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a b s t r a c t

This paper proposes a new approach for the discovery of common patterns in a small set of images by
region matching. The issues in feature robustness, matching robustness and noise artifact are addressed
to delve into the potential of using regions as the basic matching unit. We novelly employ the many-
to-many (M2M) matching strategy, specifically with the Earth Mover’s Distance (EMD), to increase
resilience towards the structural inconsistency from improper region segmentation. However, the match-
ing pattern of M2M is dispersed and unregulated in nature, leading to the challenges of mining a common
pattern while identifying the underlying transformation. To avoid analysis on unregulated matching, we
propose localized matching for the collaborative mining of common patterns from multiple images. The
patterns are refined iteratively using the expectation–maximization algorithm by taking advantage of the
‘‘crowding” phenomenon in the EMD flows. Experimental results show that our approach can handle
images with significant image noise and background clutter. To pinpoint the potential of Common
Pattern Discovery (CPD), we further use image retrieval as an example to show the application of CPD
for pattern learning in relevance feedback.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Huge amount of visual information in the form of digital images
and video databases is generated everyday. Extracting visually
common patterns from images is becoming increasingly important
for various multimedia applications. The mined patterns can serve
as the entry points for efficient browsing of large visual databases,
while enable effective clustering and search. Common Pattern Dis-
covery (CPD) can be regarded as a superset problem of image reg-
istration and pattern detection as shown in Fig. 1. Given two
images I and J, image registration finds the best transformation T
that aligns I and J. Pattern detection, in addition to finding the opti-
mal T, locates the subimage J* of J that best matches I through the
transformation T. CPD extends both problems to find the best
match of a subimage I* in I with J* through an optimal but unknown
transformation T. Compared to registration and detection, CPD has
no knowledge of I*, J* and T which need to be simultaneously opti-
mized, leading to a dramatically inflated search space. CPD can be
extended to the multiple image case as shown in Fig. 1(c). In gen-
eral, more images lead to more visual evidence for the discovery of
common patterns. Given a set of N images, Ii=1. . .N, the task of CPD is
to find the subimages, I�i¼1...N and their transformation parameters

Ti=1. . .N which maximizes a particular similarity function H. CPD
can be formulated as follows

fTi; I
�
i gi¼1...N ¼ argmax

fTi ;I
�
i gi¼1...N

HðT1ðI�1Þ; . . . ; TNðI�NÞÞ ð1Þ

CPD, by definition, is related to but different from the recent
research in visual category recognition [1]. CPD is a multiple image
matching technique that performs ‘‘exact” object extraction while
visual category modeling learns the visual models of object catego-
ries that may cover a wide spectrum of visual appearances.
Although visual category recognition also looks for visually consis-
tent patterns in a group of images, it is generally a learning process
which uses a training set to capture the variability in appearances
among the objects either through discriminative or generative
modeling. On the other hand, CPD is a matching technique that finds
deformed replicates of the same object from a small set of uncon-
strained images. It performs vigorous search to mine common
patterns which might have undergone affine and photometric
transformation from images with background clutter. Despite the
fundamental difference, in practice CPD can be used as a pre-pro-
cessing step for visual category recognition. A good model for recog-
nition can be learnt from common patterns discovered in a training
set.

Generally, CPD performs pattern mining in search of the opti-
mum matching at the subimage level. It searches for an unknown
subset of primitives from an image that best matches all equally
unknown subsets of all other images, in terms of the appearance
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and geometric consistency. A fundamental problem why the prob-
lem is challenging is that the visual data is unstructured and unor-
dered, leading to ambiguity in grouping perceptually meaningful
patterns. The problem becomes even harder when input images
also contain variations in terms of viewpoint, affine transforma-
tions (translation, rotation, stretching and scale), photometric
transformations (color, illumination and shading) and occlusion.

The challenges in CPD include feature robustness, matching
robustness and noise artefacts. For feature robustness, matching
can be performed either sparsely on a set of points at visually inter-
esting locations picked by feature detectors [2], or densely on a set
of blocks from grid partitioning or a set of regions generated from
the segmentation of the image space, respectively. Having a set of
robust features against the variations of object appearance and
transformation is always difficult. Points, sampled at prominent
locations, can only sketch the outline of a common pattern but lack
sufficient details especially on homogeneous parts, thus sacrificing
completeness. Blocks, uniformly and densely sampled from whole
image space, are not tolerant to scale change due to rigid partition-
ing. Regions, adaptively and coherently segmented, preserve com-
pleteness for matching. However, robustness is a major concern
because image segmentation is hardly perfect. Under such circum-
stances, the choice of matching strategies becomes critical in order
to overcome the structural disparity due to image segmentation.

Depending on the mapping constraint being imposed, matching
can be categorized into one-to-one (O2O), many-to-one (M2O),
one-to-many (O2M) and many-to-many (M2M) matching. For
CPD, O2O is the de facto matching scheme [3–5,10] because unique
pair-wise correspondences are useful to estimate the affine
transformation between two common patterns. O2O, however, is
sub-optimal particularly for region matching since the erroneously
segmented regions cannot be effectively matched. For instance,
due to imperfect segmentation, one region in an image ideally
should match to a collection of broken regions in another image.
To tolerate structural perturbation due to image segmentation,
M2M appears as a more generalized matching strategy, with
O2O, O2M and M2O as its special cases. M2M allows bidirectional
partial matching and thus is able to adaptively correlate two sets of
fragmented regions. For CPD which searches for common patterns
at subimage level, M2M still poses serious challenge since the
matching patterns of M2M could be chaotic and unregulated in
nature and warrants further investigations.

Noise artefacts could influence the decision of matching in sev-
eral ways. Confusion may arise when several semantically unre-
lated regions form a set of well-aligned patterns that by chance
well-correlates across the query images. This occurs frequently
when the background contains significant clutter and a local opti-
mization algorithm is used to solve the correspondence problem.
In the presence of noise, matching, particularly O2O, would typi-
cally tolerate irrelevant correspondences to achieve overall consis-

tency, or removes relevant but noise-inflicted correspondences.
Noise artifacts could also exist in terms of common background.
For example, the object car always co-occurs with the background
concepts like road and people. In fact, by definition, the common
background qualifies as a common pattern in its own right. In this
case, the use of negative images as additional information is neces-
sary to guide the mining of common patterns.

The remaining of the paper is organized as follows. Section 2
describes related works while Section 3 gives an overview of our
approach. Section 4 presents our approach on incorporating the
visual and spatial information for similarity measure based upon
Earth Mover’s Distance (EMD) while Section 5 further describes
the employment of local EMD flows for mining common patterns.
The proposed approach, namely Local Flow Maximization (LFM),
iteratively mines the position and scale of common pattern across
multiple images through EM algorithm. Section 6 presents our
experimental results, while Section 7 discusses the application of
CPD to image retrieval. Finally, Section 8 concludes this paper.

2. Previous works

Previous works on CPD can roughly be categorized into three
major directions. The first direction mainly focuses on graph-based
techniques. Images are first segmented into constellations of
homogeneous regions and then converted into graph representa-
tions such as the Attributed Relational Graph (ARG) as shown in
Fig. 2. CPD can then be solved as a subgraph isomorphism problem.
In [3,4], Hong and Huang use a linear combination of graph model
components to handle the variations in the common patterns.
Expectation–maximization (EM) is then used to iteratively find
the model parameters. In [5], Jiang and Ngo proposed a backtrack
depth first search algorithm to mine for the maximal common sub-
graph from a set of ARGs. In [6], multiscale segmentation tree is
used as the representation of choice where geometric and photo-
metric attributes are taken into account when looking for the max-
imum common sub-trees. Although the graph-based approaches
provide a ready and intuitive framework for CPD, its effectiveness
is undermined by the ambiguities resulting from segmentation.
During this process, homogeneous regions could be over-seg-

Fig. 2. (a) Two original images with slight variation in illumination. (b) Segmented
version of (a) consists of several image segments in different colors. (c) Attributed
Relational Graphs (ARG) of (b). Each node of the ARG represents a segment of the
image, and the color of that segment is the attribute of the node. There is an edge
connecting two nodes if and only if the corresponding two segments are adjacent to
each other in the image. Slight variation in illumination results in inconsistent ARG
structures and connectivity. These inconsistencies would be further aggravated
when affine transformations are present.

Fig. 1. (a) Image registration: Given a template (first image), find the affine
transformation to the second image (second image). (b) Pattern detection: Given a
template (first image), mine the subimage and the transformation parameters from
a target (second) image. (c) Common Pattern Discovery: Without any prior
information of the common pattern, mine the unknown common subimages given
a set of images.
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mented into smaller pieces, and non-homogeneous regions could
be erroneously merged into a single region, as a result of imaging
variations such as shading, scale, viewpoint and illuminations, or
heuristic segmentation settings. Fig. 2 shows the structural incon-
sistency of the ARGs generated by the segmentation step owing to
illumination variation. In our previous work [7], we show that EMD
matching on the ARG of a segmented image is less sensitive to the
structural inconsistencies arising from image segmentation. The
common pattern is iteratively discovered as the local region where
the flows of the EMD maximize using EM.

The second direction adopts point-to-point (P2P) matching and
avoids image segmentation. Feature points which are similar in
appearance and geometrically consistent are extracted as the cor-
respondences across images. On this front, the work by Berg, Berg
and Malik [8] provides the state of the art P2P matching between a
pair of images. They pose the correspondence between two sets of
points as an integer quadratic programming problem, where the
cost function is based on the local appearance and geometric dis-
tortion between pairs of corresponding points. The matching tech-
nique has been shown to be successfully adapted for pattern
detection (with exemplars manually selected). However, when ex-
tended to automatic model building, a task equivalent to CPD, it re-
quires a large number of exemplars to statistically determine
significant points. Another important work is on semi-local affine
parts for object recognition [9] where groups of geometrically
semi-local affine regions are mined. Triplets of local affine regions
(ellipse) form the basic matching units. Triplets having similar
appearance and consistent geometry in terms of the ellipse orien-
tations are matched and extracted. The matching pairs are then lo-
cally grown by looking for similarly consistent neighbors. A
validation set is used to rank the local structure according to its
repeatability. However, there is an implicit assumption that the
background is non-repeatable. In summary, it is unknown how ro-
bust these approaches are when the number of training images are
as few as 3–5 images, especially with the presence of background
clutter. In [10], Jiang and Ngo attempt CPD using a small set of
training images. Images are partitioned into grids of blocks and a
color histogram is extracted for each block. Given two images, a
bipartite graph is constructed with two sets of blocks. The Maxi-
mum Weighted Bipartite Graph (MWBG) matching algorithm is
employed for finding the block correspondences, while procrustes
analysis is adopted for finding the optimum transformation. The
optimizations of matching and transformation are carried out iter-
atively until convergence.

Both the graph-based and point-based methods advocate
matching as its underlying strategy and agree that the common
pattern is constructed from multiple visual parts. The third direc-
tion, known as multiple instance learning (MIL) adopts a different
approach and assumes that the common pattern can be succinctly
represented by a single feature vector. Sample features are pooled
from the image set to track the best point in the feature space to
represent the common pattern. In most MIL algorithms [11–16],
the training images are labeled as positive and negative bags,
respectively, depending on the existence of the common pattern.
The training images are partitioned into segments, and low-level
features are extracted to form the bag-of-features. The common
pattern is found by locating a feature point near to most positive
bags but far from the negative bags. One popular technique is
the Diverse Density (DD) [11] where gradient ascent is employed
to locate the optimal feature point. MIL requires a large amount
of training images for reliable statistical analysis. In order to mine
patterns that is invariant to various transformations, a large and di-
verse set of features is extracted but this inevitably results in the
increase of noise in the feature pool. The estimation of an optimal
feature point becomes highly difficult in this setting. In addition,
the capacity of a feature vector to highlight the multiple variations

in the common pattern is questionable. MIL only operates in the
feature space, and therefore suffers from an over-reliance on the
features for the description of a common pattern. Compared to
MIL, matching approaches are relatively robust for the capability
of excluding noises by considering both feature and geometric con-
sistencies as shown in our experiment later.

Other recent approaches are [17,18]. In [17], data mining
approach has been employed to rapidly discover frequent spatial
keypoint configurations from tens of thousands of candidates. In
the approach, keypoints are initially soft-quantized into discrete
visual keywords and then frequent pattern mining, specifically
the Apriori algorithm, is employed to discover groups of keypoints
that are found to always co-exist within a localized neighborhood.
In [18], a random partitioning scheme is adopted where the image
spaces are randomly partitioned over many rounds. The subimages
are then matched and the series of popular images are aggregated
to produce overlapping blocks known as ‘‘voting map”. The votes
accumulated at each block are influenced by its size as well as
the number of correspondences to other blocks. The areas with
high concentration of highly popular blocks thus constitute the
common pattern.

In this paper, we extend on our previous work in [7]. We
employ negative samples (cf. Section 4.2) as a tool to overcome
the common background problem where background patterns that
always co-exist with the pattern of interest are indistinguishable in
the absence of any supplementary information. In [7], the initial
positions of the common patterns are estimated using the mean
of the flows of EMD matching conducted across the images. In this
paper, we use a weighted Parzen-window (cf. Section 5.3) to take
into account the density of the flows to derive a better initializa-
tion. In addition, a speedup technique has been proposed (cf. Sec-
tion 5.2) by tracking the candidate common patterns to the best
possible location without re-estimating the scale during each iter-
ation. Finally, more comprehensive experiments are carried out to
further confirm the effectiveness of the approach. This includes the
application of CPD to image retrieval tasks to illustrate its potential
for vision-based tasks (cf. Section 7).

3. Overview of proposed CPD

In this paper, we propose CPD with image-segmented regions as
units and EMD as the M2M matching strategy. Region is chosen for
its greater potential in describing a complete common pattern. The
corresponding robustness issue of region units is tackled with EMD
which simulates M2M matching to map erroneously segmented
regions, resulting in a slightly more involved matching pattern.
The problem is formulated as a missing data problem, and solved
under expectation–maximization (EM) framework with the
regions as the observations, and the scale and centroid of a
common pattern as missing data, through the analysis of the flows
of regions among images.

An overview of the proposed framework is shown in Fig. 3. First,
the initialization step predicts the initial position values c(0) of the
common patterns (cf. Section 5.3). Then, the best scales s(k) and
positions c(k) of the candidate common patterns P(k) are updated
iteratively during the maximization (cf. Section 5.1) and the expec-
tation (cf. Section 5.2) steps, respectively. The estimation of c(k) is
essentially a tracking process based upon a successive chain of
EMD matchings. In our approach, matching is performed locally
instead of globally, where candidate common patterns P(k) are first
predicted from each positive example and then matched as a whole
across multiple images. Localized matching is more tolerant to
noise since the correspondences from multiple regions from the
predicted patterns are considered jointly, while avoiding irrelevant
correspondences from irrelevant regions which have been ruled
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out by the prediction. At such granularity, the goodness of match-
ing is determined collectively as a bag of correspondences rather
than assessing each match pair individually. The predicted com-
mon patterns are iteratively refined in subsequent iterations until
an optimum solution is found.

To regulate the chaotic correspondence fabric, negative cues
and spatial information is loosely embedded into the similarity
measure for matching, thus adding more descriptive power to

the underlying features. This encourages more flow transfer among
the common patterns and less interactions with irrelevant nodes.
Tracking the detailed transformations of the common patterns in
different images aids the pattern mining process. However, in this
paper we consider only the scale and translation on common pat-
tern during mining. Knowing fine transformation parameters such
as rotation, stretching and reflection is not necessary since the ulti-
mate goal is to locate the common pattern. Obviously, the biggest

Fig. 3. Our proposed method. The scale and centroid of the candidate common pattern are updated iteratively during the maximization and expectation stage, respectively.
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challenge in localized matching is to effectively pick the best can-
didate pattern for matching.

4. Many-to-many matching with Earth Mover’s Distance

4.1. Earth Mover’s Distance

EMD measures the distance between two weighted point sets as
a transportation problem [19]. A point set is normally referred to as
a signature. EMD strives to find the minimum amount of ‘‘work” to
transport the weights from the source (supplier) to the destination
(consumer) signature. In the transportation problem, a group of
suppliers is required to provide a given amount of goods to a group
of customers, each with a given limited of capacity to accept goods.
For each supplier–customer pair, the cost of transporting a single
unit of goods is given. The transportation problem is to find the
least-expensive flow of goods from the suppliers to the consumers
that satisfies the consumers’ demand. EMD has been successfully
adopted for various applications including image retrieval [19],
database navigation [20] and low-level image processing [21].

EMD exhibits M2M matching for its capability in transferring
partial weights between any two signatures. In our context, each
signature refers to a set of segmented regions. Each region is repre-
sented by (pi, wi), where pi is the mean color value and wj is the frac-
tion of pixels in region i. From the perspective of M2M, EMD can
distribute and transfer the weight of a region to multiple broken re-
gions in the destination signature. Conversely, a region can accept
weights from multiple regions of the source signature. Give two sig-
natures S ¼ fðs1;ws1 Þ . . . ðsm;wsmÞg and D ¼ fðd1;wd1 Þ . . . ðdn;wdn Þg,
EMD is formulated as:

EMDðS;DÞ ¼min WORKðS;D;FÞ; ð2Þ

WORKðS;D; FÞ ¼
Xm

i¼1

Xn

j¼1

distði; jÞ � flowði; jÞ ð3Þ

subject to the following constraints:

flowði; jÞP 0; 1 6 i 6 m; 1 6 j 6 nXn

j¼1

flowði; jÞ 6 wsi
; 1 6 i 6 m

Xm

i¼1

flowði; jÞ 6 wdi
; 1 6 i 6 n

Xm

i¼1

Xn

j¼1

flowði; jÞ ¼min
Xm

i¼1

wsi
;
Xn

j¼1

wdi

 !

where F is a bag of flows with flow(i, j) representing the flow from
region si in S to region dj in D and dist(i, j) is the dissimilarity mea-
sure between si and dj.

There are several properties of EMD that is favorable for CPD.
First, it supports partial matching. Two signatures with different
numbers of regions, each having different size, can be aligned under
many-to-many matching with EMD. By one-to-one matching, the
mapping between regions is incomplete and can be unpredictable.
In contrast, EMD enlightens the chance of matching a properly seg-
mented region to a collection of broken regions in another image.
Second, it can be proven that if the ground distance is a metric
and the total weights of two signatures are equal, then EMD is a true
metric where non-negativity, symmetry and triangular inequality
holds. This allows embedding the signatures into a metric space.

4.2. Constraining EMD flows through spatial relation and negative cues

EMD, nevertheless, is spatially unconstrained because regions
are considered separately during flow. This situation indeed risks

random flows particularly when the underlying features are not
perfectly robust. Ideally, a fabric of EMD flows should possess the
following properties: (i) The flows among common patterns are
closed and dense, leading to less association between actual pat-
tern and background. (ii) The flows among common patterns are
characterized by high similarity value. (iii) The flows among ‘‘com-
mon pattern–background” and ‘‘background–background” pat-
terns are characterized by low similarity value. The correct
prioritization of flows to satisfy the above requirements can be en-
hanced by taking into account spatial information during EMD
matching. Tagging spatial information increases the discriminating
power of the underlying features. However, common backgrounds,
violating the third requirement, cannot be solved by powerful fea-
tures alone. Such scenarios can be effectively handled by using
cues from negative images to repress the undesirable patterns.

Both the spatial information and negative cues can be intro-
duced into EMD matching through the distance measure dist(i, j),
or conversely the similarity measure sim(i, j) where sim(i,
j) = 1 � dist(i, j). The spatial similarity is measured by considering
the neighborhood consistency when matching two regions, formu-
lated as a weighted combination of unary color similarity hu and
the neighborhood similarity hn. A significance value S is further
attached to penalize regions with high proximity to the regions
in negative images. The use of negative images to measure the
importance of each region is optional but practically useful. Given
regions i and j from two signatures and the bag of negative regions
R� from all negative images, the similarity measure sim can be
formulated as

simði; jÞ ¼ min
p¼i;j

SðpÞ � hði; jÞ ð4Þ

where regions suspected as background patterns are assigned lower
S. The region-pair similarity is given by

hði; jÞ ¼ ahuði; jÞ þ ð1� aÞhnði; jÞ ð5Þ

and the significance value is formulated as

SðpÞ ¼
1�max hðp; rÞ if max hðp; rÞ > T; 8r 2 R�

1 otherwise

�
ð6Þ

The parameter a is to weight the importance of color and spatial
similarities, while T is to gate the ownership of a candidate region
p. Both parameters are set empirically. In order not to over-empha-
size spatial constraint, we give higher weight (a = 0.6) to color sim-
ilarity. For the parameter T, a higher value is preferred (T = 0.9) in
order to exclude regions with high similarity to negative images.

The measure hu is based on the Euclidean distance in the CIE-
L*a*b color space. CIE-Lab color space is expressly designed so that
short Euclidean distances correlate strongly with human color dis-
crimination performance. The measure hu is

huði; jÞ ¼ exp � Dði; jÞ
c

� �2
" #

ð7Þ

where D is the Euclidean distance of the colors in the CIE-L*a*b color
space given by

Dði; jÞ ¼ ½ðMLÞ2 þ ðMaÞ2 þ ðMbÞ2�
1
2 ð8Þ

hu(i, j) is an exponential function with the steepness of the slope
governed by c, where two regions are regarded as totally non-sim-
ilar and therefore can be ignored when their distance exceeds 2 c.
For our purpose, we set c to 30.

The neighborhood similarity, or more specifically spatial simi-
larity, of two regions is measured by matching their neighbors in

1474 H.-K. Tan, C.-W. Ngo / Image and Vision Computing 27 (2009) 1470–1483



the image space. For the region-pair (i, j), we build a weighted
bipartite graph (WBG), Gi,j = hU, V, Ei, with U as a set containing
the adjacent regions of region i, and V for region j. The weight
wrs of the edge ers connecting the neighbor region ur 2 U and vr 2 V
represents the color similarity between the two regions, defined by
Eq. (7). The neighborhood similarity hn is measured by performing
a maximum weighted bipartite matching [22] between the sets U
and V. The similarity, based upon two sets of neighbors, is mea-
sured as

hnði; jÞ ¼
X

er;s2MU;V

wrs ð9Þ

where MU,V is the set of edges from the maximum matching of the
weighted bipartite graph built from U and V.

5. Local Flow Maximization

The matching patterns of EMD are dispersed and unregulated in
nature, resulting in difficulties to expose the common pattern and
identify their transformation parameters. Finding common pattern
by examining each correspondence separately is susceptible to
noise artifacts. This motivates the proposal of a novel predictive
approach where a candidate common pattern is initially extracted
from each positive image and then matched as a whole iteratively.
As such, CPD aims to find the optimum candidate common pat-
terns of positive images that maximize the generic function H in
Eq. (1). Matching, when analyzed at such granularity, is more tol-
erant to noise since the goodness of such matching is determined
collectively over a set of correspondences. Besides, when matching
is localized, many distracting and irrelevant correspondences have
been discarded, resulting in more concentrated and precise
analysis.

The candidate common pattern is represented by its centroid
and scale which are unknown and have to be discovered to maxi-
mize H. One possible solution is through multiple instance learn-
ing (MIL). A huge pool of candidate areas with varying scale and
centroid values are extracted and projected into a signature space
that endows the EMD distance metric. Then, an MIL algorithm can
be employed to learn the best instance as common pattern repre-
sentation [23]. Nonetheless, such scheme is neither efficient nor
effective with the presence of noise artifacts. Instead, the proposed
predictive approach adopts heuristic search without generating a
huge set of candidate areas.

We propose an algorithm, namely Local Flow Maximization
(LFM), to find common pattern by analyzing the EMD flows under
the expectation–maximization (EM) framework. Given a set of N
positive images I ¼ fIigN

i¼1, the set of candidate common patterns
P ¼ fPigN

i¼1 characterized by both the centroid c ¼ fcigN
i¼1 and scale

s ¼ fsigN
i¼1, is treated as the missing parameter. The set of centroids

c is hidden but can be inferred from the EMD flows F(n) during iter-
ation n. In the expectation step, the collaborative mining of pat-
terns is performed through localized matching. For each image,
the EMD flows between each candidate Pi of image Ii and Pi–j of
other images are analyzed for the estimation of ci. In the maximi-
zation step, the refined value of the centroid ci is used to redefine
the scale si for the complete description of Pi that maximizes the
CPD similarity function H. In deriving H which comes in the form
of a maximum likelihood function, two assumptions are made.
First, images are assumed independent given the presence of a
common pattern, denoted by C. Second, the distribution of P
and c are assumed to follow an uniform distribution. By the stan-
dard EM formulation and Bayes theorem without loss of general-
ity, H is formulated as

HðPjPðnÞÞ ¼ Ecflog pðc; IjP;CÞjPðnÞ; I;Cg
¼
X

c

pðcjPðnÞ; I;CÞ log pðc; IjP;CÞ

¼
X

c

pðcjPðnÞ; I;CÞ log
YN
i¼1

pðci; IijPi;CÞ

¼
X

ci

pðcjPðnÞ; I;CÞ
XN

i¼1

log
pðPijci; Ii;CÞpðci; IijCÞ

pðPijCÞ

¼
X

ci

pðcjPðnÞ; I;CÞ
XN

i¼1

log
pðPijci; Ii;CÞpðcijCÞpðIijCÞ

pðPijCÞ

�
X

ci

pðcjPðnÞ; I;CÞ
XN

i¼1

log pðPijci; Ii;CÞ

¼
X

ci

XN

i

dðcijPðnÞi ; Ii;CÞ log pðPijci; Ii;CÞ

¼
XN

i

X
ci

dðcijPðnÞi ; Ii;CÞ log pðPijci; Ii;CÞ

¼
XN

i

dðĉijPðnÞi ;C; IiÞ log pðPijci; Ii;CÞ ð10Þ

where ĉi is assigned to a single location in the image space through
delta function d. The prior probabilities pðPijCÞ could be used if ci

and si of Ii is known. In Eq. (10), the maximization step finds the best
candidate common pattern Pi that optimizes the likelihood function
H through the conditional probability pðPijci; F

ðnÞ
i ;CÞ given ĉi. The

expectation step in turn estimates the new value of the position ĉi

from P
ðnÞ
i . The algorithm iterates between the two steps until H con-

verges where Hðnþ1Þ �HðnÞ < �. The EM algorithm is guaranteed to
converge [24,25] as long as P* is chosen such that
HðP�jPðnÞÞ >HðPðnÞjPðnÞÞ although it might not necessarily be a glo-
bal maximum.

LFM can be viewed as a 2-class clustering problem where region
units of each image are collaboratively clustered into the common
pattern or background class. In this aspect, it is similar to the K-
means algorithm. Regions enclosed by a candidate common pat-
tern correlates to the common pattern and vice versa. Similarly,
during each iteration, the ownership of each region is iteratively
refined until H is optimized through a variant of the expecta-
tion–maximization algorithm. However, K-means operates primar-
ily on feature space while LFM operates on image space and
additionally draws hints from matchings. In LFM, there are no class
centers upon which a distance measure facilitates assignments. In-
stead, the boundaries of the common pattern as a localized area are
adjusted by looking into the tendency of the EMD flows. While the
square mean error (SSE) for K-means is determined based on O2O
correspondences, H is determined collectively from the fabric of
M2M correspondences.

5.1. Maximization

In the maximization step, the set of candidate common patterns
P from positive images that optimizes the maximum likelihood H

is determined given the estimated ĉ from the expectation step.
From Eq. (10), this step is expressed as

P ¼ arg max
P

HðPjPðnÞÞ ¼ arg max
P

XN

i

log pðPijci; Ii;CÞ ð11Þ

where the conditional probability pðPijci; Ii;CÞ that contributes to-
wards H can now be defined in terms of pair-wise localized match-
ing as follows

pðPijci; Ii;CÞ ¼
YN

j¼1;j–i

EMDðPi;PjÞ ð12Þ
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Clearly, getting the optimum set of Pi is intractable and we have to
resort to non-linear optimization algorithms such as gradient
ascent where additional constraints are imposed on Pi. The
constraints include the minimum number of pixels and the permis-
sible area localized to ĉi over which Pi could take shape. However,
using gradient ascent is computationally expensive because a larger
amount of EMD matching is involved during each hill-climbing
iteration. To improve speed efficiency, the localization of Pi is per-
formed on a discrete set of candidate areas and the best candidate is
selected as elaborated below.

The set of candidate common patterns that maximizes the con-
ditional probability in Eq. (11) does not always result in a seman-
tically optimum scale because of an inherent bias towards
signatures composed of few segmented regions. In fact, similarity
might reach its maximal value at a trivial situation where a signa-
ture consists of only one region representing a common pattern.
Weighted fusion or thresholding can be employed to handle the
trade-off between weight and scale. Nonetheless, such schemes re-
quire heuristic settings and undermine robustness. Instead, given
an assorted set of scales in an input image, the maxima of the
first-order derivatives of the similarity values from cross-match-
ings with other candidate common patterns is picked as the opti-
mum scale. This is coupled with a monotonic constraint on the
similarity value to preserve convergence.

For pragmatic reasons, a bounding box centered on ĉi is used to
represent Pi. Coverage can be improved at the expense of speed by
employing more robust shapes such as ellipse that offers a larger
degree of freedom in terms of pose and orientation. Given a posi-
tive image, a set of bounding box, ordered by increasing widths
and centered on the centroid ĉi, is generated. The candidate com-
mon pattern is matched with candidates of all other positive
images and then averaged. A prominent drop in the similarity va-
lue while walking through the scale is evident as shown in Fig. 4
when the boundary box outgrows the visually coherent common
pattern, thus providing a robust choice for scale selection.

5.2. Expectation

The loose embedding of spatial information into EMD matching
encourages the ‘‘crowding” of high similarity flows at the spot that
exhibits both structural and photometric resemblance among the
candidate common patterns. Realigning the centroid of the candi-
date common pattern towards such spot given the candidate com-
mon pattern P

ðnÞ
i improves the probability density of the flows, and

thus leads towards the discovery of an exact common pattern. The
crowding spot ĉi is a single point in the image space expressed
through dðĉijPðnÞi ;C; IiÞ in Eq. (10).

Given the optimum candidate common pattern Pi from the max-
imization step, the flows from the localized EMD matchings of these

areas are collected, and a refined value of ĉi for each image is com-
puted as the weighted mean of each location in the subimage space.
For each positive image Ii, the collection of flows Fi having Ii as the
destination image, is extracted from the set of pair-wise EMD
matchings of the optimum candidate common patterns, readily
available from the previous maximization step. Each pixel location
x in the subimage space is weighted by accumulating the similarity
of the flows to the region that the pixel belongs to. Denoting Fi,x as
the subset of flows that streams into the region that the pixel x holds
ownership, and sim(f) as the similarity value of a flow f, the new cen-
troid ĉi is formulated as the weighted mean of each pixel as follows

ĉi ¼
P

x2Pi
x� gðxÞP

x2Pi
gðxÞ ð13Þ

where

gðxÞ ¼
X
f2Fi;x

simðf Þ ð14Þ

Inspired by the iterative closest points (ICP) algorithm in [26] and
the flow transformation (FT) algorithm in [27], ĉi is computed
repeatedly using the same scale in the expectation step, each time
realigning the center of the bounding box to the centroid value.
Convergence is preserved through the constraint that likelihood
function increases monotonically during each iteration. As a result,
ĉi is pushed to the best possible location as shown in Fig. 5. This pro-
cess is referred to as the fast-tracking of ĉi because it optimizes
speed by reducing the number of EM iterations.

5.3. Initial prediction of common pattern

As in conventional EM algorithms, LFM is sensitive to initializa-
tion. In LFM, the initialization of the centroid cð0Þi of the set of com-
mon patterns Pi is obtained by analyzing the density of EMD flows
conducted globally at the image level. The EMD flows, although
noisy, provide the initial cue for locating common pattern. Given a
set of R regions frigR

i¼1 in an image, the density probability pr(x) of
the pixel x can be estimated through the extrapolation of the
regions by means of weighted Parzen-window. Each region ri is
represented by its centroid and weighted by a confidence value
ĝðriÞ. Using the same methodology in the computation of g(ri) in
Eq. (14), ĝðriÞ is determined by accumulating the similarity of EMD
flows to ri and then normalized over all other samples. Thus, cð0Þi

can be assigned based on a maximum a posterior criterion as follows

cð0Þi ¼ arg max
x

prðxÞ ð15Þ

where the Parzen-window density estimate is given by

prðxÞ ¼
1
n

Xn

i¼1

ĝðriÞ
hd

r

u
x� xi

hr

� �
ð16Þ

and hr is the size of the window width parameter which determines
the smoothness of the density function. A Gaussian kernel window
is used and u is formulated as

uð~xÞ ¼ 1ffiffiffiffiffiffiffi
2p
p e�

~x2
2 ð17Þ

As a result, the areas with high concentration of heavily weighted
flows would experience higher density value, and using the location
with the maximum density provides a good estimate of the initial
centroid cð0Þi .

6. Result and experiments

We conduct both qualitative and quantitative assessment to ver-
ify the performance of the proposed approach. We use F-measure

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Scale

S
im

ila
rit

y 
V

al
ue

Similarity Value
First order derivative of Similarity Value

Fig. 4. The matching similarity value, when Pi is varied over a range of sorted
scales, experiences a prominent drop in similarity when the scale outgrows the
common pattern as highlighted by the ellipse.
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[28,6] as the metric for performance evaluation. F-measure is a
popular measure used in Information Retrieval (IR) as the weighted
harmonic mean of precision and recall. For CPD, precision mea-
sures the accuracy of detection, while recall measures the ability
of completely locating a common pattern. F-measure combines
both measures to provide only a single value that effectively quan-
tify the quality of the detected common pattern. Denoting G as the
groundtruth pattern and D as the detected pattern, F-measure is
defined as

F-measure ¼ 2� recall� precision
recallþ precision

ð18Þ

where

recall ¼ areaðG \DÞ
areaðGÞ ð19Þ

precision ¼ areaðG \DÞ
areaðDÞ ð20Þ

In the experiments, a total of 14 common patterns is used for test-
ing. For each pattern, three positive images and one negative image
are given for CPD. To assess the robustness of proposed approach,
large variations of location, scale, rotation and viewpoint are intro-
duced to common patterns during image collection. To highlight the
effect of noise to CPD, all images are shot under complex back-
ground setting.

6.1. Performance comparison

To assess the performance, we compare three approaches:
MWBG [10], IMCS [5], and our approach, namely LFM. MWBG em-
ploys one-to-one bipartite graph matching to find correspondences
between two sets of block uniformly and densely extracted from
images. Procrustes analysis is then performed to estimate optimal
transformation based on block correspondence. The matching and
transformation steps are iterated until H in Eq. (1) optimizes. IMCS
operates on region units and poses CPD as a subgraph isomorphism
problem. The backtrack depth first search, a brute-force technique,
is utilized to mine maximum common subgraph from the ARG rep-
resentations of images. Table 1 briefly summarizes the three com-
pared approaches. For IMCS and LFM, the tool in [29] is employed
for image segmentation. For LFM, each region is set to a minimum

of 100 pixels, resulting in a range of 50–300 region units. For IMCS,
due to brute-force search, the setting has to be deliberately tuned
to less than 90 regions to achieve a reasonable speed.

Fig. 6 presents the quantitative performance of different
approaches. Overall, LFM outperforms both MWBG and IMCS in
F-measure with an average score of 0.66 compared to 0.30 and
0.34, respectively, indicating the advantages of using M2M coupled
with a localized matching strategy over conventional O2O match-
ing techniques. M2M successfully exhibits dense matching where
the erroneously segmented regions can still be correctly matched
with EMD. IMCS, in contrast, employs O2O mapping and results
in sparse matching where the broken regions are left alone without
correspondences. Fig. 7 contrasts the matching robustness of M2M

Fig. 5. Fast-tracking of ĉi to the best optimum position during the expectation step. The scale value sðnÞi remains the same during the whole process. The confidence image
shows the weight g of all regions. The red cross shows the position of ĉi.

Table 1
Summary of the CPD algorithms used in our experiment.

Description LFM IMCS MWBG

Matching unit Region Region Block (Point)
Matching technique Localized (M2M) Graph (O2O) P2P (O2O)
Features Color Color Color
Representation Weighted point set ARG Bipartite graph
Segmentation tolerance Yes No Not applicable
Negative image Yes No No
Search complexity Non-exhaustive Exhaustive Non-exhaustive

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Avg
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Fig. 6. F-measure performance among LFM, MWBG and IMCS.
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and O2O. Through M2M matching strategy, LFM is more tolerant to
segmentation error and capable of matching fragmented regions.
MWBG, on the other hand, operates on block units and therefore
is inherently sensitive to scale. From our observation, when pro-
crustes analysis is performed on correspondence pairs obtained
through bipartite graph matching, noise artefacts skew the compu-
tation of the transformation parameters. Such errors propagate
through the iterations and cause ineffective mining.

Image segmentation often requires heuristic settings such as
the minimum size of a region. Fig. 8 shows the performance of dif-
ferent approaches against the ‘‘minimum size” heuristic. To high-
light the effects of the heuristic, the patterns are matched
without interference from other artefacts especially large scale
variation and background clutter. The performance of IMCS is poor
when regions are over-segmented into ambiguous pieces. In con-
trast, LFM yields an almost constant F-measure, which indicates
the resilience of M2M matching towards structural inconsistencies
arising from segmentation. Fig. 9 further shows an example to con-
trast LFM and IMCS under three different settings.

To illustrate the effectiveness of LFM, Fig. 10 shows the ability of
LFM in locating common pattern in three iterations. The initial va-
lue of c(0) is manually placed in order to emphasize the power of
LFM even when the initialization encloses only a small portion of
the common pattern. The location of c(n) is marked by the cross
(+) while the box shows the candidate common pattern P(n). A
new candidate common pattern is selected at the start of each iter-
ation in the maximization step. Then, c(n) is determined and itera-
tively recomputed to push P(n) to the most optimum location in the
expectation step. The resting positions of c(n) during each iteration
are shown in the right columns of the figure. In this experiment, we
could see that c(n) successfully converges to the common pattern
within three iterations, accompanied by an automatic readjust-
ment in the scale of the candidate common pattern.

Figs. 11 and 12 show the robustness of LFM towards rotation
and viewpoint difference, respectively, under background clutter.
LFM successfully locates the common patterns despite the chal-
lenges. The spatial constraint we introduce in EMD indeed enforces
the orderly matching of regions, which led to more robust localiza-
tion and EM framework. However, the limitations of using bound-
ing box to represent common pattern is prominent when finding
patterns such as P5 under viewpoint variation in Fig. 12(b). Intui-
tively, the performance can be improved if other representations
such circle or ellipse is used, with the expense of computational
cost. Fig. 13 further shows the effectiveness of LFM towards large
scale changes, in addition to the rotation and viewpoint variation.
LFM is able to locate the common pattern, but with relatively lower
recall for pattern with larger scale. Fig. 14 shows the average F-
measure of LFM on the tested patterns when one of the positive
images is transformed with a predefined range of scales. LFM is rel-
atively stable across various scale changes with F-measure of
approximately 0.6.

Fig. 15 shows the robustness of LFM towards patterns with
slight changes in color under different lighting conditions, from
the brightest setting in the second image to the darkest setting
in the fourth image. The common pattern can be effectively mined
as long as the variation is not too dramatic. Severe variation in illu-
mination impairs dense region matching, and the use of sparse fea-
tures such as corners or edges is more appropriate in these cases.
Fig. 16 shows some challenging examples where the patterns are
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Fig. 8. Sensitivity of different approaches when the constraint ‘‘minimum pixel per
region” is imposed during segmentation.

Fig. 9. The mined patterns for the input images in (a) extracted by (b) IMCS and (c)
LFM when the minimum size of segmented regions is set to 50 (left), 100 (center)
and 200 (right) pixels, respectively.

Fig. 7. Common patterns for the input images in (a) extracted by (b) IMCS and (c)
LFM contrast the matching robustness of O2O and M2M. In IMCS, O2O results in
sparse matching of erroneously segmented regions. LFM effectively utilizes EMD to
densely match these regions.
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hidden in highly cluttered backgrounds, and further obscured by
scale, viewpoint and rotation. LFM successfully highlights the com-
mon pattern despite such demanding environments. Some less
desirable results are shown in Fig. 17. In pattern P13, an erroneous
pattern is detected where the pattern in the second image is
trapped in a local maximum, while in P14, an inflated version of
the common pattern is detected. Apparently, LFM is sensitive to
initialization and it is observed that the erroneous pattern in P13
is still visually similar to the other two common patterns in terms
of low-level features.

Further evaluations are conducted with the common patterns
subjected to the combination of all noise. The patterns are ob-

scured by rotation, scale, skew and viewpoint with heavy back-
ground clutter. Evaluation is performed qualitatively through
manual observation. CPD manage to consistently identify the pat-
tern of interest despite the difficulties as shown in Fig. 18.

To assess the role of negative images, we repeat LFM by using
only positive images. The results show that the F-measure drops
from 0.66 to 0.57. It is observed that the impact towards recall is
random but there is a consistent drop in precision for almost all
patterns. Indeed, negative images are passive cues that do not as-
sert any patterns as the common pattern, but rather rule out irrel-
evant patterns through suppression of noise artefacts, resulting in
a more precise common pattern. However, negative images could
be counter-productive if inappropriately used, as observed in the

Fig. 11. Finding common patterns under rotations. Fig. 12. Finding common patterns under viewpoint variation.

Fig. 10. Intermediate output of LFM iterations. The left column shows the selected common pattern P during the expectation step while the right column shows its resting
position from the fast-tracking cycles in the maximization step.
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evaluations on patterns P13 and P14 where the performance of
F-measure drops by 0.28 and 0.15. Such scenarios happen when
negative images surpress the common pattern instead of the
intended background artefacts.

6.2. Speed efficiency

The speed of LFM and IMCS is impacted by the number of re-
gions. Table 2 shows their speed with different region settings.

When the number of regions is large, LFM is significantly faster
than IMCS, but slightly slower than MWBG which uses fixed
amount of blocks rather than regions. LFM is less sensitive to the
increase of regions compared to IMCS.

The proposed LFM is essentially an efficient polynomial time
algorithm. If B iterations are required for LFM, the total running
time is O(Ti + B(Tm + Te)), where Ti, Tm and Te are the times spent
for initialization, the maximization and expectation step, respec-
tively. These times are linearly dependent on the EMD matching.
Each EMD matching requires O(r3 � log(r)) time where r is the
number of regions in the signatures [19]. Given N images, initiali-
zation performs matching for Np ¼ NðN�1Þ

2 times over all image-
pairs. The expectation step is slower since image-pair matchings
are repeated A times for the fast-tracking iterations. The maximiza-
tion step incurs the most computational cost since image-pair
matchings are repeated over all scale variations, resulting in a
Sp ¼ sðs�1Þ

2 fold increase in computational time when a total of s
scales is used for analysis. In our experiments, s is 7, N is 3, r ranges
from 30 to 200, A from 2 to 20 and B from 3 to 6. The fast-tracking
enhancement proposed in the expectation step has been able to
alleviate the cost by minimizing the number of required iterations.

The running time of MWBG depends on the graph matching
algorithm which takes OðCBb3

i Þ, where bi is the number of blocks
in each image and B is the number of iterations required for each
run. The maximum weighted matching has a time complexity of
Oðb3

i Þ. For robustness purposes, MWBG is repeated using C differ-
ent transformation initializations. On the contrary, the speed of
IMCS increases exponentially with the number of regions owing
to brute-force search. The time complexity for IMCS is O(2 � ri!)
where ri is the number of regions in the images.

6.3. Limitations and future directions

Since we do not consider variations such as rotation and
stretching when performing matching, our algorithm is unable to
extract the full set of affine parameters which might be useful
for certain applications such as stereo calibration. However, since
our algorithm manages to produce a good localization of the com-
mon patterns as demonstrated in our experiments, the affine
parameters estimation can be carried out as a separate post-pro-
cessing step in a more concise manner on the mined patterns.

Due to the employment of color as the underlying feature for
matching, our approach is inevitably limited to objects with multi-
ple regions. To be successful on a different category of images,
where the common pattern is encapsulated within a single region
unit with prominent shape or visual point details, it is imperative
to extend LFM to sparse matching on point features. Recently,
the local features based on keypoints [2,30,31] are shown to be
powerful and discriminative for a wide range of vision-related
tasks. Coupled with sparse matching techniques such as the Hun-
garian algorithm [22], Integer Quadratic Programming matching
[8] and One-to-One symmetric (OOS) matching [32] in place of

Fig. 13. Finding common patterns under scale changes, in addition to rotation and
viewpoint variation.
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Fig. 14. F-measure of patterns when transformed over a range of scaling factor.

Fig. 16. Finding common patterns superimposed on highly cluttered background.

Fig. 17. Results with erroneous and sub-optimal patterns using LFM.

Fig. 15. Finding common patterns under lighting variation.

1480 H.-K. Tan, C.-W. Ngo / Image and Vision Computing 27 (2009) 1470–1483



EMD as the underlying matching tool, these features can be
employed by LFM to handle this class of images as well.

Finally, the current speed of LFM still cannot efficiently handle a
large number of input images. It is interesting to explore how fast

the variants of EMD matching algorithms such as embedded EMD
[33] can be employed to accelerate pattern matching.

7. Application of CPD to image retrieval

CPD can be exploited for relevancy feedback in retrieval, by
collecting the positive and negative labels of few images from
users to refine search. The learning task of relevance feedback
[34–36] is normally tedious and needs to be repeated for many
rounds to arrive at a satisfactory result. With CPD, relevance
feedback is composed of three simple steps – coarse retrieval,
CPD and fine retrieval. The coarse retrieval performs an initial
search through conventional query-by-image search, for instance.
The retrieved relevant images are marked and then CPD is em-
ployed to mine the common pattern. The mined common pat-
tern is subsequently used as ‘‘query-by-pattern” for fine
retrieval. Query-by-pattern is a lazy process which commences
only upon a request for retrieval. In contrast, traditional retrieval
systems are generally more active where comprehensive models
or indexing systems have to be put in place for retrieval to be
effective. The new paradigm focuses on engaging more interac-
tion at contact time by encouraging users to supply more exam-
ples. CPD is useful in this respect to highlight the important
patterns for query. Indeed, query-by-pattern is interesting for
its potential to improve retrieval results, even on an unprocessed
database.

To demonstrate the effectiveness of CPD in retrieval, we use a
database composed of 1068 images with 14 common patterns.
The common patterns are shot under different background clut-
ters, at varying viewpoints, rotation, scale and lighting changes.
To increase the diversity of the database, 200 random images
which do not have common patterns are added. For performance
evaluation, we compare four different approaches: (1) CPD with
proposed LFM, (2) DD [12], (3) EM-DD [13] and (4) histogram
intersection [37]. DD and EM-DD are classical algorithms in multi-
ple instance learning (MIL). In both algorithms, each image is di-
vided into overlapping blocks of three separate sizes (15 � 15,
30 � 30, 40 � 40), which form the instances of a bag. DD and
EM-DD find a feature point which is common in positive bags

Table 2
Average speed (seconds) for the pattern P3 using different segmentation settings.

Minimum # pixel per region 150 175 200 300 400
Total number of regions 329 297 270 256 162

LFM 92.77 85.02 80.94 79.49 93.03
IMCS 2521.79 400.97 103.47 14.25 6.2
MWBG 72.63
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Fig. 19. Precision-recall performance of five different approaches.

Fig. 18. CPD results on patterns with a variety of image noise.
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while rare in negative bags. The common pattern, embedded in a
feature space, is mined through gradient ascent. The search is re-
peated using multiple starting points to improve robustness. As a
baseline, histogram intersection using query-by-image is used to
justify the performance improvement of our approach.

In our approach CPD, the similarity between a mined common
pattern and an image is performed through histogram intersection
during fine retrieval. For DD and EMD-DD, we use the techniques
proposed in [14] to perform query-by-pattern. Basically, the
located feature point, which represents the common pattern, is
used as the feature vector to retrieve images. In the experiments,
CPD uses 3 positive and 1 negative images for pattern mining. DD
and EM-DD, on the other hand, require more bags in order to be
precise. As a results, 10 positive and 20 negative images are used.

Fig. 19 shows the recall-precision curve of four different ap-
proaches, averaged over 56 queries involving all fourteen patterns.
Through experiments, we demonstrate that CPD successfully
retrieves common patterns embedded in various backgrounds
despite the high degree of variations in scale and rotation in the
database. A significant improvement over the baseline is observed
indicating the advantages of using pattern as the query for retrieval.
Patterns are more powerful in representing the semantic content of
the images, as keywords in representing text documents. Therefore,
it is better positioned to capture the intention of the users for
searching. DD and EM-DD are not as good as CPD in general because
the mined pattern is less perfect compared to CPD. Fig. 20 shows the
common pattern mined by CPD and DD, respectively.

8. Conclusion

We have presented our approach for common pattern mining
in multiple images. Several critical issues on matching including
feature robustness, matching robustness and noise artifact are
discussed. We propose M2M with the aid of EMD as the sensible
matching technique when image-segmented regions are used. To
handle the unregulated matching patterns in M2M, we loosely
embed the spatial information of region into the EMD similarity
measure and further propose the LFM framework. LFM adopts
localized matching where the candidate common pattern of each
image is extracted and matched locally across multiple images.
EM is used to iteratively refine the candidate common pattern
until the optimum patterns are mined. Experimental results
show that our proposed LFM is robust to image segmentation.
To demonstrate the potential of CPD for image retrieval, we also
conduct experiments to contrast retrieval with and without CPD.
The experiments show the power of query-by-pattern, especially
with the aid of the proposed CPD technique, in overcoming
background clutter and various transformations for retrieving
the object-of-interest.
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