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Flip-Invariant SIFT for Copy and Object Detection
Wan-Lei Zhao and Chong-Wah Ngo, Member, IEEE

Abstract— Scale-invariant feature transform (SIFT) feature
has been widely accepted as an effective local keypoint descriptor
for its invariance to rotation, scale, and lighting changes in
images. However, it is also well known that SIFT, which is derived
from directionally sensitive gradient fields, is not flip invariant.
In real-world applications, flip or flip-like transformations are
commonly observed in images due to artificial flipping, opposite
capturing viewpoint, or symmetric patterns of objects. This
paper proposes a new descriptor, named flip-invariant SIFT (or
F-SIFT), that preserves the original properties of SIFT while
being tolerant to flips. F-SIFT starts by estimating the dominant
curl of a local patch and then geometrically normalizes the patch
by flipping before the computation of SIFT. We demonstrate the
power of F-SIFT on three tasks: large-scale video copy detection,
object recognition, and detection. In copy detection, a framework,
which smartly indices the flip properties of F-SIFT for rapid
filtering and weak geometric checking, is proposed. F-SIFT not
only significantly improves the detection accuracy of SIFT, but
also leads to a more than 50% savings in computational cost. In
object recognition, we demonstrate the superiority of F-SIFT in
dealing with flip transformation by comparing it to seven other
descriptors. In object detection, we further show the ability of
F-SIFT in describing symmetric objects. Consistent improvement
across different kinds of keypoint detectors is observed for
F-SIFT over the original SIFT.

Index Terms— Flip invariant scale-invariant feature transform
(SIFT), geometric verification, object detection, video copy
detection.

I. INTRODUCTION

DUE TO the success of SIFT [1], image local features
have been extensively employed in a variety of computer

vision and image processing applications. Particularly, various
recent works take advantage of SIFT to develop advanced
object classifiers. The studies conducted by [2], [3], for
example, show that using aggregated local features based on
SIFT, the performance of linear classifier is comparable to
more sophisticated but computationally expensive classifiers.
The attractiveness of SIFT is mainly due to its invariance
to various image transformations including: rotation, scaling,
lighting changes and displacements of pixels in a local region.
SIFT is normally computed over a local salient region which
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(a) (b)

Fig. 1. Examples of flipping in different contexts. (a) Viewpoint change.
(b) Flip-like structure.

is located by multi-scale detection and rotated to its dominant
orientation. As a result, the descriptor is invariant to both
scale and rotation. Furthermore, due to spatial partitioning and
2D directional gradient binning, SIFT is insensitive to color,
lighting and small pixel displacement. Despite these desirable
properties, SIFT is not flip invariant. As a consequence, the
descriptors extracted from two identical but flipped local
patches could be completely different in feature space. This
has degraded the effectiveness of feature point matching [4]
and introduced extra computational overhead [5]–[7] for appli-
cations such as video copy detection.

Flip or flip-like operations happen in different contexts. In
copyright infringement, flip operation has been one of the
frequently used tricks [8], [9]. Especially, horizontal flipping
is more commonly observed since this operation visually will
not result in any apparent loss of image/video content. Flips
also occur when taking pictures of a scene from opposite
viewpoints. This kind of flips, as shown in Figure 1(a), is
usually captured in different snapshots of time, and widely
exists especially in TV news programs broadcast by different
channels. In addition, objects having symmetric structure
also exhibit flip-like transformation as shown in Figure 1(b).
Generally speaking, allowing the symmetric structure of
objects to be matched in the feature space will increase the
chance of recalling objects in the same classes, especially
when the objects are captured from arbitrary viewpoints. In
short, the ability of a descriptor in characterizing the visual
invariance of a local region despite of whether the region is
flipped or inherently symmetric is important for tasks such as
copy and object detection.

In the literature, there are several local descriptors such
as SPIN [10] and RIFT [10] which are flip invariant.

1057–7149/$31.00 © 2012 IEEE
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However, both descriptors are sensitive to scale changes, and
as reported in [11], are not as discriminative as SIFT. In
contrast, this paper proposes F-SIFT which enriches SIFT
with flip invariant property while preserving its feature dis-
tinctiveness. By observing that flip operation with respect to
arbitrary axis can be decomposed into a horizontal (or vertical)
flip followed by rotation, F-SIFT first computes the dominant
curl of gradient fields in a local patch. The curl classifies
a patch into either clockwise or anti-clockwise, and F-SIFT
explicitly flips a patch of anti-clockwise before extracting SIFT
feature. Intuitively, flip invariance is achieved by geometrically
normalizing local patch before the computation of SIFT.

The main contribution of this paper is the proposal of
F-SIFT which enhances SIFT with flip invariance property.
The employment of F-SIFT for video copy detection, object
recognition and detection is also demonstrated. Particularly,
we show that, by smartly indexing F-SIFT, the performance
improvement in both detection accuracy and speed could gen-
erally be expected. The remaining of this paper is organized
as follows. Section II reviews variants of local descriptors
and their utilization for copy and object detection. Section III
describes the extraction of F-SIFT descriptors from local
regions. Section IV further presents a framework for large-
scale video copy detection, by proposing the schemes for
feature indexing and weak geometric checking based on
F-SIFT. Section V presents a comparative study to investi-
gate the effect of detectors and descriptors in face of flip
transformation for object recognition. Section VI empirically
compares the performance of F-SIFT and SIFT for object
detection. Finally Section VII concludes this paper.

II. RELATED WORK

While developing local descriptors invariant to various
geometric transformations has received numerous research
attention, the property of flip invariance surprisingly is often
not considered. Until recently, there are several flip invariant
descriptors including RIFT [10], SPIN [10], MI-SIFT [12]
and FIND [13]. These descriptors, including SIFT, mainly
differ by the partitioning scheme of local region as shown in
Figure 2. SIFT, which divides a region into 4 × 4 blocks and
describes each grid with an 8 directional gradient histogram
as in Figure 2(a), generates the feature by concatenating
the histograms in row major order from left to right and
the histogram bins in clockwise manner. As a result, flip
transformation of the region will disorder the placement of
blocks and bins. This results in a different version of descriptor
due to the predefined order of feature scanning. The potential
solutions for dealing with this problem include altering the
partitioning scheme or scanning order [10], [13], and feature
transformation [12].

RIFT [10] adopts a different partitioning scheme than SIFT
by dividing a region along the log-polar direction as shown
in Figure 2(b). Similar to SIFT, the 8-directional histograms
are computed for each division and then concatenated to
form a descriptor. Since the partitioning scheme itself is
flip and rotation invariant, RIFT is not sensitive to order
of scanning. On the other hand, while this radius based

Fig. 2. Partition schemes of (a) SIFT [1], (b) RIFT [10], (c) GLOH [11],
(d) SPIN [10], and (e) FIND [13].

division is smooth and less vulnerable to quantization loss if
compared to grid-based partitioning, the spatially loose repre-
sentation also results in RIFT a descriptor not as distinctive as
SIFT. GLOH which can be viewed as an integrated version
of SIFT and RIFT provides finer partitioning as shown in
Figure 2(c). However, the invariance property no longer exists
once after strengthening the spatial constraint. SPIN as shown
in Figure 2(d), instead, preserves flip invariance property
while enforcing spatial information by encoding a region as
a 2D histogram of pixel intensity and distance from region
center. Despite the improvement, nevertheless, the empirical
evaluation in [11] reported that SPIN as well as RIFT and
GLOH are outperformed by SIFT.

FIND [13] is a new descriptor which allows overlapped
partitioning and scans the 8-directional gradient histograms
by following the order indicated in Figure 2(e). Under this
scheme, the descriptors produced before and after a flip oper-
ation are also mirror of each other. Specifically, a descriptor
generated as a result of flip can be recovered by scanning
the histograms in reverse order. With this interesting property,
FIND explicitly makes the descriptor invariant to flip by
estimating whether a region is left or right pointing through
parameter thresholding. When comparing two descriptors of
left and right pointing respectively, the descriptor components
are rearranged on the fly for proper order of feature matching.
Nevertheless, as reported in [13], the estimation of point-
ing direction is highly dependent on parameter setting, and
more importantly, incorrect estimation directly implies invalid
matching result. In addition, similar to RIFT, the partitioning
scheme does not produce descriptor as distinctive as SIFT.
MI-SIFT [12], instead, operates directly on SIFT while trans-
forming it to a new descriptor which is flip invariant. This is
achieved by explicitly identifying the groups of feature compo-
nents which are disorderly placed as a result of flip operation.
MI-SIFT labels 32 of such groups and represents each group
with four moments which are flip invariant. Nevertheless, the
descriptor based on moment is not discriminative. As reported
in [12], this results in more than 10% of matching perfor-
mance degradation than SIFT when no-flip transformation
happens.
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Flip operations have been viewed as one of the widely
used infringement tricks. In TRECVID copy detection task
(CCD) [9], [14], for instance, video copies as a result of flips
are regarded as one of the major testing items. Interestingly,
most participants in CCD nevertheless seldom adopted flip
invariant descriptors, and instead, employed SIFT for its
feature distinctiveness. The problem of flipped copy detection
is engineered by indexing two SIFT descriptors for each
region [6], [15], of which one of them is computed by
simulating flip operation. This results in significant increase in
both indexing time and memory consumptions. In [5], [7], an
alternative strategy was employed by submitting two versions
of descriptors, flipped and without flipped, as query for copy
detection. This strategy introduces the drawback that the query
processing time is double.

Most of the keypoint detectors and visual descriptors are
proposed for feature point matching in object recognition [11].
However, there is no systematic and comparative studies yet
to investigate their performance in face of flip transforma-
tion. Different from copy detection and object recognition,
the existing works on object detection are mostly learning-
based. Specifically, bag-of-visual-words (BoW) constructed
from local features such as SIFT are input for classifier
learning [16], [17]. To the best of our knowledge, no work
has yet seriously addressed the issue of detection performance
by contrasting features with and without incorporating flip
invariance property.

III. FLIP INVARIANT SIFT

We begin by describing the existing salient region (or
keypoint) detectors. These detectors are indeed flip invariant
and capable of locating regions under various transformations.
In other words, the problem arisen as result of flip operations
is originated from the feature descriptor itself. With this fact,
we will then present our proposed descriptor F-SIFT which
revises SIFT to be flip invariant.

A. Flip Invariant Detectors

There are various keypoint detectors available in the litera-
ture [1], [18]–[20]. In general, these detectors perform scale-
space analysis for locating local extremes of an image in the
selected scales. The outputs are salient points, each associ-
ated with a region of support and its dominant orientation.
Detectors are mostly similar to each other except with variation
in the choice of saliency function. Analysis on flip invariance
of major detectors is given as follows.

Given a pixel P , the second moment matrix is defined to
describe gradient distribution in the local neighborhood of P:

μ(P, σI , σD) = σ 2
Dg(σI )∗

[
L2

x (P, σD) Lx L y(P, σD)

Lx L y(P, σD) L2
y(P, σD)

]

(1)

where σI is the integration scale, σD is the differential scale
and Lg is to compute the derivative of P in g (x or y)
direction. The local derivatives are computed with Gaussian
kernels of the size determined by the scale σD . The derivatives
are averaged in the neighborhood of P by smoothing with

integration scale σI . Based on Eqn. 1, the Harris function at
pixel P is given by

Harris(P) = Det (μ(P, σI , σD)) − α

×T race2(μ(P, σI , σD)) (2)

where α is a constant. Scale invariance is further achieved
by scale-space processing computed by Laplacian-of-Gaussian
matrix

LoG(P, σI ) = σ 2
I |Lx x(P, σI ) + L yy(P, σI )| (3)

where Lgg denotes the second order derivative in direction g.
The local maxima value of P, with respect to an integration
scale σI , is determined based on the characteristic structure
around P. Harris-Laplacian (HarLap) detector regards a pixel
P as keypoint if it attains local maxima in Harris(P) and
LoG(P, σI ) simultaneously.

Eqn. 1 involves the computation of the first order derivatives
which are directionally sensitive. A horizontal flip transforma-
tion, for example, will reverse the sign of derivative along x
direction. Fortunately, the second moment matrix is symmetric
and the derivatives are squared, resulting in no change of
effect on the resulting determinant. While for Eqn. 3, the
computation fully relies on the second order derivatives along
x and y directions which is typically in following form

Lgg(P, σI ) = I (g−1, σI )+ I (g+1, σI )−2 ∗ I (g, σI ). (4)

Since the Gaussian window is isotropic, Lgg remains
unchanged in each direction. As a result, flip produces no
effect on Eqn. 3. HarLap and Laplacian-of-Gaussian (LoG)
are detectors that adopt Eqn. 3 as saliency function.

Difference-of-Gaussian (DoG) detector [1] defines local
extrema in spatial and scale spaces based on following
function:

DoG(P, σ ) = G(P, k·σ) − G(P, σ ) (5)

where G(P, σ ) is the Gaussian blur applied on pixel P and k
is a constant multiplicative factor. Similar to HarLap and LoG,
flip operation will take no effect on Eqn. 5 due to the isotropic
Gaussian window. Thus, DoG detector is also flip invariant.

Hessian detector, instead, defines the saliency function
solely based on the determinant of Hessian matrix as
following:

Hessian(P, σD) =
[

Lx x(P, σD) Lxy(P, σD)
L yx(P, σD) L yy(P, σD)

]
. (6)

Flip operation makes no effect on either Lx x or L yy but swaps
Lxy and L yx in the matrix. However, because saliency is
computed based on determinant, the swapping will not result
in change of value and thus the detector is also flip invari-
ant. Similar analysis applies to Fast Hessian (FastHess) [20]
detector. Meanwhile, it is also easy to see that Hessian-
Laplacian (HessLap) detector which is defined on Eqn. 3 and
Eqn. 6 is also flip invariant.
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B. F-SIFT Descriptor

While keypoint detectors are mostly flip invariant, there is
no guarantee that the features extracted from salient regions
are also flip invariant. As discussed in Section II, the invariance
is mainly dependent on the layout of partitioning scheme in
a descriptor. Different from the existing approaches, our aim
here is to enrich SIFT to be flip invariant while preserving its
original properties including the grid-based quantization.

Flip transformation can happen along arbitrary axis.
However, it is easy to imagine that any flip can be decomposed
into as a flip along a predefined axis followed by a certain
degree of rotation as shown in Figure 3. Thus, an intuitive
idea to make a descriptor flip invariant is by normalizing
a local region before feature extraction through rotating the
region to a predefined axis and then flipping it along the
axis. Furthermore, if a region has been rotated to its dominant
orientation which is the case for regions identified by keypoint
detectors, the normalization can be simply done by flipping the
region horizontally (or vertically). In other words, a prominent
solution for flip invariance is to determine whether flip should
be performed before extracting local feature from the region.

We propose dominant curl computation to answer this
question. Curl [21] is mathematically defined as a vector
operator that describes the infinitesimal rotation of a vector
field. The direction of curl is the axis of rotation determined
by the right-hand rule. In multivariate calculus, given a vector
field F(x, y, z) defined in R3 which is differentiable in a
region, the curl of F is given by

� × F =
∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣∣∣∣∣∣. (7)

According to Stokes’ theorem, the integration of curl in a
vector field can be expressed by∫∫

�∈R3
= �×F ·d�. (8)

In our case, curl is defined in a 2D discrete vector field I.
The curl at a point is the cross product on the first order partial
derivatives along x and y directions respectively. The flow (or
dominant curl) along the tangent direction can be defined by

C =
∑

(x,y)∈I

√
∂ I (x, y)

∂x

2

+ ∂ I (x, y)

∂y

2

× cos θ (9)

where

∂ I (x, y)

∂x
= I (x − 1, y) − I (x + 1, y)

∂ I (x, y)

∂y
= I (x, y − 1) − I (x, y + 1)

and θ is the angle from direction of the gradient vector to the
tangent of the circle passing through (x, y).

Generally, there are only two possible directions for C ,
either clockwise or counter clockwise, which is indicated by
its sign. The sign changes only when the vector field has been
flipped (along an arbitrary axis). If we enforce every local
region that the sign of flow is clockwise, the normalization

(a)

(b)

Fig. 3. Standardizing arbitrary flip (a) to as a horizontal flip followed by
(b) rotation.

is performed by flipping the regions whose signs are counter
clockwise. In other words, the solution for whether to flip a
region prior to feature extraction is based on the sign of C.
For robustness, Eqn. 10 can be further enhanced by assigning
higher weights to vectors closer to region center as following

C =
∑

(x,y)∈I

√
∂ I (x, y)

∂x

2

+ ∂ I (x, y)

∂y

2

× cos θ × G(x, y, σ )

(10)

where the flow is weighted by a Gaussian kernel G of size σ
equal to the radius of local region1.

To summarize, F-SIFT generates descriptors as follow-
ing. Given a region rotated to its dominant orientation,
Eqn. 10 is computed to estimate the flow direction of either
clockwise or anti-clockwise. F-SIFT ensures flip invariance
property by enforcing that the flows of all regions should
follow a predefined direction indicated by the sign of C
in Eqn. 10. For regions whose flows are opposite of the
predefined direction, flipping the regions along the horizon-
tal (or vertical) axis as well as complementing their dom-
inant orientations are explicitly performed to geometrically
normalize the regions. SIFT descriptors are then extracted
from the normalized regions. In other words, F-SIFT oper-
ates directly on SIFT and preserves its original property.
Selective flipping based on dominant curl analysis is per-
formed prior to extracting flip invariant descriptor. Compared
to SIFT, the overhead involved in F-SIFT is merely the
computation of Eqn. 10 which is cheap to calculate. Our
experimental simulation shows that the extraction of F-SIFT
descriptors from an image is approximately one third slower
than SIFT (See more details in Section IV-D). Figure 4
contrasts the matching performance of SIFT and F-SIFT
for images undergone various transformations. The key-
points are extracted with Harris-Laplacian2 detector and

1Following the convention of SIFT-like feature, local region is normalized
to 41 × 41 and thus σ = 20.

2Code is available at http://www.cs.cityu.edu.hk/~wzhao2/lip-vireo.htm.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Comparing the matching performance of SIFT (left) and F-SIFT
(right) under flip transformations. (X/Y) shows the number of match pairs
(X) against the number of keypoints (Y). For illustration purposes, not
all matching lines are shown. (a) Scale (181/484). (b) Scale (162/484).
(c) Scale+flip (24/484). (d) Scale+flip (153/484). (e) Flip+rotate (71/508).
(f) Flip+rotate (307/508).

described with SIFT and F-SIFT respectively. The corre-
spondences between points are matched through one-to-one
symmetric matching algorithm (OOS) [22]. As shown in

Figures 4(a) and 4(b), for transformation involving no flip,
F-SIFT shows similar performance as SIFT. Fewer matching
pairs are found however by F-SIFT as shown in 4(b) due to
estimation error in Eqn. 10. The error comes from regions
lacking of texture pattern. Conversely, when flip happens,
F-SIFT exhibits significantly stronger performance than SIFT.
As shown in Figures 4(c)-4(f), the number of matching pairs
recovered by F-SIFT is much more than SIFT.

IV. VIDEO COPY DETECTION

To demonstrate the use of F-SIFT for copy detection, we
adopt our framework originally developed for near-duplicate
video detection [23]. Modifications to the framework are
made considering the new features introduced by F-SIFT.
Following [23], F-SIFT descriptors are first offline quantized
for generating visual vocabulary. Each keyframe extracted
from videos is then represented as a bag-of-visual-words
(BoW) indexed with inverted file structure (IF) for fast online
retrieval. For reducing quantization loss, each word indexed by
IF is also associated with Hamming signature for robust fil-
tering [15], [24]. In addition, geometric checking is employed
to prune falsely retrieved keyframes [23]. Finally, the detected
keyframes of a candidate video are aggregated and aligned
with query videos by Hough Transform [15], [23].

A. Indexing F-SIFT

An interesting fact, when matching a flipped image with
its original copy, is that the flow directions of two matched
regions computed by Eqn. 10 are always opposite of each
other. Recall that F-SIFT makes the extracted descriptors flip
invariant by explicitly flipping one of the regions before feature
extraction. Conversely, when the transformation on images
does not involve flip, the matched regions are either not flipped
or both flipped by F-SIFT. In other words, in ideal cases, there
are only two possibilities to describe the matches between
two images. First, in the case when a query image is flipped,
the matched pairs all have the characteristics that one of the
regions is flipped by F-SIFT. Second, when a query involves
no flip, all the matched pairs are either not flipped or flipped
but not a mixture of them. While this observation is intuitive,
it leads to the interesting idea that false matches can be easily
pruned. For example, by surveying all the matched pairs from
two images and finding out which of the two possible cases
(query is flipped or not flipped), invalid matches can be easily
identified and removed.

We make use of this simple fact to revise the inverted file
(IF) structure by also indexing whether a salient region is
flipped by F-SIFT. In addition to the spatial location, scale,
orientation and Hamming signature [24] of a keypoint to
be indexed by IF, an extra bit, of value equals to either
1 or 0 for indicating flip or otherwise, is required. During
online retrieval, the retrieved visual words, together with their
flip indicators, are consolidated for finding out which of
two possible cases that the majority matches belong to. The
remaining matches could then be treated as invalid matches
and removed from further processing. For example, in the
case when a query is regarded as not involving flip operation,



ZHAO AND NGO: FLIP-INVARIANT SIFT FOR COPY AND OBJECT DETECTION 985

all matched words with different bit values are directly pruned.
While simple, this strategy easily filters significant amount
of false positive matches and speeds up the online retrieval
as demonstrated in our experiments (see Section IV-D). In
addition, since only one bit is required for flip indicator, the
space overhead to IF is kept in minimal. Note that the use of
flip indicator is analog to the use of Laplacian sign in [20],
except the former is for verifying matches while the latter is
mainly for speeding up matching.

B. Enhanced Weak Geometric Consistency Checking

The retrieved visual words by IF could still be noisy
in general due to quantization error. A practical approach
for reducing noise is by weakly recovering the underlying
geometric transformation [23]–[25] for further verification. We
adopt E-WGC in [23] for geometric checking due to its supe-
rior performance compared to the more established approach
WGC [24]. With the use of F-SIFT, we revise the E-WGC
as following. Given two matched visual words q(xq, yq) and
p(x p, yp) from a query and a reference keyframe respectively,
the linear transformation between them can be expressed as[

xq

yq

]
= s ×

[
cos θ − sin θ
sin θ cos θ

]
×

[
x p

yp

]
+

[
Tx

Ty

]
. (11)

There are three parameters to be estimated in Eqn. 11: the
scaling factor s, the rotation parameter θ , and the translation
Tx , Ty . In E-WGC, Eqn. 11 is manipulated as[

x̃q

ỹq

]
= s̃ ×

[
cos θ̃ − sin θ̃
sin θ̃ cos θ̃

]
×

[
x p

yp

]
(12)

where s̃ = 2sq−sp and θ̃ = θq − θp . The notations sq and θq

represent the characteristic scale and dominant orientation of
visual word q respectively.

When a query is regarded as a flip version of a reference
image in database as discussed in Section IV-A, Eqn. 12 is
rewritten as[

x̃q

ỹq

]
= s̃ ×

[
cos θ̃ − sin θ̃

sin θ̃ cos θ̃

]
×

[
W0 − x p

yp

]
(13)

where W0 is the width of reference image. Note that Eqn. 13
considers only horizontal reflection3 for speed efficiency. The
choice of applying either Eqn. 12 or Eqn. 13 is determined
on the fly based on whether flip transformation is detected
as presented in Section IV-A. E-WGC aims to estimate the
translation τ of visual word q by

τ =
√

(x̃q − xq)2 + (ỹq − yq)2 (14)

which can be efficiently estimated by histograming technique.
Specifically, the value of τ computed from any two matched
visual words are hashed to a histogram. The peak of histogram
reflects the dominant translation between two images, indi-
cating that any matches that do not fall into the peak will
eventually be treated as false positives and pruned.

3Horizontal flip is more commonly observed than reflection along other
directions. This is due to the fact that mirror-like transformation visually will
not result in apparent loss of visual content. Furthermore, scenes capturing
from two opposite viewpoints, which happen frequently in news videos, also
simulate mirror effect.

(a) (b)

Fig. 5. Examples of copies with very few true positive matches due to heavy
transformation. (a) Heavy skew. (b) Large scaling.

C. Reciprocal Geometry Verification

Given the valid visual word matches returned by IF and
E-WGC verification, the similarity between a query Q and a
reference image R is given by

Sim(Q, R) =
∑

h(q, p)

‖BoW (Q)‖2 · ‖BoW (R)‖2
(15)

where h(q, p) is the distance [24] between Hamming signa-
tures of q and p. The notation BoW (Q) denotes the bag-of-
words of Q. Notice that, because of the aggregated Hamming
distances, the value given by Eqn. 15 can exceed 1. In order
to evaluate the similarity between query and reference video,
similarities of matched query and reference keyframes are
aggregated on Sim(Q, R) via Hough transform [15], [23].

In practice, Eqn. 15 is not robust to heavy transformation
which often causes few matches between two keyframes.
Figure 5 shows an example where there are only six matches
being identified due to large skew and scale resulting in low
similarity scores by Eqn. 15. To alleviate this problem, we
revise h(p, q) in Eqn. 15 such that the similarity is not only
dependent on Hamming distance but also the confidence of
matching between two words. In this way, keyframe pairs with
few matches could also be ranked high in the resulting list.
The h(p, q) is revised as

H (q, p) = (1.0 − �) × logα � × h(q, p) (16)

where � indicates the confidence of matching which will be
further elaborated later, and α is an empirical parameter which
is set to 0.9 in our experiment. Eqn 16 basically amplifies
h(q, p) when the matched pair holds high confidence score
(low � in another word).

We estimate � by reciprocal geometric verification. Given
two matched words p and q from keyframes Q and R
respectively, the scale ŝ and rotation θ̂ between them can be
approximated by referring to another matched words of p′
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TABLE I

COMPARISON OF F-SIFT AND SIFT FOR VIDEO COPY DETECTION UNDER DIFFERENT TYPES OF TRANSFORMATIONS: 1) CAMCODING,

2) PICTURE-IN-PICTURE, 3) INSERTION OF PATTERNS, 4) STRONG RE-ENCODING, 5) CHANGE OF GAMMA, 6) DECREASE IN QUALITY

(INCLUDING NOISE, FRAME DROPPING, ETC.), 8) POST PRODUCTION (INCLUDING INSERTION OF CAPTIONS, FLIPPING, ETC.),

10) RANDOMLY CHOOSE ONE TYPE FROM 3 MAJOR TRANSFORMATIONS. THE 3rd COLUMN INDICATES THE NUMBER OF COPY

VIDEOS CORRECTLY RETRIEVED UNDER DIFFERENT TRANSFORMATIONS. NOTE THAT IN TRANSFORMATION

8 AND 10, THERE ARE 63 AND 14 OUT OF 134 QUERIES BEING FLIPPED, RESPECTIVELY

(a) COMPARISON AMONG DIFFERENT SETTINGS OF BOW
Transformations Options 1 2 3 4 5 6 8 10 Prec Rec

BoW* [24]
SIFT 6 8 79 4 73 14 44 23 0.234 0.218

F-SIFT 4 6 87 6 84 16 69 33 0.285 0.285

BoW
SIFT 9 60 112 34 110 45 61 51 0.450 0.457

F-SIFT 13 77 120 55 122 54 114 68 0.581 0.548

BoW+ SIFT 49 79 124 67 122 72 77 66 0.612 0.609
F-SIFT 54 91 126 78 127 85 117 81 0.708 0.719

(b) COMPARISON BETWEEN SIGN OF DOMINANT CURL AND

SIGN OF LAPLACIAN USING F-SIFT
Transformations 1 2 3 4 5 6 8 10 Prec Rec

BoW* [24] 4 6 87 6 84 16 69 33 0.285 0.285
+Dominant curl 1 19 98 1 80 24 71 35 0.635 0.307

+Laplacian 0 11 92 0 75 21 67 29 0.596 0.275

from Q and q ′ from R, where

ŝ = |−→pp′|
|−→qq ′|

(17)

θ̂ = −→
qq ′ � −→

pp′. (18)

Notice that ŝ and θ̂ could be different from the values θ̃
and s̃ estimated by keypoint detection (as given in Eqn. 12).
However, in general the closer their values are, the higher
chance that the match between p and q is correct. We thus
define � as the discrepancy value between them as � =
max{|θ̂ − θ̃ |, |ŝ − s̃|}. Basically the smaller the value is, the
more confidence is for the match between words p and q.
For any value where � ≥ α, the match will be directly
removed from similarity measure such that Eqn. 16 will always
produce positive value. Referring back to equations Eqn. 15
and Eqn. 16, the similarity between two keyframes is revised
by weighting the significance of matched words based on their
Hamming distance and matching confidence.

D. Experiment

The experiments are conducted on TRECVID [9] sound
and vision dataset 2010. The dataset consists of 11,525 web
videos with a total duration of 400 hours. There are 1,608
queries which are artificially generated by eight different
transformations ranging from camcording, picture-in-picture,
re-encoding, frame dropping to the mixture of different trans-
formations including flip. For pre-processing, dense keyframe
sampling is performed on both query and reference videos
with the rate of one keyframe per 1.6 seconds. This results
in an average of 51 keyframes per query, and a total of
903,656 keyframes in the reference dataset. We employ Harris-
Laplacian for keypoint detection and there are 309 keypoints
per frame on average. For BoW representation, we adopt
binary quantization and multiple assignment of visual words

to a keypoint [6]. Comparing to hard quantization, binary
quantization exhibits much better robustness towards the phe-
nomenon of burstiness [26] which widely exists across images
and video frames. For page limitation, the results from hard
quantization are omitted. For each query, a copy video is
returned (if there is any) with a similarity score.

The evaluation follows the way TRECVID CCD takes.
For each type of transformation, a recall-precision curve is
generated. An optimal threshold is selected at the point these
two measures are balanced. The performance is evaluated
based on recall and precision at this optimal truncation point.

Detection Effectiveness: We compare the performance of F-
SIFT and SIFT under three different settings: BoW+, BoW
and BoW*, in order to see the effect of different components
on the visual descriptors. BoW+ is the proposed framework
in this paper, while BoW includes all the features discussed
in this section except reciprocal geometric verification. BoW*
is implemented based on [6], [24] which reported excellent
performance on TRECVID datasets by visual word matching
and is widely regarded as the state-of-the-art technique on
video copy detection. BoW* basically represents a more
conventional framework in the literature where, different from
the BoW setting, the sign of dominant curl is not utilized for
filtering and geometric verification is based on WGC.

Table I(a) shows the performance comparison for 1,608
queries over eight different transformations. Based on the
ground-truth provided by CCD, there are 134 copies per trans-
formation. As indicated by the results, F-SIFT outperforms
SIFT by consistently returning more true positives almost
across all types of transformations and settings. Especially
for transformation-8 and transformation-10 which involve flip
operation, F-SIFT detects 62.5%, 38.5% and 52.3% more
true positives under BoW, BoW+ and BoW∗ respectively.
It is worth notice that while F-SIFT is built upon SIFT,
it is also capable of exhibiting similar or even better per-
formance for no-flip transformations. Comparing all three
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Fig. 6. Sensitivity of α in (16) towards the performance of video copy
detection.

settings, the performance of BoW is better than BoW∗ due to
the use of E-WGC instead of WGC. The use of flip indicators
in BoW for pruning false matches also leads to larger degree
of improvement in detection precision. Further incorporating
reciprocal geometric checking as by BoW+ leads to the
overall best performance in the experiment. By examining
the similarity scores between queries and true positives, we
confirm that the use of re-weighting strategy by Eqn. 16 has
successfully boosted the ranking of candidate videos with
fewer true matches. Note that Eqn. 16 involves a parameter
α which is empirically set to 0.9 in the experiment. Figure 6
shows the sensitivity of α, where as long as the value falls
within the range of [0.65, 0.95], α is not sensitive to the
performance.

The idea of adopting sign of dominant curl for fast filtering
of false alarms is analog to the use of sign of Laplacian
for fast matching of visual words in [20]. Table I(b) shows
the performance comparison between them based on BoW*
setting. Overall, performance improvement in both recall and
precision is observed when enhancing BoW* with sign of
dominant curl. This is in contrast to using the sign of Lapla-
cian which improves precision of BoW* but degrades recall.
Because the purpose of using sign of Laplacian is mainly
for speeding up [20], it is less effective in keeping correct
matches and less capable of dealing with flip transformation
compared to dominant curl. Over the eight transformations,
sign of dominant curl consistently exhibits better ability in
recalling true positives.

Figure 7 shows the examples of match results produced by
F-SIFT under BoW+ setting. In general, F-SIFT is robust
to scaling, flipping and skew transformations as shown in
Figure 7(a) and 7(b). By manual checking, most of matches
are correct. False positives, as shown in Figures 7(c) and 7(d),
are generated however due to partial scene duplicate. While
the results are regarded as false alarms, by manual checking
we can find that the duplicate object and background are
indeed correctly matched. False negatives are produced mainly
due to blur transformation. There are barely no keypoint
matches found using either F-SIFT or SIFT for the examples

(a) (b)

(c) (d)

(e) (f)

Fig. 7. Example of matching results by F-SIFT. (a) and (b) True positives.
(c) and (d) False positives. (e) and (f) False negatives. (a) Flip+scale. (b) Skew.
(c) Duplicate object. (d) Duplicate background. (e) Heavy skew+blur.
(f) Heavy blur+scale.

in Figures 7(e) and 7(f). We investigate the result and observe
that this is mainly due to quantization error introduced by
BoW quantization4.

Efficiency: Table II lists the time cost for processing one
query keyframe. The experiments are conducted on a PC with
2.8GHz CPU and 7G main memory under Linux environment.
In terms of feature extraction time, F-SIFT takes additional
0.128 seconds compared to SIFT. During the retrieval stage

4When matching the F-SIFT features directly (instead of using BoW) using
one-to-one symmetric matching [22], there are plenty of correct matches being
found, for examples in Figures 7(e) and 7(f).
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TABLE II

AVERAGE TIME COSTS IN EACH STEP OF CCD FOR SIFT AND

F-SIFT BASED APPROACHES (S)

SIFT F-SIFT

Feature Extraction 0.651 0.779

Binary VQ 0.209 0.209

Retrieval by IF 0.162 0.218

E-WGC 1.412 0.553

Reciprocal Verification 0.311 0.167

Total 2.802 1.938

by inverted file (IF), F-SIFT is also slower than SIFT due to
the need for consolidating the matching result by checking the
flip indicators of matched words. However, this step effectively
prunes false matches and results in much less candidates to
be further processed by E-WGC and reciprocal geometric
verification. As shown in Table II, the computation time is
reduced by 61% for E-WGC, and by 46% for reciprocal
geometry verification. This ends up with a more efficient and
effective video copy detection framework using F-SIFT. In our
dataset of 0.9 million keyframes, processing a typical query of
71.6 seconds with 51 keyframes will take about 98.8 seconds
by F-SIFT. This speed up is 44.6% comparing to SIFT which
will take 142.9 seconds.

V. OBJECT RECOGNITION

The effectiveness of local features towards recognizing
objects under different degree of transformations has been
surveyed in [11]. In this section, we conduct similar studies
to compare the recognition effectiveness of different key-
point detectors and descriptors. Particularly, we investigate
the performance of F-SIFT in comparison to various visual
descriptors in dealing with flip and no-flip transformations.
The following experiments are conducted based on the image
sequences and testing software provided by K. Mikola-
jczyk [11], [18].

Keypoint Detector: The aim of this experiment is to empir-
ically study the flip invariance property of keypoint detectors
as presented in Section III-A. Two image sequences, Wall and
Boat, as well as their flip versions are used for experiment.
The former is a sequence showing the gradual change of
viewpoint, while the latter shows the gradual change of zoom
and rotation. We evaluate six different keypoint detectors and
compare their performances based on repeatability rate [18].
Figure 8 shows the results. As noted, the performance trends
for all the six detectors are consistently similar in both flip
and no-flip transformation. The empirical result therefore coins
with the analysis in Section III-A that most of the existing
detectors are flip invariant.

Visual Descriptor: We compare eight different visual
descriptors including F-SIFT and SIFT for investigating their
accuracy in keypoint matching. Similar to [20], a set of
image pairs are sampled from the eight image sequences for
experiment. The set includes the first and fourth images from
each sequence. In addition to the original transformations
(blur, rotation, zoom, change of lighting, color and JPEG

(a) (b)

(c) (d)

Fig. 8. Repeatability of various keypoint detectors on the original Wall and
Boat sequences, and their flip versions in (b) and (d). (a) Wall. (b) Wall with
flip. (c) Boat. (d) Boat with flip.

compression rate) in the image set, flip transformation is
included by flipping the fourth image of each sequence. In
the experiment, except SURF, DoG detector is employed for
all the visual descriptors. Following [11], the performance
evaluation is measured by assessing the number of point-to-
point matches being correctly returned. Figure 9 shows the
performance in terms of recall-precision curve averaged over
the results on eight image pairs. As shown in Figure 9(a), for
no-flip transformation, SIFT exhibits the best performance fol-
lowed by F-SIFT and SURF. In the worst case, F-SIFT is still
able to achieve 85% performance of SIFT, which is far better
than other descriptors such as MI-SIFT and FIND designed
for dealing with flips. The performance degradation of F-SIFT
is mainly due to the errors in dominant curl estimation. For
flip transformation as shown in Figure 9(b), conversely, F-
SIFT shows superior performance than the popular descriptors
such as SIFT, SURF and PCA-SIFT which, as F-SIFT, also
use directionally sensitive gradient feature. Although RIFT
and SPIN share similar partitioning scheme (see Figure 2(b)
and 2(d)), SPIN demonstrates much stable performance for
preserving flip invariance property. However, SPIN suffers
from low visual distinctiveness due to the use of pixel intensity
rather than directional gradient as feature. As a result, the
performance is not as good as F-SIFT. Similarly for MI-SIFT,
which uses moment as feature, the performance is also not
satisfactory and lower than it was originally shown in [12].
FIND, on the other hand, exhibits relatively stable performance
in both flip and no-flip cases. Nevertheless, its partitioning
scheme (see Figure 2(e)) appears to be less effective than the
conventional grid-based partitioning such as adopted by SIFT
and SURF, which has limited its overall performance.

VI. OBJECT DETECTION

Visual object detection has been extensively studied in
recent ten years. Among variants of approaches, detection
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(a)

(b)

Fig. 9. Comparison of eight different visual descriptors for flip and no-
flip cases using the image pairs sample from eight image sequences [11].
(a) No-flip. (b) Flip.

based on bag-of-words representation and SVM classifiers has
been the most popularly adopted technique. In this section, we
experimentally compare F-SIFT and SIFT for this detection
paradigm. Particularly, we adopt a variant of BoW with Fisher
kernel as framework, which has been shown to generate the
state-of-the-art classification performance on large-scale image
dataset in [2], [3].

A. Fisher Kernel on BoW

Based on [2], each visual word is modeled as a GMM
(Gaussian mixture model). The set of keypoint descriptors
(e.g., F-SIFT), denoted as X, extracted from an image can
be characterized by the following gradient vector:

�log p(X |λ) (19)

where X = [x1, x2, . . . , xt ] has t keypoints and λ is the
parameter set characterizing GMM. Intuitively, the gradient
of the log-likelihood describes the direction in which para-
meters should be modified to best fit the data. The attractive-
ness of Fisher kernel is the transformation from a variable
length sample X into a fixed length vector determined by λ.

The gradient vector can then be treated as input for any type
of classifier. Typically, this gradient vector can be divided into
three sub-vectors by its parameter types: weight (wi ), mean
(μi ) and variance (σi ) (i = 1, . . . , N), where N is the number
of Gaussians or visual words. For instance, the gradient on μi

can be approximated by

∂L(X |λ)

∂μd
i

=
t∑

s=1

[xd
s − μd

i ] (20)

where d is the dimension of descriptor. In our implementation,
only mean gradient sub-vector is employed for classification
since its performance is similar to that of using all three sub-
vectors [2]. The advantages of Fisher kernel based BoW are
twofold. First, smaller number of visual words are required
compared to BoW. Second, since the feature space has been
unfolded, more efficient classifiers such as linear SVM can
be employed, which was demonstrated in [2], [3] to achieve
similar performance as nonlinear classifier. Eqn. 20 has also
been successfully employed in large-scale content-based image
retrieval [27].

B. Experiment

We conduct experiments on PASCAL VOC 2009
dataset [28]. There are 20 object classes and 23,074
images crawled from Flickr. The dataset is split into two
parts: 7,054 images for training and 6,650 images for
testing. The performance evaluation is measured by average
precision (AP).

We compare the performance of F-SIFT and SIFT
based on keypoints extracted from five different detec-
tors: Harris-Laplace (HarLap), Hessian-Laplace (HessLap),
Hessian, Difference-of-Gaussian (DoG) and Laplacian-of-
Gaussian (LoG). For Fisher kernel based BoW, a small visual
vocabulary of 80 words is generated and linear SVM is
employed for classification. Table III lists the performance of
object detection. As shown in Table III, F-SIFT outperforms
SIFT for most of the object classes, and more importantly,
the improvement is consistently observed across all the five
keypoint detectors. Among them, F-SIFT descriptors extracted
from Harris-Laplace and Hessian-Laplace detected keypoints
achieve the highest mean AP. The improvement introduced
by F-SIFT indicates the existence of symmetric structures
in object classes which are well described by F-SIFT than
SIFT. Nevertheless, performance drop is also observed in
few classes. From our analysis, the performance fluctuation
between F-SIFT and SIFT has no correlation to any particular
object classes. The performance improvement or degradation
by F-SIFT is more closely related to the type of keypoint
detector being employed. For instance, DoG detector intro-
duces less percentage of improvement than others, and there
are 6 out 20 classes exhibit lower AP than SIFT. The perfor-
mance drop is mainly because of the lack of texture pattern in
some of keypoints detected by DoG. The computation of dom-
inant curl is found to be less reliable for these keypoints, which
affects the stability of F-SIFT. As a reference, we also compare
the performance to more conventional implementation using
BoW and SVM with RBF kernel. The results in terms of mean
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TABLE III

PERFORMANCE OF F-SIFT AND SIFT FOR OBJECT DETECTION USING FISHER KERNEL BOW AND LINEAR SVM.

THE COMPARISON IS MADE AGAINST DIFFERENT TYPES OF KEYPOINT DETECTORS. THE ITEMS IN PARENTHESES

IN THE LAST ROW INDICATE THE MEAN AP BY USING STANDARD BOW AND SVM WITH RBF KERNEL

Detector HarrLap HessLap Hessian DoG LoG

Class SIFT F-SIFT SIFT F-SIFT SIFT F-SIFT SIFT F-SIFT SIFT F-SIFT

Aeroplane 0.737 0.747 0.732 0.721 0.696 0.719 0.672 0.696 0.707 0.732

Bicycle 0.308 0.314 0.427 0.441 0.398 0.403 0.386 0.369 0.405 0.427

Bird 0.377 0.392 0.325 0.342 0.298 0.283 0.332 0.358 0.34 0.325

Boat 0.455 0.499 0.3335 0.3532 0.3188 0.3342 0.315 0.323 0.3391 0.334

Bottle 0.226 0.2 0.216 0.213 0.206 0.179 0.133 0.128 0.219 0.216

Bus 0.496 0.516 0.511 0.525 0.488 0.549 0.463 0.505 0.492 0.511

Car 0.301 0.336 0.4 0.41 0.376 0.407 0.357 0.361 0.367 0.4

Cat 0.451 0.446 0.413 0.425 0.379 0.402 0.336 0.345 0.393 0.413

Chair 0.37 0.389 0.37 0.364 0.346 0.354 0.347 0.356 0.348 0.37

Cow 0.233 0.214 0.187 0.151 0.137 0.16 0.126 0.155 0.18 0.187

Diningtable 0.181 0.237 0.243 0.267 0.231 0.208 0.198 0.226 0.25 0.243

Dog 0.31 0.322 0.305 0.335 0.284 0.291 0.298 0.299 0.304 0.305

Horse 0.298 0.321 0.302 0.342 0.29 0.327 0.324 0.344 0.269 0.302

Motorbike 0.342 0.352 0.457 0.488 0.448 0.446 0.412 0.439 0.433 0.457

Person 0.701 0.716 0.684 0.702 0.67 0.678 0.659 0.671 0.681 0.684

Pottedplant 0.12 0.114 0.138 0.111 0.119 0.12 0.159 0.166 0.09 0.138

Sheep 0.257 0.251 0.221 0.196 0.188 0.193 0.127 0.1 0.225 0.221

Sofa 0.227 0.25 0.212 0.247 0.16 0.225 0.216 0.215 0.198 0.212

Train 0.507 0.521 0.509 0.509 0.453 0.538 0.551 0.54 0.459 0.509

TVmonitor 0.332 0.351 0.394 0.343 0.366 0.377 0.355 0.344 0.393 0.394

Mean AP
0.362 0.374 0.369 0.374 0.343 0.360 0.338 0.347 0.355 0.369

(0.371) (0.385) (0.347) (0.363) (0.342) (0.354) (0.353) (0.358) (0.335) (0.345)

Bold font indicates the best performance for each class.

AP are shown in the last row of Table III. Basically, using
F-SIFT also leads to similar performance gain, and we observe
no significant difference in AP performance between these
two implementations. This also indicates that performance of
F-SIFT is stable over different versions of BoW and SVM.

VII. CONCLUSION

We have presented F-SIFT and its utilization for video copy
detection, object recognition and image classification. On one
hand, the extraction of F-SIFT is slower than SIFT due to
the computation of dominant curl and explicit flipping of
local region. On the other hand, the improvement in detection
effectiveness is consistently observed in three applications.
Video copy detection, in particular, demonstrates significant
improvement in recall and precision with the use of F-SIFT.
More importantly, by wisely indexing the F-SIFT with extra
overhead of one bit per descriptor in space complexity, the
speed of online detection (excluding feature extraction) on a
dataset of 0.9 million keyframes has also been improved by
about two times. This indeed has compensated the need for
longer time in feature extraction.

In copy detection, we demonstrate the use of F-SIFT in
predicting whether a query is a flipped version of a reference
video. As shown in our experiments, this interesting finding
has led to significant speed up by reducing large amount of
candidate matches for post-processing. In object recognition,
the comparative study shows that F-SIFT outperforms seven

other visual descriptors when flip is introduced on top of var-
ious transformations, while exhibiting similar performance as
SURF for no-flip transformation. In object detection, it is also
possible to take advantage of F-SIFT for analyzing the flip-
like structure in image and improving detection effectiveness.
Our future work thus includes the exploitation of F-SIFT for
more comprehensive and explicit way of describing symmetric
patterns latent in objects.
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