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Motion Analysis and Segmentation Through
Spatio-Temporal Slices Processing

Chong-Wah Ngo, Member, IEEE, Ting-Chuen Pong, and Hong-Jiang Zhang, Senior Member, IEEE

Abstract—This paper presents new approaches in character-
izing and segmenting the content of video. These approaches are
developed based upon the pattern analysis of spatio-temporal
slices. While traditional approaches to motion sequence analysis
tend to formulate computational methodologies on two or three
adjacent frames, spatio-temporal slices provide rich visual pat-
terns along a larger temporal scale. In this paper, we first describe
a motion computation method based on a structure tensor for-
mulation. This method encodes visual patterns of spatio-temporal
slices in a tensor histogram, on one hand, characterizing the tem-
poral changes of motion over time, on the other hand, describing
the motion trajectories of different moving objects. By analyzing
the tensor histogram of an image sequence, we can temporally
segment the sequence into several motion coherent subunits, in ad-
dition, spatially segment the sequence into various motion layers.
The temporal segmentation of image sequences expeditiously
facilitates the motion annotation and content representation of a
video, while the spatial decomposition of image sequences leads to
a prominent way of reconstructing background panoramic images
and computing foreground objects.

Index Terms—Motion segmentation, spatio-temporal slices,
tensor histogram.

I. INTRODUCTION

I N THE PAST decade, theories for acquiring, manipulating,
transmitting and storing video data have been successfully

developed and applied. Nevertheless, the methodology for anno-
tating and representing visual information is still in its infancy.
The objective of this paper is to present a new way of video
parsing for motion annotating and segmentation through the pat-
tern analysis of image slices in a spatio-temporal volume. There
are three major issues that need to be addressed toward this goal:
video partitioning, video characterization and video segmenta-
tion (see Fig. 1 for an illustration). By integrating these compo-
nents, video representation, clustering and retrieval can be re-
alized in a concrete way. The novelty of these approaches lies
in the utilization of patterns in spatio-temporal slices, which on
one hand is effective in exploring temporal events along a larger
temporal scale; on the other hand, this method is efficient since
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Fig. 1. Content-based video analysis.

possibly only few selected slices are needed to be processed for
certain applications.

Analysis of spatio-temporal slices for computational vision
tasks has been proposed since 1985 [1]. Previous works
include visual motion model [1], [25], epipolar plane image
analysis [4], video tomography [2], [30], texture modeling
[13], periodicity analysis [14], camera work analysis [12], and
monitoring and surveillance applications [11]. The findings
from this paper contribute to the areas of studies the temporal
motion characterization and segmentation, spatial motion
(background versus foreground) segmentation, formulated
directly on the pattern analysis of spatio-temporal slices. Our
work on video partitioning can be found in [16]–[18]. These
proposed works are particularly useful for video representation
since qualitative, rather than quantitative information, which
provides essential cues for describing the visual world, can be
acquired in an inexpensive manner.

A. Applications

Our approach is mainly targeted for the content-based video
representation and retrieval. Fig. 1 illustrates the major flow of
content-based video analysis. A video is firstpartitioned into
shots, where each shot is an uninterrupted segment of image
frames with continuous camera motions. Since a shot may have
more than one camera motion, these shots are furthertempo-
rally segmentedinto motion coherent subshots through video
characterization. Each subshots ischaracterizedaccording to its
camera motion. A major advantage of this step is that each sub-
shot can be represented compactly by a few selected or newly
constructed keyframes through the annotated motion. For in-
stance, a sequence with camera panning is well summarized if
a new image can be formed to describe the panoramic view of

1057-7149/03$17.00 © 2003 IEEE
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TABLE I
VIDEO REPRESENTATION THROUGH KEYFRAME

SELECTION AND CONSTRUCTION

a scene; a sequence with camera zoom is well represented by
selecting two frames before and after the zoom. Table I summa-
rizes this motion-driven scheme in representing the content of
subshots.

In video segmentation, we focus on the issues of analyzing
the subshots that contain multiple motion. In our approach,
these subshots arespatially segmentedinto foreground and
background objects. For effective video representation and
retrieval, the background objects can be utilized by a scene
change detection algorithm to group shots that are taken place
in the same site [19]; the foreground objects can be used for
video objects clustering and retrieval [20].

In this paper, we refervideo characterizationas the process
of temporally segmenting shots into finer subunits and simulta-
neously characterizing these subunits according to camera mo-
tions, andvideo segmentationas the process of spatially seg-
menting subshots that are composed of multiple motion into
foreground and background objects.

B. Related Works

Previous works on temporal motion segmentation include [5]
and [12]; works on spatial motion segmentation include [10],
[24],and [31]. Bouthemyet al. [5] employed the affine motion
parameters to describe dominant camera motions; Irani and
Anandan [10] discussed various motion models to annotate and
represent videos; while Wang and Adelson [31] and Sawhney
and Ayer [24] proposed the motion-based decomposition of
videos to describe the background and foreground scenes. Most
of these approaches are based on the iterative motion parameter
estimation from two adjacent frames. It is generally expected
that better results can be acquired if more frames are taken
into account at the expense of computational time. Perhaps the
most similar work to our proposed approach is by Joly and
Kim [12] who employed Hough transform to detect lines in
spatio-temporal slices. Nevertheless, they do not address the
work on spatial motion segmentation. They only select two
orthogonal slices for camera motion analysis, which in general
do not provide sufficient clues for motion annotation.

Broadly we can categorize the works on spatial motion seg-
mentation as sequential motion estimation [3], [9] and simulta-
neous motion estimation [6], [24], [31]. The former category
begins by computing a dominant motion and then removing
pixels corresponding to that dominant motion. The process is
iteratively done until a terminal condition is met. In contrast,

the latter category allows multiple motion models to simulta-
neously compete for the support of pixels and these pixels in
turn influence the estimation of model parameters. The process
is also iteratively done until an objective function is optimized.
Typical works include the clustering of optical flow proposed
by Wang and Adelson [31], robust M-estimation and minimum
description length (MDL) framework by Darrell and Pentland
[6], EM algorithm and MDL framework by Sawhney and Ayer
[24].

Our work can be categorized under the sequential motion es-
timation. The proposed techniques are mainly devoted to pecu-
liar sequences involving a dominant motion which can be iden-
tified with the background motion. The major difference with
other approaches is that instead of analyzing and propagating
the results from one frame to another, our approach measures
the motion information from all frames of a shot and then de-
termines the dominant motion. Unlike [3] and [9], the proposed
approach will work even in the absence of an obvious domi-
nant motion. After a dominant motion is detected, background
subtraction and color back-projection is performed to estimate
the secondary motion. An assumption is that the motion should
contain a certain degree of smoothness such that the holes left
in a background image can be minimized.

C. Plan of the Paper

This paper is organized as follows. Section II conducts a
close examination on the patterns of spatio-temporal slices
which have not yet been thoroughly studied in literature. This
yields an enhanced understanding on how to utilize these
patterns for motion analysis and segmentation. Section III pro-
poses a two-dimensional (2-D) tensor histogram computation
method to represent and analyze the spatio-temporal patterns
of slices. The trajectories which appear in tensor histograms
can describe both camera and object motions. Subsequently,
Section IV describes an algorithm to temporally track and
segment these motion trajectories for motion characterization.
Section V presents two different approaches for spatial layer
segmentation. Approach I exploits the similarity among slices
to partition a spatio-temporal volume into motion layers, with
each layer being modeled by a tensor histogram. However,
this approach cannot handle scenes with cluttered background.
As a consequent, Approach II is introduced to judiciously
decompose the distribution of a tensor histogram into motion
layers. Initially, the background layer of each image frame
is registered and mosaicked to form a panoramic image. The
foreground objects can then be detected expeditiously. Finally,
Section VI summarizes our proposed works and describes
future research directions.

II. OUR METHODOLOGY

If we view a video as an image volume with image
dimension and temporal dimension, the spatio-temporal slices
are a set of 2-D images in a volume with one dimension in, and
the other in or , for instance. One example is given in Fig. 2;
the horizontal axis is, while the vertical axis is . A spatio-tem-
poral slice, by first impression, is composed of color and texture
components. On one hand, the discontinuity of color and texture
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Fig. 2. Patterns in a spatio-temporal slice.

infers the occurrence of a new event; on the other hand, the ori-
entation of texture depicts camera and object motions. While
traditional approaches to motion sequence analysis tend to for-
mulate computational methodologies on two or three adjacent
frames, spatio-temporal slices provide rich visual cues along a
larger temporal scale, which are vividly to be exploited for video
processing and representation. The former gives a snapshot of
motion field; the later, in contrast, offers a glance of motion
events.

A. Spatio-Temporal Patterns

Fig. 2 shows a spatio-temporal slice extracted from a video
composed of six shots. By careful observation of the patterns
inherent in this slice, we envisage the possibilities of accom-
plishing various vision tasks by analyzing these patterns, pos-
sibly in a more effective and efficient way. In brief, the cues that
are directly perceived from these patterns are as follows.

• Shot boundariesare located at places where the color and
texture in a slice show dramatic changes. These changes
may involve more than one frame as indicated by the
boundary of shots and .

• Camera motionis inferred directly from the texture
pattern. For instance, horizontal lines depict stationary
camera and object motion; slanted lines depict camera
panning. Fig. 3 further shows various patterns due to
camera and object motions. A static sequence exhibits
horizontal lines across and ; while camera panning
and tilting results in one slice indicating the speed and
direction of the motion, and the other slice explores the
panoramic information [23]. For zooming, the lines in
slices are either expanded in or out in a V-shape pattern.

• Multiple motionsare perceived when two dissimilar tex-
ture patterns appeared in a shot, as shown in shot. In this
shot, the middle region describes a nonrigid object motion,
while the background region indicates camera panning.

• Motion directionis indicated by the orientation of slanted
lines. In shot , the camera moves to the left; in shot,
the camera moves to the right.

• Motion intensityis proportional to the gradient of slanted
lines. For instance, the speed of panning in shotis faster
than shot .

It is not surprising to find that some conventional computer
vision and image processing algorithms can be applied to ana-
lyze these patterns. Shot boundaries can be detected by color and
texture segmentation (video partitioning) [16]–[18]; the type of
camera motion, and the direction, velocity, and acceleration of
motion can be estimated through the orientation and gradient of

Fig. 3. Patterns in both horizontal and vertical slices.

slanted lines (video characterization) [21]; motion layers can be
obtained by decomposing dissimilar color and texture regions
in the spatio-temporal slices of a shot (video segmentation).

In this paper, our algorithms are formulated directly in 2-D
space, i.e., and space. These algorithms can be
extended to three-dimensional (3-D) space, i.e., 3-D space.
Better results are generally expected in the 3-D formulation,
however, with heavy computational load. Our algorithms in the
2-D formulation are both efficient and effective particularly for
analyzing sport videos where motion is mainly restricted to
camera pan, tilt, zoom, and the combination of pan and object
movement.

B. Computational Domain: Compressed vs Uncompressed

A digital video, in general, is composed of 25 to 30 frames
per second. Processing a one hour video is, hence, burdened
with heavy computation due to huge set of data (90 000 to
108 000 frames). However, as digital video becomes more per-
vasive, an efficient way of analyzing, annotating, and browsing
video will be in high demand. As a result, processing videos
by using the information extracted directly from MPEG data
has become popular in literature [22], [28], [33], [34]. Working
directly with the compressed data, on one hand, greatly reduces
the processing time, while on the other hand, enhances storage
efficiency. This is because the amount of data is significantly
reduced, and only the partial decoding of compressed data1 is
needed.

For computational and storage efficiency, we propose to
process and analyze spatio-temporal slices directly in the com-
pressed video domain (MPEG domain). Slices can be obtained

1For instance, inverse quantization, decoding Huffman code, reconstruction
of DC sequence fromP -frames andB frames. Notice that Inverse Discrete
Cosine Transform (IDCT) can be omitted in partial decompression.
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from the DC image2 volume which is easily constructed by
extracting the DC components3 of MPEG video. The resulting
data is smoothed while the amount is reduced by 64 times in the
MPEG domain. For an image volume of size , the
DC image volume has size . As a result,
spatio-temporal slices extracted horizontally and vertically
from a DC image volume have size and ,
respectively.

III. M OTION ANALYSIS

In our approach, the local orientations of temporal slices are
estimated by the structure tensor introduced in [7], [11]. The
global orientations are further described by tensor histograms.
By modeling the trajectories in tensor histograms, our approach
is capable of classifying motion types as well as separating dif-
ferent motion layers.

For our application, we process all slices, both horizontal and
vertical, in a volume to analyze the spatio-temporal patterns due
to various motions. For the ease of understanding, a horizontal
slice with dimension is denoted as , and a vertical slice
with dimension is denoted as . In addition, a horizontal
slice at the location is denoted as , and a pixel
located at is written as . Since both and
will be processed in the same way, we only describe the analysis
of slices in the remaining paper.

A. Structure Tensor

Structure tensor computation has been extensively studied
and applied to computer vision [7], [11], [15]. Local structure
of an -dimensional space can be represented by a symmetric
tensor of the form [7]

(1)

where is a vector in -dimensional space and is a constant
greater than zero. In 2-D space, tensor represents local structure
as an ellipse, as shown in Fig. 4. The major axis of the el-
lipse estimates the orientation of local structure while the shape
describes the variation of orientation.

One way to analyze the variation of orientation is to decom-
pose the matrix in (1) into eigenvectors and
eigenvalues . The eigenvectors correspond to
the principle directions while the eigenvalues encode the size
and shape of an ellipsoid. Compared with vector or scalar rep-
resentation, structure tensors offer the following advantages.

• Since the variation of orientation can be computed, the
confidence in the estimation is inherently encoded. For in-
stance, in a 2-D local structure, a largerwhen compared
to results in a higher confidence.

• As shown in (1), orientation can be defined only in
modulo 180, i.e., changing the sign of yields the same
representation.

In temporal slices, local structure is observed due to the
change of pixel intensity. Hence, the vectorin (1) can be re-

2DC image is formed by using the first coefficient of each 8� 8 Discrete
Cosine Transform (DCT) block.

3The algorithm introduced by Yeo & Liu [32] is applied to estimate DC com-
ponents fromP -frames andB-frames.

Fig. 4. Tensor representation.

placed by the gradient vector. Consequently, the local structure
of a slice is represented by tensoras

(2)

where

where and are partial
derivatives along the spatial and temporal dimensions respec-
tively. Notice that each slice is smoothed by a Gaussian kernel

prior to tensor computation to suppress noise. The window
of support is set to 3 3 and centered at each pixel in slices.
The purpose of summation in is to obtain new local infor-
mation which can be assigned a higher degree of confidence in
estimation [7].

The rotation angle of indicates the direction of gray level
change in . Rotating the principle axes of by , we have

(3)

where

and , are eigenvalues. In (3), since we have three equations
with three unknowns4 , can be solved and expressed as

(4)

The local orientation of a in slices is computed as

otherwise (5)

4The three unknowns are�, � and� . The three equations are

J cos � + J sin � � J sin2� =�
1

2
(J � J ) sin 2�+ J cos 2� =0

J sin � + J cos � + J sin2� =�
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Fig. 5. Motion trajectories in the tensor histograms.

It is useful to add in a certainty measure to describe how well
approximates the local orientation of. The certainty is

estimated as

(6)

and . For an ideal local orientation, when either
or . For an isotropic structure i.e., ,

.

B. Tensor Histogram

The distribution of local orientations across time inherently
reflects the motion trajectories in an image volume. We can con-
struct two tensor histograms, one for all horizontal slices and
the other for all vertical slices, to model the motion distribution.
Denote and , respectively, as the local ori-
entation and the associated certainty value of a pixel at location

, a 2-D tensor histogram is expressed as

if
otherwise

(7)
which means that each pixel in slices votes for the bin with
its certainty value . The resulting histogram is associated with
a confidence measure of

(8)

where is the temporal duration and is the image size. In
principle, a histogram with low should be rejected for further
analysis.

Motion trajectories can be traced by tracking the histogram
peaks over time. These trajectories can correspond to i) object
and/or camera motions and ii) motion parallax with respect to
different depths. Fig. 5 shows two examples, in (a) one trajectory
indicates the nonstationary background, and one indicates the
moving objects; in (b) the trajectories correspond to parallax
motion.

IV. TEMPORAL MOTION SEGMENTATION

Tensor histograms offer useful information for temporally
segmenting and characterizing motions. The algorithm starts by
tracking a dominant trajectory along the temporal dimension. A

dominant trajectory is de-
fined to have

(9)

In (9), the dominant motion is expected to stay steady approx-
imately for 15 frames (0.5 s). The threshold value is
empirically set to tolerate camera jitter. After a dominant tra-
jectory is detected, the algorithm simultaneously segments and
classifies the dominant motion trajectory. A sequence with static
or slight motion has a trajectory of . Ideally,
should be equal to 0. The horizontal slices of a panning sequence
form a trajectory at or . If , the
camera pans to the right; if , the camera pans to the left.
A tilting sequence is similar to a panning sequence, except that
the trajectory is traced in the tensor histogram generated by ver-
tical slices. The parameter is empirically set to (or 5
degree) throughout the experiments. For zoom, the tensor votes
are approximately symmetric at . Hence, instead of being
modeled as a single trajectory, the zoom is detected by

(10)

Figs. 6(a) and 7(c) shows the temporal slices of two shots
which consist of different motions over time, while Figs. 6(b)
and 7(d) shows the corresponding tensor histograms. In Fig. 6,
the motion is segmented into two subunits, while in Fig. 7, the
motion is segmented into three subunits.

A. Experiments

To verify the effectiveness of the proposed algorithm,
we conduct an experiment on an MPEG-7 standard video,
Nhkvideo.mpg. The video consists of 15 000 frames. The video
partitioning approach introduced in the previous chapter is
employed to partition the video into 45 shots. Table II summa-
rizes the performance of the proposed approach. Throughout
the experiment, camera rotation in shot 0 and shot 44 of
Nhkvideo.mpgare falsely detected as zoom sequences. Simi-
larly, in shot 11 the combination of object rotation and camera
tilting has falsely been detected as zoom. In shots 7, 20, 31, and
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Fig. 6. Zoom followed by static motion.

Fig. 7. Static, pan, and static motions.

40, the combination of camera pan and zoom has been falsely
detected as pan motion. Some examples are shown in Fig. 8. In
shot 43, the pan subunit is undetected since the corresponding
slices are mostly occupied by homogeneous regions.

On a Pentium III platform with one processor and 128M main
memory, the algorithm takes about 12 min to compute the tensor
histograms of all shots, and takes less than one second to analyze
and classify the camera motion of a tensor histogram. On av-
erage, the algorithm processes 20 frames per second. The speed
can be further improved by selecting a subset of slices for the
tensor histogram computation.

V. SPATIAL SEGMENTATION

After motion characterization, subshots with multiple mo-
tion5 are further processed by spatial segmentation. To filter out
those subshots that are not suitable6 for analysis (e.g., subshots
where their motion spreads over the bins of tensor histograms),
a simple algorithm is carried out to track the motion trajectories
in a tensor histogram prior to segmentation. The algorithm

5Subshots that are not annotated as static, zoom, pan and tilt in Section IV are
assumed to have multiple motion. Under this assumption, background compo-
nents at various depths may be segmented into multiple layers when the camera
pans.

6Typical examples are subshots with large area of homogeneous region or
scenes with many moving objects.

TABLE II
MOTION ANNOTATION FOR THEVIDEO NHKVIDEO.MPG. C DENOTESCORRECT

DETECTION; F DENOTESFALSE DETECTION;M DENOTESMISSEDDETECTION

TABLE III
SUMMARY OF TABLE II

first looks for which is the his-
togram peak at time, and then trace the trajectory by searching
for next
at time . If one of the resulting trajectory satisfies (9) with

, spatial segmentation will be carried out. Fig. 5 shows
the motion trajectories that are tracked by this simple algorithm.

In this section, we propose two different approaches for spa-
tial segmentation. The first approach utilizes the color similarity
among temporal slices while the second exploits the motion tra-
jectories inherently exist in tensor histograms. The difference
between these two approaches lies on the trade off between sim-
plicity and effectiveness. The first approach is simple and effi-
cient, however, may not function properly if the background is
cluttered. The second approach, on the other hand, is compara-
tively robust with slightly more computational load.

A. Approach I: Exploiting Color Similarity

Fig. 9 shows an overview of this approach. The idea is to par-
tition a 3-D image volume into several subvolumes by clustering
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Fig. 8. Examples of false and missed detections.

Fig. 9. Segmentation of an 3-D image volume into subvolumes through color similarity.

the temporal slices with similar color content. Ideally, each sub-
volume corresponds to the evolution of one moving object over
time. For indexing and retrieval, these subvolumes can further
be characterized and annotated by the method described in Sec-
tion IV. In Fig. 9, the subvolumes with dominant motion are
assumed reflecting the background motion.

We illustrate the idea of this approach by first showing an
image sequence which involves object tracking. The sample
images of this sequence are given in Fig. 10 while the corre-
sponding horizontal and vertical slices are shown in Fig. 11. The
horizontal slices model the camera and object motions, while the
vertical slices explore the background panoramic information as
well as follow the target object over time. We employ-mean
clustering, as given in Fig. 12, to group similar slices. As the
number of clusters is unknown, the similarities among adja-
cent slices are first exploited (steps 1 to 3 in Fig. 12) to estimate

. We adopt 3-D color histogram in HSV space for similarity
measure. The hue is quantized to 18 bins, while the satura-
tion and brightness components are quantized to 3 bins re-
spectively. The quantization provides 162 (183 3) distinct
color sets. The similarity between two temporal slices
and is

(11)

based on the color histogram intersection. and
are the histograms of and , respec-

tively. Experimental results show that the horizontal slices are
clustered as one group, while the vertical slices are clustered into
two groups.7 By projecting the clustering results into the orig-
inal image volume, we obtained two subvolumes. After com-
puting the tensor histograms, one of the subvolume correctly
reflects the camera panning information.

We further employ a mosaicking algorithm to illustrate
the correctness of the experimental result. The mosaic is
constructed by pasting together the DC images based on the
displacement computed from the correlation of a few scans in
the image subvolume. Fig. 13 shows the mosaicked images;
one corresponds with the tracked object, and the other one
corresponds to the panning background. The tracked player in
Fig. 13(a) is blurred due to 3-D head and body movements.

We carry out another experiment on a moving objects se-
quence, as shown in Fig. 14. The original image volume is di-
vided into two subvolumes. The tensor histogram of the moving
objects subvolume resembles a camera panning sequence, as in-
dicated by the temporal slices in Fig. 14(f) and (g). The mo-
saicked image of the moving objects are shown in Fig. 15. With
the current implementation the total time involved in clustering,

7In this experiment, the slices in Fig. 11(j), (k), (l), (p), (q) and (r) are into
one group, while the slices in Fig. 11(m), (n) and (o) are into another group.
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Fig. 10. Object tracking image sequence.

Fig. 11. Spatio-temporal slices of the image sequence in Fig. 10.

Fig. 12. Clustering algorithm.

Fig. 13. Segmented motion layers of the image sequence in Fig. 10. (a) Target
object and (b) mosaicked background image.

tensor histogram computation and mosaicking is approximately
12 frames per second on a Pentium III platform with one pro-
cessor and 128M main memory.

Fig. 14. (a)–(d) Moving objects sequence; (e)–(g) the horizontal temporal
slices; and (h)–(j) the vertical temporal slices.

Fig. 15. Mosaicked image of the moving objects in Fig. 14.

B. Approach II: Exploiting Motion Similarity

The approach presented in Section V-A, on one hand, is
simple and efficient; on the other hand, it cannot handle cases
where the background is composed of various color elements.
Fig. 17 shows an example. The color content among the
horizontal slices are perceptually different, in addition, the
foreground and background objects show some degree of sim-
ilarity in color. While the correct segmentation is to partition
the vertical slices as two groups and the horizontal slices as one
group, the previous approach groups the vertical slices into one
clusters and the horizontal slices into three clusters. As a result,
the foreground and background layers cannot be successfully
decomposed.

As a complement, we describe a more general approach to
solve this problem in this section. Imagine that there are mul-
tiple motion trajectories in a tensor histogram, intuitively these
trajectories can be simply back-projected to the spatio-temporal
slices to form spatially separated motion layers. Fig. 16 illus-
trates the major flow of this idea. Given a set of spatio-temporal
slices, a 2-D tensor histogram (introduced in Section III-B) is
computed. The 2-D histogram is further nonuniformly quan-
tized into a 1-D normalized motion histogram. The histogram
consists of seven bins to qualitatively represent the rigid camera
and object motions. The peak of the histogram is back-pro-
jected onto the original image sequence. The projected pixels
are aligned to generate a complete background which may have
holes. Foreground objects are then effectively segmented by
background subtraction and color back-projection techniques.
In contrast to the previous method, this proposed approach suc-
cessfully decomposes the image sequence shown in Fig. 17 into
foreground and background layers.

1) Background Reconstruction:We begin by introducing a
technique for locating the regions in frames that correspond to
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Fig. 16. Scheme for background and foreground segmentation.

a dominant motion. Then we propose a novel approach to com-
pose these regions into a panoramic image, by matching corre-
sponding points across frames directly in spatio-temporal slices.

Quantization of motion histogram:Given a 2-D tensor
histogram with temporally coherent motion unit, the
tensor orientation is nonuniformly quantized into seven bins,
where

The scheme quantifies motion based on its intensity and di-
rection. and represent the most intense motion, while
represents no or slight motion. The normalized 1-D motion his-
togram is computed by

(12)

Adaptive setting of quantization scale is a difficult problem.
Since we assume motion characterization is performed prior to
motion segmentation, camera motion is supposed to be coherent
and smooth. Thus, the setting should not be too sensitive to the
final results. Empirical results indicate that our proposed set-
ting is appropriate for most cases. For the case when a motion
trajectory crosses the boundary of two bins, the result of fore-
ground detection will be effected. Nevertheless, this undesired

effect can be remedied by the color back-projection technique
which will be discussed later.

Tensor back-projection:The prominent peak in a 1-D mo-
tion histogram reflects the dominant motion of a sequence, as
shown in Fig. 16. By projecting the peak back to the temporal
slices , we can locate the region (referred to as the layer of
support) that induces the dominant motion8 . The support layer
is computed as

otherwise
(13)

where

(14)

is the location of a pixel in . Fig. 18 illustrates an
example. The temporal slice in Fig. 18(a) consists of two mo-
tions, while the layer of support in Fig. 18(a) locates the region
corresponding to the dominant motion (white color).

Tensor back-projection will generally leave holes in the layer
of support. The number of holes is mainly dependent on the de-
gree of occlusion due to objects in other layers, and the size and
number of regions with no textural information. These holes,
nevertheless, can be filled by techniques like morphological fil-
tering, smoothing and interpolation. Besides holes, a support
layer at the border of two motion layers cannot be precisely lo-
cated. This is due to the effect of Gaussian smoothing when
computing structure tensors. In addition, the estimation fails
when representing a local structure that occupies more than one
motion layer since the orientation variation of tensor is large.

Point correspondence and background mosaicking:Once
the support layer of a dominant motion is computed, intuitively

8This process is equivalent to the quantization of tensor orientation computed
for spatio-temporal slices.
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Fig. 17. Results of spatial motion segmentation for the background scene which consists of various color elements.

Fig. 18. Support layer of dominant motion.

we can align and paste the corresponding regions to reconstruct
the background image. Nevertheless, this is not a trivial issue
since theoretically the correspondence feature points need to be
matched across frames. This is an ill-posed problem specifically
at the regions of no texture information. The problem is further
complicated by occluded and uncovered feature points at a par-
ticular time instance.

To solve this problem, we propose a method that selects tem-
poral slice which contains two adjacent scans

and with the most textural information at time,
and then perform feature points matching across the two scans.
For each time instance, the criterion for selecting a slice is

(15)

and

where is the certainty measure of a tensor at
. The value indicates the richness of texture

of the surrounding of a pixel located at . In practice,
and .
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Fig. 19. Results of foreground detection by background subtraction.

We adopt the motion model involves only translation9 when
aligning and pasting two image frames. Denote as the trans-
lation vector at time, is directly computed from two scans
by

(16)
where is a robust median estimator employed to reject out-
liers. The sign of is dependent on the in (14) which indi-
cates the motion direction. From (16), it is interesting to note
that the problem of occlusion and uncovered regions is implic-
itly solved due to the use of support layer and robust estimator.
Naturally the occluded region at framecan be filled by the
uncovered region at frame . An example of a mosaicked
background reconstructed from 140 frames is shown in Fig. 19.

In practice, however, the visual effect of a mosaicked image
may suffer from the ghosting effect [26] (or double images) and
the holes. The former problem is due to the variation of depth
in the background scene, and the error during feature points
registration. The latter problem is because of the occluded or
unexplored background regions. These problems can be par-
tially solved by the deghosting algorithm [26] and interpolation
techniques.

2) Foreground Detection:The reconstruction of a back-
ground object, in principle, has substantially facilitated the
task of foreground detection. In this section, we introduce two
different methods, namely background subtraction and color
back-projection, to approximately segment the foreground
objects. These two methods are finally combined to arrive at a
better solution in locating the objects.

Background subtraction:The simplest approach to detect
foreground objects is by subtracting image frames from a recon-
structed background. Denote as a reconstructed background
and as an image frame10 indexed by and time ,
we write

(17)

9This model is suitable for our applications (as indicated in Table I), par-
ticularly for analyzing sport videos and home videos. For multiple motion case,
these videos typically involve camera pans to track a person or an object moving
in front of a static background.

10I(x; i; t) is also the pixel location of the horizontal sliceH(x; t) .

where and is a residue image. If
is a hole, will be filled by the value 255. Fig. 19

shows the results of background subtraction. The residue im-
ages contain some noise due to the ghosting effect. This noise,
in practice, can be removed by either a threshold setting or mor-
phological filtering techniques.

Color back-projection: Suppose the approximate region
of a foreground object is known, we can actually replace the
color values of that region by its color distribution probabilities.
In this case, the dominant color of a foreground object will have
a high probability, while the subregions not belonging to the
foreground object should ideally have values close to zero. Thus,
we can automatically prune the approximate region, whilst ef-
fectively locating the foreground object.

In our scheme, the support layer of a foreground object
can be simply obtained by inverting the support layer

of a background object11 , i.e.,

if
if .

(18)

Our approach computes a 3-D normalized color histogram for
the region supported by throughout a sequence, and
then projects the probability values in the histogram back
to to obtain . In other words, each pixel is replaced by
its color value weighted by a probability. The probability is
computed from the color histogram of the detected foreground
objects obtained through background subtraction. Letbe a
normalized histogram, and be the quantized color value,
mathematically we have

project

for (19)

back-project (20)

where is the area of , while function is the color quanti-
zation. In (19), a normalized color histogramis computed for
the region . In (20), the value of each pixel in is replaced
by its corresponding probability value in. Fig. 20 shows the
examples on , and the projected image as a result of color
back-projection.

The color back-projection idea is similar to Swain’s color in-
dexing scheme [27] and Huang’s spatial color index algorithm
[8]. They assume that the template of an object is known before-
hand; a similar object in a new image is first recognized by color
histogram intersection, and then located by color back-projec-
tion and convolution. In our case, the histogram intersection and
template convolution are not necessary since the initial object
location is approximately known.

Foreground image computation:Background reconstruc-
tion is always imperfect due to the ghosting effect, as a result,
noise removal after background subtraction can be a dirty task.
Likewise, the drawback of color back-projection is amplified
when the foreground and background are some how similar in
color; the color histogram need to be finely quantized in order
to distinguish the color of foreground and background objects.

11Mask (X; t) = Mask (x; i; t) = Mask(x; t) in (13).
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Fig. 20. Results of foreground detection by color back-projection. The
corresponding original image frames are shown in Fig. 19.

Fig. 21. Segmentation of foreground objects.

As a compromise, the two approaches can be linearly combined
to trade-off their disadvantage. Denote as the normalized
residue image of an image frame, a foreground image is
computed by

Foreground (21)

where

Foreground (22)

is the probability of a pixel belongs to a foreground ob-
ject. In (21), ideally, the background pixels ofshould be set to
zero, while the foreground pixels should be set to a value closed
to the color value of .

Fig. 21 shows the computed foreground objects, together with
the original image frames. Compared with Figs. 19 and 20, the
noise effect is minimized.

3) Experiment: We conduct experiments on six image se-
quences and each sequence has approximately 150–250 frames.
In Fig. 22–27, the original image frames, the computed fore-
ground images, and the mosaicked background of these image
sequences are shown. In each tested sequence, there is a fore-
ground object (player) running across the background, while the
camera zooms and pans either to the left or the right to track
the foreground object. The background is not totally rigid, it
may introduce slight motion due to the movement of audiences
(Fig. 22) or other players who stand in front of background
(Figs. 24 and 26). Notice that although the computed foreground
and background images are processed directly in a DC image se-
quence, these images can be easily scaled up by decompressing
their MPEG sequences.

Fig. 22. Experiment 1.

Fig. 23. Experiment 2.

As seen from these figures, the foreground and background
objects are in general correctly separated. It is worthwhile men-
tioning the following three observations.

• Homogeneous regions are not correctly segmented, as
shown in Figs. 24, 25 and 27. This is a general problem
for most vision tasks. Nevertheless, this undesired effect
has been minimized using the color back-projection tech-
nique, in the cases where the foreground and background
do not share similar coloring.

• The noise introduced by a background object will create
a ghosting effect in the reconstructed background image.
This in turn affects the results of foreground detection.
One obvious example can be found in Fig. 26. In the
first few frames, the segmented results are not satisfac-
tory. However, as the targeted foreground object moves
away from the noisy background, the segmented results
are better. This implies that certain degree of post-pro-
cessing, such as object tracking, is necessary to improve
the results.
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Fig. 24. Experiment 3.

Fig. 25. Experiment 4.

• The color back projection technique can hinder the seg-
mentation results, as shown in Fig. 25. After the player
takes off his shirt, some portions of the body are not cor-
rectly segmented.

The experiments are conducted on a Pentium III platform
with one processor and 128M main memory. The algorithm
takes approximately 10 frames per second for background
reconstruction and foreground detection. In brief, the proposed
techniques are both effective and efficient mainly for sequences
involving translational dominant motions. These sequences
happen frequently in sport and home videos.

VI. CONCLUSION

Based on the pattern analysis of slices in spatio-temporal
image volume, we have presented novel approaches in tempo-

Fig. 26. Experiment 5.

Fig. 27. Experiment 6.

rally and spatially segmenting the content of videos. In terms of
effectiveness, the proposed works are suitable for content-based
video representation, since qualitative information can be ex-
tracted directly from slices to describe the content of videos.
In terms of efficiency, since slices are extracted from MPEG
DC sequences for pattern analysis, the proposed methods can
achieve reasonable speed due to the significant reduction of
input size.

We have considered the problems of characterizing motion
and separating motion layers by utilizing the patterns in slices.
The proposed motion analysis method, on one hand, employs
structure tensor to compute the local orientation of slices;
while on the other hand, utilizes tensor histograms to capture
the temporally and spatially separated motion patterns across
time. A temporal motion segmentation method has hence been
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proposed to track the motion trajectories in tensor histograms to
describe camera motions over time. Throughout experiments,
this method is found to be robust to static, pan and tilt types
of camera motions. In addition, to spatially partition an image
volume into different motion layers, the similarity of slices is
exploited. We have demonstrated the approach with several
image sequences. While the method is simple and efficient, it
cannot handle cases where the background is cluttered. To solve
this problem, we have further proposed a more general mo-
tion-based foreground and background layers decomposition
method. The basic idea to obtain a background support layer is
by back-projecting the dominant motion trajectory in a tensor
histogram to spatio-temporal slices. Compared to most motion
segmentation methods, the proposed approach is efficient since
the problems of motion estimation and motion segmentation
are decoupled and there is no iterative procedure involved.

Several issues have been left out in this paper and ultimately
intended for future works. These issues include modeling the
relationship among slices and robust tracking of foreground
object. The structure tensor computation approach described in
this paper can be more efficiently implemented if the redun-
dancies among slices are carefully explored. For some cases,
probably only a few selected slices instead of a whole image
volume are sufficient for motion computation. In addition,
besides horizontal and vertical slices, diagonal slices are also
useful particularly for diagonal motion. To adaptively decide
which slices should be selected, a pre-filtering of MPEG
motion vectors to obtain initial cues may be useful, and this
requires further investigation.

The foreground object computation algorithm can be effec-
tively done by assuming the camera motion is smooth. Consider
a sequence taken by a hand held camera, it may undergo camera
jitter at certain duration. We can, however, derive a method to
track objects beginning from the image frames that undergo
smooth camera motion, and then propagate the results forward
or backward to track objects during the period when the camera
suffers from jitter. The selection of initial tracking period can be
inferred from the motion trajectories of tensor histograms. The
degree of smoothness and the certainty value of a partial seg-
ment of trajectory is a good indication of whether a camera has
undergone jitter.
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