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Abstract

This paper is concerned with the indexing and retrieval of images based on features extracted directly from the JPEG
discrete cosine transform (DCT) domain. We examine possible ways of manipulatingDCT coe$cients by standard image
analysis approaches to describe image shape, texture, and color. Through the Mandala transformation, our approach
groups a subset of DCT coe$cients to form ten blocks. Each block represents a particular frequency content of the
original image. Two blocks are used to model rough object shape; nine blocks to describe subband properties; and one
block to compute color distribution. As a result, the amount of data used for processing and analysis is signi"cantly
reduced. This can lead to simple yet e$cient ways of indexing and retrieval in a large-scale image database. Experimental
results show that our proposed approach o!ers superior indexing speed without signi"cantly sacri"cing the retrieval
accuracy. � 2001 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

With the wide spread use of the WWW, future digital
libraries are expected to manipulate huge amounts of
image and video data. Due to the limitations of space and
time, most of the data are represented in compressed
forms. As a result, techniques used for editing, segment-
ing, and indexing images directly in the compressed do-
main have become one of the most important topics in
digital libraries. In this paper, we investigate the use of
DCT coe$cients, which are the major components of
JPEG and MPEG, in content-based image retrieval
(CBIR).

In general, CBIR emphasizes rough image matching
rather than exact matching. The DCT domain, to a cer-
tain extent, has unique scale invariance and zooming
characteristics which can provide insight into object and

texture identi"cation, therefore, it is naturally considered
to be a potential domain in mining visual features. We
propose an approach for capturing the rough and global
content of an image with very few DCT coe$cients. Since
other techniques such as relevancy feedback [1] and
query expansion [2] can be used to "ne tune the retrieval
results, CBIR should not su!er greatly as long as a ma-
jority of the relevant images are retrieved.

In our proposed approach, only ten DCT coe$cients
from each 8�8 JPEG image block are extracted. By
applying Mandala transformation [3], this approach
groups these coe$cients and forms ten blocks. Each
block represents a particular frequency content of the
original image. We apply the appropriate techniques to
each block and generate features to describe the shape,
texture, and color properties of the original image. Since
the "rst block conveys color information, we use it to
compute color histograms. To model object shape, we
combine two blocks to compute its image gradient. With
this, our approach tracks the contour of the underlying
object and computes moments to estimate its global
shape. Finally, the proposed approach calculates the
intensity variances of nine blocks to describe their texture
properties.
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2. Related work

Direct manipulation of the compressed images and
videos o!ers low-cost processing of real time multimedia
applications. To date, these e!orts include algebraic op-
erations [4], geometric transformation [5], image seg-
mentation [6], feature extraction [7], indexing [8], and
camera break detection [9]. Most of these works were
done directly in the DCT domain.

Smith and Rowe [4] have shown how pixel addition,
pixel multiplication, scalar addition and scalar
multiplication can be implemented in the DCT domain.
With these algorithms, one can dissolve a sequence
of compressed images and overlay a subtitle on a com-
pressed image. Chang and Messerschmitt [10] further
proposed algorithms for manipulating compressed
videos using the DCT coe$cients with or without
motion compensation. Shen and Sethi [5] described
methods of performing geometric transformations such
as rotation and diagonal #ip by manipulating DCT coef-
"cients.

Soltane et al. [6] suggested an adaptive edge operator
selection scheme for image segmentation based on the
mean, variance, and entropy of DCT coe$cients. Shen
and Sethi [7] further presented an edge detector with
twenty times the speed of conventional methods. Their
proposed approach determines edge strength and ori-
entation through the pattern analysis of DCT coe$-
cients, however, this method assumes the edge of each
8�8 block is a straight line. As a result, disconnected and
broken edges, which are not suitable for contour extrac-
tion or segmentation, occur at the boundaries of some
blocks. On the contrary, our proposed method generates
a reduced, yet smooth edge map by manipulating two
Mandala blocks. Since CBIR requires only rough match-
ing, our method provides adequate visual cues and is
suitable for further image analysis. These e!orts some-
how exploit the possibility of using DCT coe$cients for
describing object shape, and this is not well understood
in the current literature.

In addition, Chang [8] reported several possible ways
of extracting low level features from the compressed
domain. For instance, the texture feature can be formed
by computing the statistical measures of the DCT coe$-
cients. To reduce the dimensionality of the feature space,
the Fisher Discriminant technique is employed to maxi-
mize the separability among the known texture classes.
Similarly, Seales et al. [11] employed a principle com-
ponent analysis to obtain eigenvectors from DCT coe$-
cients. Since DCT is linear and orthogonal, the distance
in eigenspace is preserved. This method projects the DCT
space to the "rst few principle axes and performs object
recognition directly in the compressed domain. These
approaches, nevertheless, may not be suitable for
databases of large volume due to the training and updat-
ing costs, moreover, the retrieval accuracy may be de-

graded when new data arrives. Since future digital libra-
ries are targeted to tackle the dynamic environment of
the WWW Internet, re-training of huge amounts of data
would not be feasible.

Earlier research into understanding the properties
of DCT coe$cients was reported by Hsu et al. [3], they
proposed an approach for classifying man-made and
natural images by computing 48 statistical features. Hou
et al. [12] further demonstrated, in theory, that DCT
behaves somewhat like subband "lters and their impulse
responses closely relate to wavelets.

Recently, Shneier and Abdel-Mottaleb [13] described
a method of generating keys of JPEG images for re-
trieval, where a key is the average value of DCT coe$-
cients computed over a window. During retrieval, images
with similar keys are assumed to be similar, however,
there is no semantic meaning associated with such simil-
arities.

DCT coe$cients also play a major role in video seg-
mentation. Patel and Sethi [9] proposed approaches of
detecting camera cuts by analyzing the DCT coe$cients
extracted from I-frames of MPEG. Detecting cuts in
P and B frames is also possible since Yeo and Liu [14]
have proposed method for estimating the DC sequences
of P and B-frames. In addition, Ariki and Saito [15]
applied DCT coe$cients to cluster news video clips, and
reported that AC coe$cients are less sensitive to abrupt
intensity change due to camera #ushing.

3. JPEG DCT coe7cients

3.1. Compression scheme

In JPEG the original image is divided into 8�8
blocks, then, each block is transformed independently by
DCT. The transformed coe$cients are quantized and
Hu!man coded. The only information loss is due to the
quantization step. The quantization factors will perturb
but not destroy the essential characteristics of the DCT
coe$cients. The DCT is de"ned as
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for indexing and
retrieval. All these coe$cients are quantized but not
Hu!man coded.
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Fig. 1. Images constructed directly fromDCT coe$cients. (from
left to right) DC, image gradient, edge direction and zero cross-
ing images. (a) Lena, (b) Airplane.

�Note that JPEG uses YCrCb color space. Through the
software package in [17], one can obtain the RGB components
directly from JPEG images.

3.2. Basic properties
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horizontal block intensity di!erence. Similarly, F
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the vertical block intensity di!erence.
One can project these coe$cients from the DCT do-

main to the Mandala domain. The Mandala transforma-
tion simply groups the coe$cients with the same u, v as a
block, where each block represents a particular frequency
content of the original image. Denote I

�
�
�
� as a Mandala

block with u, v"[0,1,2,7], we can have 64 blocks as
I, I

�
, I
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, I
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� in the zig-zag order. I is nor-

mally called the DC image. We can express the image
gradient �f, edge direction �, and zero crossing ��f of
I as,
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Fig. 1 shows the resulting 64�64 images in the Mandala
domain, computed from the 512�512 lena and airplane
images.

Due to the linear orthogonal nature of DCT and its
close relationship with Karhunen}Loève Transform
(KLT), it is intuitive to employ DCT coe$cients for
image indexing and retrieval. DCT is asymptotically
equivalent to KLT because of its stationary Markov-1
signals [16]. Its auto-covariance matrix, a Toeplitz
matrix, is predetermined. In this case, selecting the "rst
few DCT coe$cients is approximately equivalent to se-

lecting the KLT transformed values that exhibit signi"-
cant variance.

4. Color histogram

The zero frequency, F
���

, coe$cients of a JPEG image
are grouped to form a reduced and smooth DC image;
the color space is then transformed from RGB (red,
green, blue) to HSV (hue, saturation, brightness).� HSV is
widely used in color histograms because of its uniformity,
compactness, completeness and naturalness [18].

Let v
�
"(r, g, b) be the color triple in RGB space, and

w
�
"(h, s, v) be the corresponding transformed triple in

HSV space, where r, g, b, s, v3[021] and h3[026].
Denote T as the transformation, then w

�
"T(v

�
). T is

[19]
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v!min(r, g, b)

v
,

x"

v!r

v!min (r, g, b)
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,

z "

v!b

v!min (r, g, b)
,

h"�
5#z; r"max (r, g, b) and g"min (r, g, b),

1!y; r"max (r, g, b) and gOmin (r, g, b),

1#x; g"max (r, g, b) and b"min (r, g, b),

3!z; g"max (r, g, b) and bOmin (r, g, b),

3#y; b"max (r, g, b) and r"min (r, g, b),

5!x; otherwise.

(5)

The color histograms are obtained by summing up the
number of pixels with similar values in the HSV compo-
nents. To reduce the length of the histogram features, the
color space is quantized to produce a compact set of
colors. Because hue conveys the most signi"cant charac-
teristic of color, it is quantized to 18 levels. Saturation
and brightness are separately quantized into 3 levels. The
quantization provides 162 (18�3�3) distinct color sets.
As stated in [18], such representations can yield greater
perceptual tolerance while separating the hues so that
red, green, blue, yellow, magenta, and cyan are each
represented by three subdivisions.

We compare the performance of color histograms of
DC images and uncompressed images. For simplicity, we
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Fig. 2. Color retrieval of VisTex database comparing the DC color histogram (for JPEG images) to the color histogram (for
uncompressed images). In each picture, the retrieved images are raster scan ordered by their similarities to the query image in the upper
left.

refer to the former as the DC color histogram approach;
and the latter as the color histogram approach. The
indexing speed of the DC color histogram is approxim-
ately fourteen times faster than the color histogram. For
an image of size 128�128, the DC color histogram takes
less than 0.01 s, while the color histogram takes approx-
imately 0.14 s of CPU time (excluding decompression
time), to process on a Sun Sparc20 machine. Fig. 2 shows

the retrieval results of four image queries in the VisTex
[20] database of 228 images. The histogram intersection
[21] is used as the color similarity measure. For both
approaches, more than half of the top ten retrieved im-
ages are the same although their rankings are di!erent.
Since color retrieval, in general, is subject to human
perception, as long as the top few retrieved images are
similar to the query, the results can be improved by

1844 C.-W. Ngo et al. / Pattern Recognition 34 (2001) 1841}1851



Fig. 3. The contours (a) extracted from the corresponding im-
ages in (b).

Table 1
Performance of various shape features (on a Sun Sparc20 ma-
chine). The indexing time of the deformable prototype approach
is not listed here since it involves the manual selection of proto-
types. The deformation prototype requires the deformation of
each prototype with all images in the database during indexing,
which is much slower than the moment based approach

DCT
Moment

Moment Deformable
prototype

Indexing time (s) 0.006 0.24 }

Feature vector length 7 7 5
AVRR/IAVRR 6.3 5.0 2.6

involving human in the retrieval loop using relevancy
feedback mechanisms.

5. Rough shape modeling

The basic idea of our shape modeling scheme is to
generate an image gradient �f from the Mandala blocks
I
�
and I

�
, track the contour of the underlying object, and

then compute the seven invariant contour moment fea-
tures for indexing. We refer to the indexed shape features
as DCT moment features. Fig. 3 shows four sample im-
ages and their corresponding extracted contours. The
size of a sample image is 128�128, while the contour
image is only 16�16!

Given a contour V"[v
�
,v
�
,2,v

�
], where v

�
is de"ned

on the "nite grid: v3��"�(x, y): x, y"1, 2,2,M�. De-
note g"(x� ,y� ) as the contour centroid. The central mo-
ment of the (p#q)th order is
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invariance by [22]
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�
which are invariant to translation, scaling and

rotation, are frequently used in shape recognition and
have been used in this section as shape features. Since the
range of di!erent �

�
can signi"cantly vary, the covariance

matrix of the seven moment invariants is computed and
the Mahalonobis distance is used as the similarity
measure between two shapes.

To evaluate the indexing and retrieval performances,
we compare the DCT moment with deformable proto-
type [24] and moment (in uncompressed domain). We
use the tropical "sh image database [24] which consists
of "fteen "sh categories for experiments. Retrieval perfor-
mance is evaluated by the measure AVRR/IAVRR
[24,25]. AVRR is the average rank of all relevant images
for a retrieval, while IAVRR is the ideal average rank
when all n relevant images from a particular category
appear in the "rst n position. They are formulated as

IAVRR"

1

m

�
�
���

n�
�
2
, (9)

AVRR"

1

m

�
�
���

��
���

(k�d
�
)

p
�

, (10)

wherem is the total number of images in the database, c is
the number of categories, n

�
is the number of relevant

images in ith category, and p
�
is the number of relevant

images that are in the same class as query i. The value
d
�
"1 if the retrieved image in rank kth position belongs

to a relevant image, otherwise d
�
"0. Perfect retrieval

result is AVRR/IAVRR "1.
Table 1 summarizes the experimental results. The

speed of indexing the DCT moment is approximately
40 times faster than indexing the moment in the
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Fig. 4. Shape retrieval of the "sh database comparing DCTmoment and the deformable prototype. In each picture, the retrieved images
are raster scan ordered by their similarities to the query image in the upper left corner. Relevant images are marked by red stars. (a), (c),
(e) and (g) Retrieve by DCT moment; (b), (d), (f) and (h) Retrieve by deformable prototype.

� In contrast to the traditional deformable-based retrieval, the
deformable prototype performs deformation process o!-line
(during indexing) to omit the on-line shape matching during
retrieval.

� In Figs. 4(a) and (c), the missed and false retrieval of spot"n-
butter#y"sh2 is due to the edge linking problem when tracking
the contour.

uncompressed domain (excluding decompression time)
with slight degradation in retrieval performance. The
deformable prototype [24] requires a pre-processing
step: the manual browsing of a database to select the
representative prototypes, which is tedious when the size
of database is large. The number of prototypes corres-
ponds to the length of a feature vector. The indexing time
of the deformable prototype includes solving the eigen
problem for each shape, "nding the point correspond-
ence of a shape with every prototype and measuring the
deformation energies.� Compared with the DCT mo-

ment, the deformable prototype is computationally ex-
pensive. In Fig. 4, four examples of DCT moment re-
trieval are shown together with the results given by the
deformable prototype. In each picture, the top ten re-
trieved images of a query in the upper left corner are
given. The relevant images are marked with stars. The
relevant images being retrieved by DCT moment are
quite similar to the deformable prototype,� except that
their ranking is di!erent. In general, the deformable
prototype o!ers better ranking capability while the DCT
moment gives superior indexing speed and does not

1846 C.-W. Ngo et al. / Pattern Recognition 34 (2001) 1841}1851



Table 2
Performance of various texture features (on a Sun Sparc20
machine)

DCT
features

Gabor
features

TWT MR-SAR Tamura
features

Indexing
time (s)

0.01 54.5 3.8 34.0 0.42

Feature
vector length

9 48 84 15 3

Ave. Recog.
Rate (%)

55.4 77.6 43.4 75.7 34.2
Fig. 5. Retrieval performance on the Brodatz database accord-
ing to the number of top matches considered.

require manual operation. In this case, the DCT moment
can serve as a "ltering mechanism in the initial stages of
retrieval, while the deformable-basedmatching technique
(for instance [26]) can serve at the later stage to improve
ranking capability.

6. Texture description

Because DCT compresses the image energy into
lower-order coe$cients, we only consider the "rst nine
AC coe$cients. The texture feature is,

S
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"E[I�
�
�
�
�]!E[I

�
�
�
�]� (11)

where S
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of a Mandala block I
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The resulting texture feature vector is the variance
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�
, I
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� , I
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�
 in the Mandala

space. Similar to shape retrieval, the covariance matrix of
the nine DCT texture features is computed and the
Mahalonobis distance is used as the texture similarity
measure.

To evaluate the e!ectiveness and e$ciency of the DCT
texture features, performance comparisons are made with
Gabor wavelet features [27], tree-structured wavelet
transform (TWT) [28], multiresolution simultaneous
autoregressive model (MR-SAR) [29] and Tamura fea-
tures (coarseness, contrast, directionality) [30] in term of
indexing speed and recognition accuracy. The texture
database used in the experiments is composed of 112
texture classes obtained from the Brodatz album [31].
Each texture class provides nine 128�128 images. The
database contains a large variety of natural textures,
including some inhomogeneous classes which are not
usually included in studies. The performance is measured
in terms of the recognition rate which is de"ned as the
percentage number of retrieved images belonging to the
same class as a query image in the top eight matches. We
use every image in the database as query and calculate
the average recognition rate.

Table 2 gives the summary of the experimental results.
It shows the trade-o! of various texture features in terms
of indexing speed (per image), feature vector length and
recognition accuracy. Fig. 5 further illustrates the recog-
nition performance as a function of the number of re-
trieved images. Throughout the experiments, Gabor and
MR-SAR features give the best recognition rate with the
expense of intensive indexing time. DCT features, by
contrast, are computationally attractive. Moreover, on
average, more than half of the relevant images appear in
the top eight matches, which provide a good initializa-
tion for relevancy feedback mechanisms. In addition,
DCT features constantly outperform TWT and Tamura
features. TWT, which decomposes the high frequency
band in the tree-structured representation, leads to inst-
able features for some texture patterns. Tamura features,
which consist of only three global texture features, are
not robust for retrieval in large database.

In Fig. 6, three examples of texture retrieval are shown
together with the results given by DCT and Gabor fea-
tures. The query images consists of harmonic, evanescent
and indeterministic texture patterns. In all cases, DCT
features include one to two more irrelevant images than
Gabor features. Some of these irrelevant images are per-
ceptually similar to their query images, for instance D105
and D68 in Fig. 6(d). In Figs. 6(f) and (g), both features
retrieve the same irrelevant images D108 and D67. In
general, Gabor features o!er better ranking capability
while DCT features o!er superior indexing speed. The
choice of either feature is tailored to applications.

To test the e!ectiveness of DCT features in a more
complicated dataset, we used VisTex [20] which consists
of 228 texture classes and 3648 images for demonstration.
Similar to the cases in Brodatz database, the average

C.-W. Ngo et al. / Pattern Recognition 34 (2001) 1841}1851 1847



Fig. 6. Texture retrieval of the Brodatz database comparing DCT and Gabor features. The images are raster scan ordered by their
similarity. (a) Query texture pattern, (b) and (c) Query D22 by Gabor features, (d) and (e) Query D68 by Gabor features, (f) and (g) Query
D107 by Gabor features.

recognition rate of DCT features lies between Gabor and
Tamura features as illustrated in Fig. 7(a). Figs. 7(b)}(e)
further show two retrieval examples which demonstrate
DCT features work reasonably well in the VisTex
database.

7. Conclusion and future work

We have presented approaches for indexing shape,
texture, and color features directly in the DCT domain
by exploiting ten DCT coe$cients. For color and shape

1848 C.-W. Ngo et al. / Pattern Recognition 34 (2001) 1841}1851



Fig. 7. Texture retrieval in the VisTex database. (a) Retrieval performance according to the number of top matches considered: (b)}(e)
Retrieval of textures comparing DCT and Gabor features. The retrieved images are raster scan ordered by their similarity to the query
image in the upper left corner.

indexing, the proposed methods achieve signi"cant
speed up compared to the same approach operating in
the uncompressed image domain. Overall, the retrieval
results are competent since most of the top retrieved
images are relevant. For texture, the indexing speed
of the DCT features is the fastest among the "ve tested
texture features. Although the retrieval performance
is not as good as Gabor and MR-SAR features, it
does perform better than TWT and Tamura features. In
general, DCT features are capable of retrieving similar

images although the ranking of their similarity to a query
is unpredictable. Nevertheless, the ranking can further
be improved by using techniques such as the relevancy
feedback mechanism where human plays a part in the
retrieval loop. Image retrieval, in most cases, is
subjective to human perception, for some applications we
may just need a system that can provide rough image
matching. DCT features comport with these types of
applications, especially with their superior indexing
speed.
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