across time inherently reflects the motion

have
trajectories in an image volume. A 2 D tensor histogram
M(¢, t), with an 1D orientation histogram as the first k15
dimension and time as the second dimension, can be k +1 < (8)
constructed to model the distribution. Mathematically, qu M(g, 1 )
-80 -80
-60 -60
£ -40 £ -40
B & *‘\’,.M,»W»
g g af MMA «w*f'vwxxa
< 0 L e S bt £ 0
8 2
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Figure 4. Motion trajectories in the tensor histograms. (a) Moving object. (b) Parallax panning.
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The dominant motion is expected to stay steady for ap-
proximately fifteen frames (0.5 seconds). The thresh-
old value T = 0.6 is empirically set to tolerate camera
jitter. After a dominant trajectory is detected, the algo-
rithm simultaneously segments and classifies the dom-
inant motion trajectory. A sequence with static or slight
motion has a trajectory of ¢ = [—¢,, ¢,]. Ideally, ¢,
should be equal to 0. The horizontal slices of a panning
sequence form a trajectory at ¢ > ¢, or ¢ < —@,.
If ¢ < —¢,, the camera pans to the right; if ¢ > ¢,,
the camera pans to the left. A tilting sequence is sim-
ilar to a panning sequence, except that the trajectory
is traced in the tensor histogram generated by vertical
slices. The parameter ¢, is empirically set to 3”—6 (or
5°) throughout the experiments. For zoom, the tensor
votes are approximately symmetric at ¢ = 0. Hence,
instead of modeling as a single trajectory, the zoom®
is detected by

Z¢ Zt>0 M(¢a l) ~
Sy S0 M@. 1)

€))

Figures 5(a) and 6(c) show the temporal slices of
two shots which consist of different motions over time,
while Figs. 5(b) and 6(d) show the corresponding tensor
histograms. In Fig. 5, the motion is segmented into two
sub-units, while in Fig. 6, the motion is segmented into
three sub-units.

3.4. Background Segmentation
Figure 7 illustrates the major flow of our approach.

Given a set of spatio-temporal slices,” a 2D tensor
histogram is computed. The 2D histogram is further

(a)

(b)

Figure 5.  Zoom followed by static motion. (a) temporal slice; and
(b) censor histogram.

(b)

Figure 6. Static, pan, and static motions. (a) temporal slice; and
(b) tensor histogram.

non-uniformly quantized into a 1D normalized mo-
tion histogram. The histogram consists of seven bins
to qualitatively represent the rigid camera and object
motions. The peak of the histogram is back projected
onto the original image sequence. The projected pixels
are aligned and pasted to generate a complete back-
ground. With the background information, foreground
objects can also be obtained through the background
subtraction technique (Ngo, 2000).

3.4.1. Quantization of Motion Histogram. Given a
2D tensor histogram M(¢, t) with temporally coherent
motion unit, the tensor orientation ¢ is non-uniformly
quantized into seven bins, where

@y = [—90°, —45°)
@, = [—45°, —25%)
B3 = [25°, —5°)
Dy = (—5°,5°]

ds = (5°,25°]
D = (25°, 45°]
@7 = (45°,90°]

The scheme quantifies motion based on its intensity
and direction. ®; and &7 represent the most intense
motion, while ®4 represents no or slight motion. The
normalized 1D motion histogram N is computed by

Lpew, 20 M(@i, 1)
it N(@p)

N(®y) = (10)

Adaptive setting of quantization scale is a difficult
problem. Since we assume motion characterization is
performed prior to motion segmentation, camera mo-
tion is supposed to be coherent and smooth. Thus, the
setting should not be too sensitive to the final results.
Empirical results indicate that our proposed setting is
appropriate for most cases.
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Original image frames

Figure 7. The original scheme for background segmentation.

3.4.2. Tensor Back-Projection. The prominent peak
ina 1 D motion histogram reflects the dominant motion
of a sequence, as shown in Fig. 7. By projecting the
peak back to the temporal slices H;, we can locate the
region (referred to as the layer of support) that induces
the dominant motion. The support layer is computed as,

1 ¢ped
Mask; (x, t) = ) (11)
0 otherwise

where

& = arg { n(lbalXN(de)} (12)

(x, 1) is the location of a pixel in H;. Figure 8 illus-
trates an example: the temporal slice consists of two
motions, while the layer of support locates the region
corresponding to the dominant motion (white color).
The result of localization is correct, except at the bor-
der of two motion patterns due to the effect of Gaussian
smoothing prior to tensor computation.

3.4.3. Point Correspondence and Background
Mosaicking. Once the support layer of a dominant
motion is computed, in principle we can align and
paste the corresponding regions to reconstruct the back-

2D tensor histogram

Foreground support layer

time 00 0.3 0.6
1D motion histogram

1

AEARRER
F S

backproject

Segmented foreground object

ground image. Nevertheless, this is not a trivial issue
since theoretically the correspondence feature points
need to be matched across frames. This is an ill-
posed problem specifically at the textureless regions.
The problem is further complicated by occluded and
uncovered feature points at a particular time instant.

To solve this problem, we propose a method that
selects temporal slice H; which contains two adjacent
scans H;(x, t) and H;(x, # + 1) with the most textural
information at time ¢, and then perform feature points
matching across the two scans. For each time instance
t, the criterion for selecting a slice is

CoH+C@i+1 } (13)
[ni(t) —ni (2 + D+ 1

I:I =
arg rrll_gx {

and
Ci() = ci(x, h)Mask;(x, 1)
ni(t) = ZMask,- (x,1)

where c;(x, t) is the certainty measure of a tensor at
H;(x, t) (see Eq. (5)). The value c¢; indicates the rich-
ness of texture of pixels surrounding the pixel located
at (x, t). In practice, C;(¢) > 0 and n;(¢) > 2.
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original tmage frames

Figure 8. Background reconstruction.

For simplicity, we assume the motion model involves
only translation when aligning and pasting two image
frames. Let us denote d (t) as the translation vector at
time ¢, d(¢) is directly computed from two scans by

d(n) = argmin {med | H;(x, 1) — Hi(x +d. 1 + D}
(14)

where med is a robust median estimator employed to
reject outliers. The value of d issetto 1 < d < 5 while
the sign of d is dependent on the ®; in (12) which indi-
cates the motion direction.® From (14), it is interesting
to note that the problem of occlusion and uncovered
regions is implicitly solved due to the use of support
layer and robust estimator. Naturally the occluded re-
gion at frame i can be filled by the uncovered region at
frame j # i. An example of a mosaicked background
reconstructed from 140 frames is shown in Fig. 8.

4. Video Representation

A concrete way of describing video content for scene
change detection is to represent each shot with back-
ground images. Nevertheless, such task is always non-
trivial. Suppose no domain specific knowledge is uti-
lized, it can only be achieved to a certain extent if more
than one motion layer can be formed by camera and

Spatio-temporal slice
Ll ¥

object movements. For instance, when a camera tracks
a moving object, two layers are formed, one corre-
sponds to the background and the other corresponds
to the targeted object. In this case, the background ob-
ject can be extracted and reconstructed as a panoramic
image. However, if a camera just pans across a back-
ground and overlooks objects that do not move, the
objects will be absorbed as part of the background im-
age and only one motion layer will be formed.

Based on the current state-of-art in image sequence
analysis, we propose a video representation strategy as
illustrated in Fig. 9. The strategy consists of two ma-
jor parts: keyframe selection and formation, and back-
ground reconstruction. The idea is to represent shots
compactly and adaptively through motion characteri-
zation, at the same time, extract background objects
as far as possible through motion segmentation. Be-
cause foreground objects will not be separated from
background image for the single motion case, we will
further discuss a method based on similarity measure in
the next section to reduce the distraction of foreground
objects when comparing background images.

4.1. Keyframe Selection and Keyframe Formation

Keyframe selection is the process of picking up frames
directly from sub-units to represent the content of a
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Motion Type Horizontal slice Vertical slice Keyframe Action
Static Select one frame
Pan form a new
panoramic image
form a new
Pan panoramic image
i form a new
Titt panoramic image
: Select the first
Zoom and last frames
Eh Y \ | R
Multiple T ;lllll.l Y Reconstruct
. ™1 uEiEa background
maotion 5 .l‘l LU ACKE)
Indeter- .
ministic Select one frame

Figure 9. Keyframe selection and formation.

shot. On the other hand, keyframe formation is the pro-
cess of forming a new image given a sub-unit. Whether
to select or form images is directly related to the camera
motion in a shot. For instance, a sub-unit with camera
panning is well summarized if a new image can be
formed to describe the panoramic view of the scene,
instead of selecting few frames from the sequence. On
the other hand, the content of a sub-unit with cam-
era zooming is well summarized by just selecting two
frames before and after zoom, instead of selecting few
frames from the sequence. In our approach, with ref-
erence to Fig. 9, one frame is arbitrarily selected to
summarize the content of a sub-unit with static or inde-
terministic motion, a panoramic image is formed for a
sub-unit with camera panning or tilting, and two frames
are selected for a sub-unit with camera zoom. For in-
deterministic motion, a sub-unit normally lasts for less
than ten frames, hence, one frame is generally good
enough to summarize the content.

4.2.  Background Reconstruction

Scene is normally composed of shots that are shot at the
same place. Intuitively, background objects are more

important than foreground objects in grouping similar
shots as a scene. Given an image sequence with both
camera and object motions, our aim is to reconstruct
a background scene after segmenting the background
and foreground layers. We assume here the dominant
motion layer always corresponds to the background
layer. The background is reconstructed based on the
techniques described in Section 3.3. Each background
image is associated with a support layer for similarity
measure.

5. Similarity Measure

Let the representative frames of shot s; be
{ri1, ria, .. ., rir}. The similarity between the two shots
s; and s; is defined as

1 o
Sim(s;, s;) = E{M(Siy s;)+ M(si,s)) (15)
where

M(s;,sj)= max  max {Intersect(ri,,7s)} (16)
p=(1.2...} g={1.2,...}

M(s;,sj)= max max {Intersect(r;,, 7;,)} (17)
p={1.2,..} q={1.2,..}
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max is the second largest value among all pair of
keyframe comparisons. The disadvantage of using
color histograms as features is that two keyframes will
be considered similar as long as they have similar color
distributions, even through their contents are different.
To remedy this deficiency, we use not only M but also
M for the sake of robustness.

The color histogram intersection, Intersect(r;, r;), of
two frames r; and r; is defined as

_ 1
—A@r, )

x?i@k@ﬂ%mmmm&ma&

Intersect(r;, r;)

where

A(ri,rj) =

min{ Xh:ZZHi(h, s, V), Zh:ZZHj(h,s, v)}

19)

H;(h, s, v) is a histogram in HSV (hue, saturation,
intensity) color space. Because hue conveys the most
significant characteristic of color, it is quantized to 18
bins. Saturation and intensity are each quantized into
3 bins. This quantization provides 162 (18 x 3 x 3)
distinct color sets.

In (18), the degree of similarity is proportional to the
region of intersection. Intersect(r;, r;) is normalized by
A(ri, r ) to obtain a fractional similarity value between
0 and 1. For instance, given an image frame I of size
m x n and a background image Bg of size M x N
(m < M,n < N), Eq. (18) gives the fractional region
inI'which overlaps with Bg (see Fig. 10 for illustration).
Color Histogram intersection can reduce the effect of:

the distraction of foreground objects’
viewing a site from a variety of viewpoints
occlusion

varying image resolution

The last three items are consequences of employing
color histograms as image features, while the first item
is due to the use of the histogram intersection. Figure 10
illustrates an example. The similarity of I; and Bg
(Intersect;), and the similarity of I; and Bg (Intersect,)
directly correspond to their overlapping area of back-
ground. In contrast to the Euclidean distance measure,
which takes a foreground object into consideration, the

Intersect 2

. -
..—agrfJgg.
\ -

23S 3
: e e

e
L

Figure 10. Histogram intersection. [Intersect;(I;, Bg) and
Intersectr(1;, Bg) correspond to the background object, while
Intersect3(1;, I;) correspond to the foreground player.

histogram intersection, intuitively, is a more suitable
similarity measure for scene change detection. Never-
theless, it should be noted that the intersection of I; and
I; corresponds to the foreground player. Here, segmen-
tation which is a difficult task, needed to be done prior
to the similarity measure!

To detect scene changes, we need a similarity thres-
hold 75 to decide if two shots belong to a same scene.
Threshold setting is a common practice but tedious ex-
perience for most computer vision tasks. Here, we de-
scribe a method to adaptively set thresholds by taking
into account the characteristics of videos. Denote n as
the number of shots in a video, the threshold 7 of a
video is defined as

T,=pn+o (20)
where
2 n—1 n
w= ﬁ{ 2, 2. Sime s")} o
) n—1 n
REETETAPIP IS

@ and o are respectively the mean and the standard
deviation of the similarity measures among all pairs of
shots.

6. Time-Constraint Grouping

The idea is that the probability of two shots belonging
to the same scene is directly related to their tempo-
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Figure 11. Time constraint grouping. (a) shots in one scene; and (b) red arrows indicate similar shots.

ral distance. In other words, two shots s; and s; will
not be grouped in the same scene if they are tempo-
rally far apart. For simplicity, we consider only the
case where a scene is composed of temporally con-
tiguous shots. Using Fig. 11(a) as an example, suppose
that shots A and E are determined to be similar by
Eq. (20), we group all shots from A to E as one scene
even shots B, C, D may be considered dissimilar to A
and E.

The algorithm runs in the following way: at shot
si, it looks forward at most ¢ shots. If s; and ;. are
similar, then V;<;<;.s; are grouped in one scene. No-
tice that this algorithm will not limit the duration of
a scene. As shown in Fig. 11(b), shots are grouped
progressively in one scene until there is no similar
shot found within the temporal distance c. Rigorously,
a group of adjacent shots {s,,, Smt1,---sSu—1, Sy} 1S
clustered in a scene if the following conditions are
fulfilled

e Condition I: 3t such that t = arg{max,—;12, ¢
Sim(sm’ Sm+r)}a Sim(sm’ Sm-H) 2 T:y, and Vr:{l,Z ..... c}
Sim(s,,—y, Sm) < T.

e Condition 2: 3t such that t = arg{max,—;12,. ¢
Sim(snfry sn)}s Sim(snfty Sn) > Tm and Vr:{1,2 ..... c}
Sim(sns Sn+r) < Ts~

e Condition 3: 3t;,t, such that {#, 15} =
arg{max,—o,1,2,....c},s={0,1,2,....c} Sim(s; ., Sits)}s
Sim(s;—y,, Sit,) = Ty, m < i <nand 0 < |t —
hl <c.

where Sim(s;, s;) is the similarity measure between
the shots i and j and 7j is the similarity threshold. The
parameter c is a constraint which is used as follows:
suppose j —i < ¢,i < j and Sim(s;, s;) > T, then
Vi<k<j Sk are clustered in one scene.

Condition 1 states that the first shot of a scene must
have at least one similar shot succeeding it within the
distance ¢ (shots A and C in Fig. 11(b)). Similarly,
Condition 2 states that the last shot of a scene must have
at least one similar shot preceding it within ¢ (shots L
and J in Fig. 11(b)). Condition 3 states that s;, m <
i < n, is either similar to a shot preceding (shots G
and E in Fig. 11(b)) or succeeding s; (shots B and D in
Fig. 11(b)), or at least one shot preceding s; is similar
to a shot succeeding s; within ¢ (shot H in Fig. 11(b)).

In the experiments, the parameter c is set to a value
such that fi1. — fi <900 < fi1c+1 — fi, where f;
is the start time (in frame unit) of a shot s;. In other
words, at shot s;, shot ;. that is less than or equal to
900 frames (about 30 second) apart from s; is compared
for similarity.

7. Experiments

Figure 12 shows an example for the detailed procedure
of the proposed scene change detection framework on
a news video demo.mpg. For simplicity, we only show
the horizontal spatio-temporal slice extracted from the
news video. This slice is first partitioned into twelve
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Figure 12. An illustration for the scene change detection framework tested on the video demo.mpg.

shots using the video partitioning algorithm, and then
the tensor histogram is computed for each shot. These
shots are further temporally segmented into finer sub-
units and are annotated based on the proposed mo-
tion characterization method. As shown in the figure,
shots A and C are segmented into sub-units with static
and panning motions. Based on the annotated motions,
keyframes are adaptively selected (shots B, D, E, F, 1
and K) and formed (shots A, C, L), in addition, back-
grounds are reconstructed (shots G, H, J) for multi-
ple motion cases. Finally, color features are extracted
from each keyframe for similarity measure through his-
togram intersection. As indicated in the figure, shots A
and E (G and J) are considered similar, as a results, all
shots from A to E (G and J) are grouped as one scene
based on the time-constraint grouping algorithm.

We conducted experiments on other four videos'”:
fathermpg, Italy.mpg, lgerca_lisa_l.mpg and Igerca_
lisa_2.mpg. Table 1 shows the experimental results
on the videos father.mpg and Italy.mpg. Both videos
have indoor and outdoor scenes. Initially, shots that
happened at the same sites are manually grouped as
scenes and served as ground truth data. The data is
then compared with the results generated by our ap-
proach. Experimental results show that the proposed
approach works reasonably well in detecting most of
the scene boundaries (e.g., boundaries between indoor-

outdoor scenes, indoor-indoor scenes and outdoor-
outdoor scenes). The only false detection in Italy.mpg
is due to the significant change of background color

Table 1. Experimental results.
Scene Shots C F M
father.mpg
0 0-0 1 0 0
1 1-1 1 0 0
2 2-2 1 0 0
3 3-3 1 0 0
4 4-8 1 0 0
5 9-9 1 0 0
6 10-14 1 0 0
7 15-16 1 0 0
8 17-23 1 0 0
Italy.mpg
0 0-2 1 1 0
1 3-3 1 0 0
2 4-4 1 0 0
3 5-13 1 0 0
4 14-19 1 0 0
5 20-38 0 0 1

C: Correct detection, F: False detection, M: Missed detection.
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Figure 13. Some keyframes of lgerca_lisa_1.mpg. X(Y): shot(scene). (* Indicates false alarm, + indicates zoom, and dotted vertical bars
indicate scene boundaries.)
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Figure 14. Some keyframes of Igerca_lisa_2.mpg. X(Y): shot(scene). (* Indicates false alarm, + indicates zoom, and dotted vertical bars
indicate scene boundaries.)



Motion-Based Video Representation for Scene Change Detection 141

Table 2. Experimental results on Igerca_lisa_1.mpg.

Table 4. Speed efficiency (on a Plentium-III platform).

Scene Scene description Shots C F M Step Igerca_lisa_l.mpg lgerca_lisa_2.mpg
0 Kids learning roller-skater 0-1 1 0 Video partitioning 800 sec 805 sec
Kids playing in gym 2-13 1 Motion characterization to 4080 sec 3840 sec
2 Kids playmg with water with 14-24 1 1 keyframe generation (1 .14 hour) (106 hOUr)
parent Similarity measure and 103 sec 105 sec
3 Hot balloon event 2542 1 time constraint grouping
4 Kids playing on lawn 43-51 1

C: Correct detection, F: False detection, M: Missed detection.

Table 3. Experimental results on Igerca_lisa_2.mpg.

Scene Scene description Shotsm C F M
0 Kid at home with cat 0-1 1 0 0
1 Kids in gym 2-8 1 0 0
2 Kids playing high-bar 9-12 1 1 0
3 Kids + teacher with high-bar 13-14 1 0 O
4 Kids jumping 15-15 1 0 0
5 Kids in gym 1617 1 0 O
6 Kids in gym (over-illuminated) 1828 1 0 0
7 Kids playing at home 29-31 1 0 O
8 Kid driving outside home 3236 1 0 O
9 Kids dancing (I) 37-39 1 0 0

10 Kids dancing (II) 40-40 1 0 0

11 Kids dancing (III) 4142 0 O 1

12 After play 4351 1 0 O

13 Swimming pool 52-53 0 O 1

14 Crowded in swimming pool 54-55 0 O 1

C: Correct detection, F: False detection, M: Missed detection.

in an indoor scene, while the only missed detection in
Italy.mpg is due to the similar background color distri-
bution between an indoor scene and an outdoor scene.

Tables 2 and 3 show the experimental results on
the two MPEG-7 test videos, lgerca_lisa_l.mpg and
lgerca_lisa_ 2.mpg. Both are home videos and each
video has approximately 32,000 frames. The experi-
mental results are compared with the ground truth data
provided by MPEG-7 test sets. In Igeraca_lisa_1.mpg,
the two false alarms are due to illumination effect.
In lgeraca_lisa_2.mpg, the results of the two missing
scenes are arguable since these scenes are composed of
shots in the same places (scenes 10-11 have taken place
on stage, scenes 13-14 have taken place in a swimming
pool). Figures 13 and 14 show some of keyframes in
the two tested videos.

Table 4 shows the speed efficiency of the proposed
scene change detection framework on the two tested
videos. For video partitioning, our approach operates
in real time, approximately 40 frames per second on
a Plentium-III machine. As indicated in the table, the
procedure from motion characterization to keyframe
generation (including time to generate color feature
vector for each keyframe) consumes most of the pro-
cessing time. For similarity measure, most of the pro-
cessing time is spent on finding the adaptive threshold
in Eq. (20).

8. Conclusion

A motion-based video representation scheme has been
proposed for scene change detection by integrating
the motion characterization and background recon-
struction techniques. Using this scheme, an adaptive
keyframe selection and formation method has been
derived. By combining the histogram intersection for
similarity measure and the time constraint grouping al-
gorithm, encouraging experimental results have been
reported. We expect that the results can be further im-
proved if background segmentation and reconstruction
can be done for shots either with static or non-static
motion prior to measuring shot similarity.
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Notes

1. For instance, Rui et al. (1998) also takes shot activity measure
into consideration.

2. Slanted lines in horizontal slices depict camera panning, while
slanted lines in vertical slices depict camera tilting.

3. DC image is formed by using the first coefficient of each 8 x 8
Discrete Cosine Transform (DCT) block.
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4. The algorithm introduced by Yeo and Liu (1995) is applied to
estimate DC components from P-frames and B-frames.

5. To supress noise, each slice is smoothed by a 3 x 3 Gaussian
kernel prior to tensor computation.

6. The tensor histograms of both horizontal and vertical slices are
utilized. A sequence is characterized as zoom if either one of the
histograms satisfies (9).

7. Figure 7 only shows three horizontal spatio-temporal slices ex-
tracted from different rows of an DC image volume. They illus-
trate the motion patterns in the top (2nd row), middle (18th row)
and bottom (34th row) portions of the image volume.

8. Itis worthwhile to notice that ﬁ)k can tell the range of d. However,
this information is not exploited in (14) since the computational
save in predicting d by & is insignificant. This is due to the fact
that only small amount of data (two columns of pixels) is used
to compute (14).

9. This feature is useful when different foreground objects appear
in a background image at different time instant.

10. The first two videos can be obtained from http://mmlib.
cs.ust.hk/scene.html, the last two videos are MPEG-7 standard
test videos.
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