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Abstract

Motivated by the studies in Gestalt principle, this paper describes a novel approach on the adaptive selection of visual features for
trademark retrieval. We consider five kinds of visual saliencies: symmetry, continuity, proximity, parallelism and closure property. The
first saliency is based on Zernike moments, while the others are modeled by geometric elements extracted illusively as a whole from a
trademark. Given a query trademark, we adaptively determine the features appropriate for retrieval by investigating its visual saliencies.
We show that in most cases, either geometric or symmetric features can give us good enough accuracy. To measure the similarity of
geometric elements, we propose a maximum weighted bipartite graph (WBG) matching algorithm under transformation sets which is
found to be both effective and efficient for retrieval.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

To date, despite the numerous efforts in content-based
image retrieval (CBIR), finding the best shape features and
the best way of matching features for image retrieval re-
mains challenging. One of the core issues is in formulating
a general-purpose shape similarity measurement that guar-
antees good retrieval performance, with the baseline that the
retrieved similar items should be consistent with human vi-
sual perception. Recently, Gestalt principle [1] is taken into
account by researchers for the perceptual segmentation and
grouping of shape features. Gestalt principle is one of the
earliest studies conducted by a group of psychologists to
model shape perception in the early 19th century. A number
of principles have been experimentally studied and derived
to govern the grouping of shape features.

Perception, in general, is viewed as an active process
of organization, construction and analysis. Gestalt princi-
ple emphasizes the holistic nature, where recognition is in-
ferred more by the properties of an image as a whole,
rather than parts, during visual perception. This is considered
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different from traditional pattern recognition where recog-
nition is achieved by accounting image features of parts and
their combinations. Take the image in Fig. 3 as an example.
Gestalt principle considers white regions (areas enclosed by
five group of parallel lines) as a whole as the significant prop-
erty rather than the shape of six independent black regions.

In this paper, we investigate the flexibility of applying
Gestalt principle in trademark database since trademarks are
images that usually contain rich abstract geometric features
that are appropriate for the modeling of Gestalt principle.
In particular, we focus on five holistic properties: symme-
try, continuity, proximity, parallelism and closure derived in
Gestalt principles. The first property is described by Zernike
moments, while the others are extracted and represented
illusively1 as a whole by our proposed geometrical features
under the weighted bipartite graph (WBG) framework [2–6].
These five holistic properties, in general, are not effective

1 We use the word “illusively” to describe the nature of Gestalt prin-
ciples and the motivation of our approach: Human always group low-level
geometrical elements illusively as one or several “complete elements”,
even though a complete element is actually not connected and formed
by several broken segments. For example, in Fig. 5b, the inner circle is
broken into three arcs, but our approach can detect them as a “whole”
(a complete circle) which mimics the human perceptual organization.
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if they are jointly integrated in a linear weighted combina-
tion way for retrieval. To solve this problem, we propose
a novel adaptive selection procedure of holistic properties,
which depends on the nature of a query image.

Gestalt principle has been investigated in [7–13] for trade-
mark retrieval. However, only a subset of holistic properties
is utilized. No study has yet been carried out on how to sys-
tematically select and match these properties for trademark
retrieval. In [7–13], clustering algorithms are employed to
group semantically meaningful Gestalt components. After
clustering, non-geometric features such as aspect ratio, cir-
cularity and degree of perpendicularity are extracted from
each cluster for retrieval. Nevertheless, as pinpointed in [13],
the incorrect clustering of elements is the major drawback
that affects the retrieval accuracy. In this paper, instead of
adopting clustering based approach, we encode directly the
extracted geometric elements led by Gestalt principle in
WBG for partial matching under a set of allowable transfor-
mations. Since our approach matches geometric elements as
a whole directly, it leads to a more reliable framework for
trademark similarity measurement.

2. Related works

Numerous approaches have been proposed for trademark
image retrieval. Representative works include [7–17]. As
other CBIR problems, most approaches in trademark image
retrieval consist of two major components: feature extrac-
tion and similarity measurement. The choice of features will
normally affect the use of similarity measurement. In this
section, we focus our attention on how they derive the shape
features for similarity retrieval.

In the current literature, various visual features have been
explored for trademark retrieval. The features adopted most
frequently are: edge direction histogram [16,18], moments
[16–18] and shape descriptors [7–12,19,20]. Some of these
features (e.g., edge direction histogram and moments) con-
tain no geometric information. They are global and statistical
in some sense. For convenience, we call them non-geometric
features. Since no geometrical information is encoded in
these features, two images with similar features can be very
different (See Fig. 1 for example). Similarly, two images
with similar shape may have considerably different global
and statistical features. One example is given in Fig. 2, the
four trademarks are perceptually similar to each other but
their moments are very different. In [16], Jain and Vailaya
proposed an image filling approach to solve this problem.
However, this method can only handle the cases of Fig. 2(a)
and (b). Because the moments do not fit human perception
very well, recent approaches in [7–12,20] consider only the
edge points of regions for trademark retrieval.

Although the non-geometric features have the weakness
introduced above, they have the advantages of being easy to
compute and compare. Most importantly, the weakness may
be attenuated by integrating multiple features (a straight-

Fig. 1. An example showing the weakness of the non-geometric features:
these two trademarks have similar edge direction histograms, but they are
quite different.

(a) (b) (c) (d)

Fig. 2. An example showing the weakness of moments.

forward observation from Figs. 1 and 2). Nevertheless, the
experimental results conducted by Eakin et al. in [12] indi-
cated that it is not always true that the combination of mul-
tiple features can give better results than using them on their
own. The key issue is how to effectively integrate multiple
features, which is not a trivial problem. In [16], Jain and
Vailaya employed a two-level hierarchical system. In the first
stage, edge direction histograms and moments were used to
rapidly filter the database. In the second stage, deformable
template matching was used for final similarity ranking. The
reasons why they used such a framework are: edge direc-
tion histograms and moments are non-geometrical features,
they are quick but coarse; deformable template matching
takes into account the geometric information, but it is accu-
rate but slow. The experimental results in [16] showed that
moments are not robust to trademarks with line drawings,
and the deformable matching is not effective for the trade-
marks with many details in line drawings and holes. Their
results are improved by filling-in the holes in the trademarks,
but the major drawback is the non-utilization of information
in holes. For example, the trademark in Fig. 2(d) becomes
a square after image filling, the shape information “W” is
missed after filling.

Instead of extracting the global features as a whole from
the images as in [16,17], there is a more general scheme
in [7–12,19,20]: decompose the images into several compo-
nents, and then use non-geometric features to encode each
component. Decomposition of trademark images is a hard
problem. In [19–22], trademarks are segmented into regions
based on the pixel connectivity and the shape features are
extracted from each region for retrieval. The segmentation
by pixel connectivity, nevertheless, does not always reflect
the segmentation by human. Consider the trademark shown
in Fig. 3, the shape of this trademark is inferred as a whole
from the image, rather than from each individual region. To
segment a trademark into perceptually meaningful compo-
nents, Gestalt principle [1] is taken into account in [7–13].
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Fig. 3. An example showing the weakness of image segmentation.

(a) (b) (c)

Fig. 4. An example showing the weakness of close figure.

In this principle, grouping is based on the proximity, similar-
ity, symmetry and good continuation of edge points (rather
than regions). For example, the approaches in [7–12] uti-
lized the co-linearity, parallelism and good line continua-
tion properties of edge points to segment the trademark in
Fig. 3 into five groups of parallel lines. Close figures (or
a set of segments which lie on a closed loop) were further
extracted from the so-called “Gestalt images” (i.e., images
represented continuous lines, arcs, etc) by clustering algo-
rithms [7–12]. Shape features are then extracted from each
closed figure for retrieval.

Indeed, twenty years ago Lowe [23] has made use of the
Gestalt laws to perform perceptual organization and visual
recognition for his SCERPO system. In his work, the signifi-
cance of a grouping is determined by its non-accidentalness.
Certain image relations are carriers of statistical informa-
tion indicating that they are non-accidental in origin. He
proposed a probabilistic measure to quantify the degree
of non-accidentalness, which forms the basis for assigning
degrees of significance. Relations such as proximity, co-
linearity and symmetry are of great significance since they
remain invariant over positions and a wide range of view-
points. Lowe also showed how view-point invariance can be
used for interpretations of the three-space inference from the
two-dimensional image groupings. Besides, using percep-
tual groupings helps to reduce the size of the search space
over viewpoints and object parameters especially when the
complexity of the relations between subparts of a grouping
increases, thus improving the saliency of the grouping.

While the extraction of close figures based on Gestalt
principle has shown advantages over the pixel connectiv-
ity approaches, there are limitations, for machine vision, on
how to correctly perform perceptually meaningful cluster-
ing [7–13]. Consider the image in Fig. 4, it is very difficult
to tell whether (a) should be clustered into four triangles or
just one polygon. If the close figures extracted from (a) are

two squares, trademarks that consist of four triangles such
as (b) will not be retrieved. On the other hand, if the close
figures extracted from (a) are four triangles, trademarks con-
sist of two squares such as (c) will not be retrieved. In [13],
several experiments have been conducted to study the ma-
chine segmentation of trademark images by Gestalt princi-
ples. They compared the results with the segmentation of
human subjects, and found that the agreements between ma-
chine and human segmentation are indeed limited. They also
pinpointed that the major drawback of their system, ARTI-
SAN [10–13] (which is regarded as one of the most com-
prehensive trademark retrieval system in the current litera-
ture), is the incorrect clustering of perceptually meaningful
elements.

The remaining paper is organized as follows. In Section
3, we begin by describing the representation and extraction
of the proposed geometric features. Their relationships with
Gestalt principle are then outlined. To compare the geometric
features, we also propose the novel maximum WBG match-
ing algorithm under transformation sets for similarity mea-
surement. In Section 4, we first introduce Zernike moments
for incorporating symmetry property. Then, a procedure for
the adaptive selection of geometrical and symmetric features
is presented. Section 5 presents our major experimental re-
sults. Section 6 further discusses the empirical performance
of our approach from both theoretical and practical aspects.
Finally, Section 7 concludes our proposed works.

3. Retrieval with geometric features

Like most existing image retrieval systems, our approach
consists of two major parts: feature exaction and similarity
measurement. The features are composed of geometric fea-
tures that can mimic Gestalt principle, while the similarity
measurement is based on the maximum WBG matching. Be-
cause the geometric features we consider are not transform
invariant, an iterative framework is proposed to simultane-
ously match features and estimate transformation. To speed
up the retrieval, a hierarchical framework is also presented
for the rapid filtering of irrelevant candidates.

3.1. Feature extraction

We consider different kinds of Gestalt elements which in-
clude: lines, circles (arcs), parallel lines, concentric circles
(arcs), and polygons. We employ Hough transform [24,25]
for primitive (line, circle and arc) detection in trademarks
owing to its simplicity and robust, compared with other ap-
proaches [8,10,11]. Initially, traditional edge detection algo-
rithm is performed and the Hough transform [24,25] is em-
ployed to extract the Gestalt elements like lines, circles and
arcs. Then we group lines which have almost the same direc-
tions and positions to form parallel lines. We further group
circles and arcs which have almost the same centers to form
concentric circles and arcs. Notice that in these processes,
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Fig. 5. Four examples showing the Gestalt elements detected from trade-
marks.

Gestalt principles such as continuity, proximity, and paral-
lelism are utilized. To detect polygons, proximity principle
and closure properties are used as in [7–12]. Line segments
whose end-to-end distances is near are grouped together to
form a closed polygon. However, only significant polygons
like triangles, squares and rectangles are considered.

In our approach, Hough transform is implemented based
upon [25], which requires the input of several empirical
parameters.2 These parameters perform satisfactorily for
most trademarks despite some exceptional cases. Basically,
edge detection in trademarks is less error-prone since trade-
marks are normally binary images with sharp and contin-
uous edges. Thus, Hough transform is in general effective
in detecting primitives of trademarks where geometric ele-
ments such as lines and circles are mostly distinctive. Hough
transform, nevertheless, suffers from the mass requirement
of computational cost. Fortunately, trademarks are in smaller
size than general images. For instance, the trademarks in our
database are in the resolution of 100×100 pixels. This char-
acteristic indeed alleviates the need of heavy computational
load.

Four trademark examples showing the Gestalt elements
detected by our approach are given in Fig. 5. In (a), three
line segments and three arcs are extracted and a triangle is
further detected. In (b), six lines segments and two circles
are initially extracted, and as in [7–12], the Gestalt elements
with parallelism properties (e.g. parallel lines and concen-
tric circles) are then detected. Nevertheless, unlike [7–12],
no closed figure is extracted. We simply index the parame-
ters of Gestalt elements (e.g., center position and radius of a
circle) under WBG framework for similarity measurement.
From these examples, we can see that the major advantage
of Hough transform is its robustness in handling occlusion
and illusion, which is corresponding to the continuity and

2 These parameters include the number of accumulator cells, and the
distance between disconnected pixels identified during traversal of the set
of pixels corresponding to a cell.

Geometric

Elements

Method for Extraction Gestalt 

Principle

Lines, Circles, 

Arcs 

HoughTransform (line segments or 

arcs which are co-linear and close 

enough are grouped) 

Continuity, 

Proximity 

Parallel Lines, 

Concentric

Circles (Arcs) 

Grouping (line segments or arcs 

which are parallel and close 

enough are grouped) 

Parallelism,

Proximity 

Polygons Grouping (line segments which are 

end-to-end close enough are 

grouped) 

Proximity, 

Closure 

Fig. 6. Geometric features.

proximity properties in Gestalt principle. For instance, in
(b), the inner circle is implicitly represented as a continu-
ous circle, rather than three arc segments. Similarly, in (c),
four line segments and an arc are extracted. In (d), a group
of parallel lines and a group of concentric circles are de-
tected. Fig. 6 summarizes the geometric features and the
corresponding feature extraction methods that we use in this
paper. The relationships between the geometric features and
Gestalt principles are also given.

3.2. Similarity measurement by maximum WBG matching

The similarity of trademarks can be measured di-
rectly from the maximum WBG matching. Let F1 =
{f11, f12, . . . , f1m} and F2 = {f21, f22, . . . , f2n}, respec-
tively, as the Gestalt features of two given trademarks T1
and T2. Each attribute fij represents a Gestalt element (e.g.,
a line segment, an arc or a circle) of trademark Ti . To com-
pute the similarity between T1 and T2, we build a weighted
complete bipartite graph G = 〈V1, V2, E〉, where V1 has m
nodes v11, v12, . . . , v1m corresponding to f1i and similarly
V2 has n nodes corresponding to f2i . For each node pair
〈u, v〉, u ∈ V1, v ∈ V2, there is an edge between u and v.
The weight on each edge represents the similarity between
two Gestalt elements. The maximum weighted bipartite
graph matching algorithm, or specifically Kuhn–Munkres
algorithm [2–6], is employed to match the F1 and F2 of
two trademarks.

One simplified example (higher level Gestalt elements
such as parallel lines, concentric circles and polygons are
ignored) is illustrated in Fig. 7. The trademark (a) has four
elements (three line segments a, b, c and a circle d), while the
trademark (b) has five elements (three line segments A, B and
C, and two circles D and E). Their bipartite graph G is given
in (c). It has nine nodes. Four nodes on the top represent
the four Gestalt elements of trademark (a), while five nodes
on the bottom represent the five elements of (b). The solid
nodes represent the circles. For simplicity, we omit the edges
whose weights are zero or almost zero (e.g., in the cases
when a circle matches a line segment the weight are zero,
and in the cases when two lines which are quite different
matched to each other such as A and c, A and b, B and a,
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a
b

c

E

A B

C

d
D

(a) (b) (c)

a b c d

A B C D E

0.8 0.9

0.7

0.8

0.3

0.2

Fig. 7. An example showing the maximum WBG matching algorithm.

etc., the weights are very small) in this figure. Thick edges
represent the maximum matching of two Gestalt elements.

One may argue that due to noise effects, there may
be some extra line or curve segments in the image to be
matched, and the maximum matching cannot always find
the correct matching. Indeed, robustness is always related
to some level of noises. When the noises become stronger
and stronger, no system can be “robust” all the time. From
the experiments we find that the maximum matching frame-
work can tolerate a certain level of noises. One reason is
that the outliers seldom overcome the true correspondence
in a weighted bipartite matching even in the cases when the
numbers of nodes in the two graphs are not equal.

The similarity of two trademarks T1 and T2 is then com-
puted as

SimBG(T1, T2) =
∑

u∈T1

∑
v∈T2

MW(u, v)

max(|T1|, |T2|) ,

where MW(u, v) is the edge weight between u and v after
maximum matching, and |Ti | is the number of Gestalt ele-
ments in Ti . MW(u, v) in G is based on the similarity of u
and v. For instance, given two line segments u and v, their
similarity can be measured as

MW(u, v) =
3∑

i=1

wiKi(u, v),

where K1 is a linear function of the distance d between the
centers of u and v. K1(u, v) = 1 when d = 0. K1(u, v) = 0
when d is greater than a threshold, which depends upon the
size of the trademark. The function K2 = cos(�), where �
is the acute angle formed by u and v. K3 is another lin-
ear function of length difference between two lines. The
parameter wi is a weighting factor for each function and
w1 + w2 + w3 = 1. When u and v are identical in terms of
positions, lengths and directions, the value of MW(u, v)=1.
The similarity measurement between arcs or circles is sim-
ilar, except that the geometrical parameters that are taken
into account are: distance between two centers, difference
of radiuses, difference of the arc lengths, overlapping of arc
angles, and so on. When two compared elements belong to
different geometric elements (e.g., a circle and a line), the
similarity is set to zero.

In our current approach, higher level Gestalt elements
such as parallel lines, concentric circles and polygons are
implemented in the similar way. Each of these elements is
represented by a node in the bipartite graph, and the weight
between two elements of the same type is calculated with
the geometric similarity between them.

3.3. Maximum WBG matching under transformation sets

The Gestalt elements we consider are not rotational, trans-
lational and scale invariant. To handle this problem, we pro-
pose an iterative approach for maximum WBG matching
under transformation sets as follows. The goal is to find
a transformation that maximizes the weight of maximum
WBG matching by given a set of allowable transformations.

Maximum WBG matching under transformation sets, in-
tuitively, is an optimization problem that can be formulated
through iterative maximization as follows:

Sim(k) =
∑
u∈T1

∑
v∈T2

MW(u,I(k)(v)), (1)

I(k+1) = arg max
I∈�

∑
u∈T1

∑
v∈T2

MW(k)(u,I(v)), (2)

where Sim(k) and I(k) are the optimal matching and trans-
formation respectively at step k, and � is the allowable
transformation sets. The transformation begins with an ini-
tial transformation I(0). Eqs. (1) and (2) alternate between
finding an optimal matching and an optimal transformation.
This iterative algorithm is inspired from the iterative closest
points (ICP) algorithm in [26] and the FT (flow transforma-
tion) algorithm in [27].

To find the optimal matching in Eq. (1), we employ the
maximum WBG matching algorithm described in Section
3.2. To compute the optimal transformation in Eq. (2), we
employ a gradient descent search. We run the iteration sev-
eral times (5 times in our implementation) with multiple ran-
domly generated initial transformations I(0) and keep the
best result.

Apparently, the above iteration is always convergent. The
reason is that, at each step of the iteration, the value of Sim(k)

is non-decreasing and it has an obvious upper bound, i.e.,
the number of edges of the bipartite graph. In our experi-
ments, the iteration converges quickly. In most cases it con-
verges within three steps. We compare our approach with
brute force search. The results indicate that our approach
has similar effectiveness as brute force algorithm, however,
with significant improvement in speed efficiency.

3.4. Hierarchical retrieval

To further speed up the retrieval, as in [16], we employ
a two-stage hierarchical framework. In the first stage, edge
direction histograms (EDH) is used to rapidly screen out po-
tential candidates. In the second stage, we use both EDH and
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the proposed maximum WBG matching for similarity rank-
ing. Unlike [16], we only choose EDH for filtering, rather
than both EDH and moments. The reason is that EDH is
efficient in filtering false matches even though some false
positives (as shown in Fig. 1) are included. Moments, on
the other hand, is relatively unstable and can filter off cor-
rect matches especially for trademarks with holes and line
drawing details.

In the second stage, the combined similarity measurement
between a query Q and a trademark T is computed as

Sim(Q, T ) = W1SimEDH (Q, T ) + W2SimBG(Q, T )

W1 + W2
,

where W1 and W2 are the weighting factors, and SimEDH

and SimBG are the similarity values based on EDH and max-
imum WBG matching. A simple way is to set W1=W2=0.5.
Here, we propose a novel approach based on the distribu-
tion of similarity values between Q and all the images in the
database. Our intuition is that if one of the feature, EDH for
instance, gives us many matches with similarity values close
to 1, we can conclude that EDH is not a salient feature for
this query in our database. As a result, the weight of EDH
can be lower. The intuition is indeed similar to the “inverse
document frequency” that frequently adopted in information
retrieval literature [28]. In our approach, the weighting fac-
tors is a function Q as follows:

W1(Q) = 1
1

|D|
∑

T ∈D SimEDH (Q, T )

,

W2(Q) = 1
1

|D|
∑

T ∈D SimBG(Q, T )

,

where D is the database and |D| is its cardinality. In brief,
the denominators of W1 and W2 are the average similarity
values between Q and all the images in a database based on
their features.

4. Retrieval and fusion with symmetry

Recent works of Eakins et al. in [11,12] experimented and
analyzed a number of different shape measures, and drew
out the conclusion that they are similar in retrieval effec-
tiveness. They made the suggestion that integrating multiple
features together and inventing novel methods for computing
image similarity based on shape features may lead to better
performance. Our maximum WBG matching approach for
computing trademark similarity is indeed a novel method.
This is because in [7–12], geometric shapes are extracted
under the guidance of Gestalt principle, but discarded at the
stage of feature generation. The geometric shapes are indeed
converted to non-geometric information (e.g., aspect ratio,
circularity). In other words, geometric elements are used in-
termediately but not being fully exploited for retrieval. Our

work, in contrast, not only extracts and groups geometric
primitives, but also fully utilizes the geometric parameters
(e.g., distance, length, angle and etc) peculiar to geometric
elements for maximum WBG matching.

Proper integration of multiple features is not trivial. In
fact, it may deteriorate retrieval performance without careful
integration. A property not considered by [7–12] is symme-
try. However, [17,29] show that Zernike moments do well
with symmetry property of trademarks. We conduct experi-
ments for trademark image retrieval with Zernike moments,
and find that they do perform well with highly symmetric
trademarks. However, for trademarks which are not highly
symmetric, the performance drops greatly (see Section 5 for
details). Although Zernike moments are thought to be the
best invariant features among many moments including reg-
ular moments, Legendre moments, rotational moments and
complex moments [30,31], it is understandable that the re-
trieval performance using Zernike moments for asymmetric
trademarks is not as good as that for symmetric trademarks.
This is mainly because they belong to non-geometric fea-
tures. Given the fact that large part of the trademarks are
not highly symmetric, the best solution is to use Zernike
moments only for query samples that are fairly symmetric.

4.1. Zernike moments

Zernike moment of order (n, m) is computed as

Anm = n + 1

�

∑
�

∑
�

[Vnm(�, �)]∗I (�, �), s.t. ��1,

where I (�, �) is the image pixel in polar coordinate, and
Vnm(�, �) is a Zernike basis polynomial defined as

Vnm(�, �) = Rnm(�) exp(−jm�),

where Rnm(�) is defined as

Rnm(�) =
n−|m|

2∑
s=0

(−1)s(n − s)!�n−2s

s!
(

n + |m|
2

− s

)
!
(

n − |m|
2

− s

)
!
,

where n=0, 1, 2, ∞, |m|�n, and n−|m| is even. In practice,
the magnitudes of Zernike moments (ZMM) are used as the
feature. The two parameters of Zernike moments, n and m,
determine the properties of Zernike basis polynomials. The
parameter m determines the symmetric property of Zernike
basis polynomials (e.g., the ZMM of m = 5 is pentagonal-
shaped), and n − |m| determines the radial direction com-
plexity of Zernike basis polynomials. Based on this charac-
teristic of Zernike moments, we can know the best parame-
ters of the Zernike moments for describing a trademark. As
in [17,29], the probabilistic distribution of ZMM for each
(n, m) is modeled by a Gamma distribution whose parame-
ters � and � can be estimated with ZMMs of the trademarks
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in our database. The degree of saliency, DS(q, n, m) for a
query trademark q, is defined3 as

DS(q, n, m) = P
(
Znm �z

(q)
nm

)
,

where z
(q)
nm is the ZMM of (n, m)th order of the query trade-

mark q. The larger the value of z
(q)
nm is, the more the shape

of q is affected by (n, m)th order Zernike moment. Finally,
the most salient feature (MSF) of the query trademark q is
defined as the pair (N, M) that has the largest DS(q, N, M),
i.e.

MSF(q) = arg max
N,M

DS(q, N, M).

We compute all the 100 moments up to order n = 20 for
each trademarks in our database, and store the MSF of each
trademark. For retrieval, the similarity between the query
trademark Q and a trademark T in the database is computed
as

SimZMM(Q, T ) =
∣∣∣ZQ

NM − ZT
NM

∣∣∣
where N and M is the MSF of Q. Some examples are illus-
trated in Fig. 10. The column “N, M” and “DS” show the
MSFs and the corresponding DS(q, N, M) values for the
query trademarks q, respectively.

4.2. Adaptive selection of geometric and symmetric features

Based on the observation above, we propose the approach
for integrating Zernike moments and our geometric fea-
ture as follows. For query trademark q which satisfies
DS(q, N, M) > p with (N, M) as its MSF, we employ
Zernike moments for retrieval. For others, we employ the
proposed maximum WBG matching approach for the sim-
ilarity measurement of geometric features. The threshold
p = 0.995 is empirically determined. We can estimate the
proportion of trademarks that use Zernike moments for re-
trieval. Suppose that the distribution of a trademark’s ZMM
is independent with the order (n, m), the probability P that
the trademark’s DS on its MSF is greater than p is

P = 1 − pk = 1 − 0.995100 ≈ 0.4,

where p = 0.995, k = 100 in our implementation. But in
fact the independent hypotheses is not satisfied, because a
trademark q which has a large DS(q, n, m) often has large
DS(q, n, km), where k = 1, 2, . . . ,∞. So the actual proba-
bility should be less than 0.4. Experimental results justified
this: for all the trademarks in our database, about 12 percent
has a DS(q, n, m) > 0.995.

3 In [17,29], DS(q, n, m) = P(Znm �z
(q)
nm) is used for the definition

of saliency value, which is just one minus our saliency value.

5. Experimental results

5.1. Retrieval accuracy

We use the benchmark trademark database in MPEG-7
dataset for performance evaluation. This database consists
of about three thousand binary trademarks that are appropri-
ate for testing. We select 50 trademarks from our database
as query samples. The trademarks similar to these query
samples are preselected manually. The numbers of manually
preselected relevant trademarks for different query samples
range from 10 to about 50. The evaluation is based on the
normalized recall-precision [10–12] measures, where three
measures of retrieval performance (normalized recall Rn,
normalized precision Pn and last-place ranking Ln) are de-
fined as follows:

Rn = 1 −
∑n

i=1 Ri − ∑n
i=1 i

n(N − n)
,

Pn = 1 −
∑n

i=1 (log Ri) − ∑n
i=1 (log i)

log

(
N !

(N − n)!n!
) ,

Ln = 1 − Rl − n

N − n
,

where Ri is the rank at which the relevant trademark i is
actually retrieved, Rl is the rank at which the last relevant
trademark is found, n is the total number of relevant trade-
marks, and N is the size of the whole database. These mea-
sures can evaluate the retrieval performance from 0 (worst
case) to 1 (perfect retrieval).

The mean and standard deviation of the performance
scores from the 50 query samples are shown in Fig. 8. The
last row shows the results by the adaptive selection of proper
features for retrieval. We can see that geometric features
outperform Zernike moments, and by carefully integrating
both features, better results are achieved.

Comparing to the retrieval performance in [10], which is
Rn = 0.90 ± 0.12, Pn = 0.63 ± 0.24, Ln = 0.56 ± 0.31, we
can see that both approaches achieve similar performance,
except that theirs did better in recall, while ours is better
in precision and last-place ranking. Although we are using

Rn

Zernike Moments 0.76 ± 0.18 0.55 ± 0.21 0.42 ± 0.35

0.84 ± 0.12 0.61 ± 0.18 0.56 ± 0.27

0.87 ± 0.11 0.66 ± 0.18 0.61 ± 0.28

Geometric Feature

Adaptive Selection

between Zernike 

Moments and 

Geometric Feature

Pn Ln

Fig. 8. Statistic (mean ± standard deviation) of experimental results on
the trademark database in MPEG-7 dataset of about three thousand binary
trademarks.



H. Jiang et al. / Pattern Recognition 39 (2006) 988–1001 995

0.999 0.995 0.99 0.95 0.9
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Threshold p

A
ve

ra
ge

 P
n 

of
 D

S
 (

n,
m

)>
p

Fig. 9. The predefined threshold p versus the average Pn of the query trademarks whose DS(N, M) > p.

different databases and different queries, given the fact that
[10] is one of the best works in trademark retrieval, we can
see that our approach is very promising.

We take the threshold parameter p = 0.995 in all the ex-
periments, i.e., a query trademark whose DS(N, M) > 0.995
is retrieved by Zernike moments, otherwise, the geometric
features are used. In our experiments, 11 out of 50 queries
are retrieved by Zernike moments. By investigating the re-
trieval performance of these 11 queries, we confirm that
Zernike moments, on average, outperforms geometric fea-
tures for trademark with high saliency value. From the re-
sults, we can guess that although Zernike moments are not
as good as geometric features for retrieval, they are supe-
rior to geometric features for highly symmetric trademarks.
Fig. 9 shows the retrieval results by Zernike moments with
different thresholds. We can see that by choosing 0.995 as
the threshold, the average Pn for those query trademarks
with DS(N, M) > 0.995 is about 0.75.

Fig. 10 shows the results for 10 trademarks. The column
“N, M” and “DS” show the MSFs and the corresponding
DS(N, M) values for the query trademarks, respectively.
During adaptive selection, Zernike moments are used for
trademarks Nos. 1 and 4, while geometric features for the
others. The features used are highlighted in Fig. 10. Exper-
imental results indicate that the proposed approach obtain
good retrieval accuracy for some trademarks such as No. 4
(a line of characters), No. 3 (three circles) and No. 10 (some
characters in a box). It is because either they have large
DS(N, M) values (No. 4), or they have describable geomet-
ric structures (Nos. 3 and 10). In our approach, the relevant
trademarks in the first 20 of the retrieved images which are
consistent with our manually labeled ground truth are shown
in Fig. 11. For some queries, such as Nos. 9 and 7, the re-
trieval performances are not so satisfactory. We present five

relevant trademarks for each of them in Fig. 12. We find that
these trademarks are semantically similar rather than geo-
metrically or symmetrically similar. For instance, the trade-
marks in (a) are all aircrafts and the trademarks in (b) are
all letter ‘F’.

Through the experiments, we find that the DS value can
basically represent the symmetry property of a query, and it
roughly determines the retrieval accuracy of using Zernike
moments. In general, the accuracy is high when the value
of DS is large, and vice versa. Nevertheless, it is worth to
notice that the value of DS does not always indicate the per-
ception of human. For instance, queries Nos. 2, 3 and 8 (in
Fig. 10) look quite symmetric, but their DS values are less
than 0.995. Similarly, query No. 10 has larger DS value than
Nos. 2 and 8 although intuitively it is not as symmetric as
them. In any case, the retrieval accuracy of these queries by
Zernike moments is not better than by geometric features.
As indicated in Fig. 10, the effectiveness of retrieval by geo-
metric features is clear. In most cases, the geometric features
successfully encode the shape information of queries. For
the six queries from Nos. 5 to 10, the retrieval accuracy by
geometric features is significantly better than Zernike mo-
ments (except query No. 9). For queries Nos. 2 and 3, al-
though the retrieval results by Zernike moments are already
good, geometric features can achieve even better accuracy.

For all 50 queries, the average retrieval time is approx-
imately 5 s on a Pentium-III machine with 1G CPU and
256 MB memory. For the hierarchical retrieval scheme with
maximum WBG matching, the speed up is four times com-
pared with pure maximum WBG matching. In particular, the
average retrieval time using pure maximum WBG matching
without hierarchical scheme is about 20 s on the same ma-
chine. In our current implementation, the top 600 retrieved
trademarks from EDH are screened out for maximum WBG
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Fig. 10. Experimental results of ten queries on the trademark database in MPEG-7 dataset of about three thousand binary trademarks.

matching investigation. The retrieval accuracy of hierarchi-
cal retrieval is indeed close to that of using maximum WBG
matching alone. In most cases, the weighting factor W2 is
greater than W1 defined in Section 3.4.

5.2. Performance comparison

Existing approaches that use bipartite graph matching for
similarity measurement include [32,33]. We compare our
method with Belongie’s approach [33] since their shape
matching algorithm performs quite well for trademark re-
trieval. In [33], bipartite graph matching is used to match two
sets of edge points extracted from two images. Each point
is attached with a descriptor named shape context which en-
codes the relative position of other points with respect to
this point. The descriptor is represented as a log-polar his-
togram. The similarity between two shapes is based upon the
upshot of point matching. An iterative framework, similar
to ours in spirit, is used to improve both the correspondence
and transformation. However, Belongie’s approach employs
regularized thin-plate splines while we use affine transfor-
mation to align two shapes.

To compare the performance of both approaches, we con-
duct experiments based on the same set of 50 queries on our

database. Due to the fact that the efficiency of matching al-
gorithm in [33] is directly impacted by the number of sample
points, each trademark is represented by 100 feature points
sampled from Canny edges. Fig. 13 shows the retrieval per-
formance of 10 query trademarks. The relevant images in
the top 20 retrieved images and their corresponding Rn, Ln

and Pn values are given in the table. The performance of our
approach (in Figs. 10 and 11) is superior in term of the ca-
pability in recalling similar trademarks. Considering all the
50 queries, the average retrieval performance of Belongie’s
approach is

Rn = 0.64 ± 0.14, Pn = 0.39 ± 0.19,

Ln = 0.10 ± 0.12.

Compared with the results in Fig. 8, our proposed approach
is better in all performance measures. We repeat the same
experiments for 200 and 300 sample points. No noticeable
improvement is observed. Indeed, Belongie’s approach per-
forms well as long as critical points in shape are sampled
for matching. In Belongie’s approach, dummy nodes are
added to increase robustness during bipartite graph match-
ing. We experiment whether the same setting is useful for
our approach. The retrieval performance, nevertheless, is not
noticeably improved by using dummy nodes. We think the
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Fig. 11. Retrieval results for ten queries by adaptive selection.

Fig. 12. “Difficult” queries and the missed relevant trademarks.

reason is that bipartite graph matching itself can handle par-
tial matching, and outliers rarely overcome the true corre-
spondence in a matching.

In term of speed efficiency, our method is favorable. The
average computational time of Belongie’s approach for a
single image comparison increases exponentially with the
increasing number of sample points. Even at a low num-
ber of sample points of 100, the typical retrieval time for a
single query using their approach is around two hours4 for

4 We use the MATLAB code provided by [33] for the experiments,
which might be speeded up if converted to C code.

a database of around three thousand images. Our approach
completes the same task in 5 s, faster by three orders of mag-
nitude. The typical number of feature points in Belongie’s
approach is about 10 times larger than the typical number of
geometric elements extracted in our approach. Considering
that the fastest version of weighted bipartite graph matching
algorithm so far is O

(
n2.5

)
[3], our approach is considerably

efficient, in term of feature size, for trademark retrieval. In
Belongie’s approach, in addition to the complexity incurred
in graph matching, the thin-plate spline coordinate transfor-
mation involves the inversion of a p × p matrix, where p
is number of sample points. This impacts the speed of their
algorithm as the number of sample points increases.

6. Discussions

In this section, we show the theoretical and practical ar-
guments that support the use of particular techniques in our
approach. The pro and con of these techniques, along with
empirical evidence, are discussed.
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Fig. 13. Retrieval performance of Belongie’s method.

Fig. 14. An example showing the effectiveness of our approach with the existence of transformations. The trademarks from left to right are respectively
the original one, one that is scaled by 120%, one that is scaled by 150%, one that is rotated by 90 degree and one that is both rotated by 90 degree and
scaled by 120%. In the experiments using the last four transformed trademarks as queries, the first one is always retrieved as the most similar one.

6.1. Invariance to transformation

As mentioned in Section 3.3, the geometric elements we
adopt are actually not scale, rotational and translational in-
variant. Therefore, we embed the maximum WBG matching
in an iterative framework to optimize the transformation that
matches the two sets of geometric elements. Here, we give
some analysis on how well this approach actually performs.

The iterative algorithm in our approach is essentially a
local search algorithm. Although it cannot guarantee global
optimum, it gives us an acceptable matching for most cases
as justified by our experimental results. A global optimum
may not be necessary since the similarity measurement is
defined quite arbitrarily and our objective is to find a rea-
sonable matching rather than a so-called global optimum of
some arbitrary function.

An important factor that affects the performance of a local
search algorithm is the smoothness of the neighborhood of
a point in the state space for searching. The state space we

are using is a subset of R4. In particular, it contains all the
vectors that consist of 4 parameters for transformations (2
for translation, 1 for scaling and 1 for rotation). When the
neighborhood of a point in the state space is smooth, the
local search algorithm will perform well. Otherwise, there
will be too many local optima and the search algorithm
may easily get stuck into one of them which might be a
poor matching. For example, the similarity of two lines is
computed based on center positions, lengths and directions.
The similarity values associated with the changes of each
of these parameters should be smooth in the neighborhood
of a particular point in the state space to achieve good local
search results.

Here we use an example to show the effectiveness of our
approach. In Fig. 14, we use several transformed versions of
a trademark as queries. In each of these retrievals, we man-
age to retrieve the original trademark as the most similar one
in the whole database of about three thousand trademarks.
This result is meaningful since we can achieve similar scale
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Fig. 15. The retrieval performance of various queries against their saliency values.

Fig. 16. An example showing the retrieval results of using Zernike moments (the first row) and using geometric features (the second row). The leftmost
trademark is the query sample.

and rotation invariance by a local search framework, without
using traditional normalization techniques such as shifting
the trademark to its center of mass, scaling the trademark
so that it has unit mass, rotating the trademark so that the
longest axis is vertical. Most importantly, our approach can
deal with more difficult cases, for instance the trademarks
shown in Fig. 2, where traditional invariant features such as
moments cannot handle.

6.2. Adaptive selection

Fig. 8 indicates that our geometric features outperform
Zernike moments, but adaptive selection between them per-
forms even better. Here we give detailed analysis. Generally
speaking, incorporating multiple features for retrieval does
not always improve the retrieval performance. Since the per-
formance of Zernike moments is worse than our geometric
features for most trademarks, the retrieval accuracy may de-
crease if we simply incorporate them with simple method
such as linear combination. Instead, we propose the employ-
ment of the saliency value DS(N, M) inherent in the Zernike
moments of a query image to guide the adaptive selection
of features. Fig. 15 shows the average normalized recall,

precision and last-place ranking of the queries that have a
saliency value greater than a particular value. We find that
the average normalized recall, precision and last-place rank-
ing decrease roughly monotonically as the saliency value
decreases. For most cases, when the saliency value exceeds
0.995, the average retrieval performance using Zernike mo-
ments is better than geometric features, although geometric
features outperform Zernike moments in retrieval in general.
This is because Zernike moments work well for symmetric
trademarks and the degree of symmetry can be measured by
the saliency value.

However, there are counterexamples and cases that re-
semble counterexamples. For instance, although query No.
4 in Fig. 10 is not symmetric from human perception, it
is more effective to use Zernike moments compared to ge-
ometric features. This is because it is symmetric in terms
of the distribution of pixels, which is indicated by the high
saliency value with M = 2. Similarly but on the other end,
query Nos. 5 and 8 look symmetric from human perception
but their saliency values are smaller than 0.995 and therefore
geometric moments are the better feature descriptor. Query
No. 5 does not have a large saliency value because it has
both triangular and rectangular structures. Saliency value is
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large only if an image has a unique period in the polar angle
axis. The saliency of query No. 8 is degraded because it has
too many radial lines. Notice that its saliency value happens
at M = 0. Normally, a zero value of M is not effective in
describing symmetry.

We also note some real counterexamples in our experi-
ments. Fig. 16 shows the retrieval results of using Zernike
moments in the first row and the results using geometric fea-
tures in the second row. The leftmost trademark is the query
image. The saliency value of the query is 0.9982, achieved
at (N, M) = (7, 3). We can see that although the saliency
value is larger than 0.995, the retrieval results using geomet-
ric features are better than using Zernike moments. Geomet-
ric moments successfully “catch” the characteristic of the
trademark that it has three arcs but Zernike moments do not.

6.3. Retrieval with Zernike moments and its variants

In [17,29], Zernike moments are used for trademark re-
trieval. As shown in Section 5, this approach performs fairly
well for symmetric trademarks. Deformed trademarks were
also experimented in [17,29]. Although the experiment is
useful for general shape retrieval, it may not be critically im-
portant for trademark retrieval since trademarks are seldom
deformed.

Besides [17,29], other approaches that use Zernike mo-
ments for retrieval include [34,35]. In [34], 3D Zernike mo-
ments are utilized for retrieving 3D shapes. In [35], Zernike
moments are employed for image reconstruction and recog-
nition. The magnitudes of Zernike moments are used as
feature values. However, the features are weighted by their
contributions in the reconstruction procedures before com-
parison. This is different from our scheme, which uses the
most salient feature (i.e., the saliency value DS(N, M)) for
retrieval.

7. Conclusion

Based on the five holistic properties of Gestalt principle,
we have presented shape-based features that are appropriate
for trademark retrieval. The effectiveness of our approach
lies on the adaptive selection of features, and the maximum
WBG representation for partial matching of geometrical el-
ements inferred from Gestalt principle. Experimental results
indicate that the adaptive selection scheme does improve the
retrieval, in the sense that the retrieval performance using
adaptive selection is better than that of using either of the
two features for retrieval on their own. Experiments also
show that Zernike moments work distinctly better for trade-
marks that have very high saliency values DS(N, M), which
usually refer to the highly symmetry of the trademarks, but
not always the case. Also, experiments show that geometric
features work reasonably well for trademarks that have de-
scribable geometric features. However, for the trademarks
which are not symmetric and have no significant geometric

characteristic (or simply because their geometric character-
istics are difficult to be extracted by Hough transform), the
retrieval performance of our approach is unsatisfactory. Fu-
ture works will be concentrated on the incorporation of other
feature extraction methods such as corner and texture detec-
tors for more reliable interpretation of Gestalt principles by
geometric features.
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