
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Research Collection School Of Computing and 
Information Systems School of Computing and Information Systems 

11-2010 

Efficient mining of multiple partial near-duplicate alignments by Efficient mining of multiple partial near-duplicate alignments by 

temporal network temporal network 

Hung-Khoon TAN 

Chong-wah NGO 
Singapore Management University, cwngo@smu.edu.sg 

Tat-Seng CHUA 

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research 

 Part of the Graphics and Human Computer Interfaces Commons, and the OS and Networks Commons 

Citation Citation 
1 

This Journal Article is brought to you for free and open access by the School of Computing and Information 
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in 
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional 
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/146?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6319&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


1

Efficient Mining of Multiple Partial Near-Duplicate
Alignments by Temporal Network

Hung-Khoon Tan, Chong-Wah Ngo,Member, IEEEand
Tat-Seng Chua,Member, IEEE

Abstract—This paper considers the mining and localization of
near-duplicate segments at arbitrary positions of partial near-
duplicate videos in a corpus. Temporal network is proposed to
model the visual-temporal consistency between video sequence
by embedding temporal constraints as directed edges in the
network. Partial alignment is then achieved through network
flow programming. To handle multiple alignments, we consider
two properties of network structure: conciseness and divisibility,
to ensure that the mining is efficient and effective. Frame-level
matching is further integrated in the temporal network for
alignment verification. This results in an iterative alignment-
verification procedure to fine tune the localization of near-
duplicate segments. The scalability of frame-level matching is en-
hanced by exploring visual keyword (VK) matching algorithms.
We demonstrate the proposed work for mining partial alignments
from two months of broadcast videos and across six TV sources.

Index Terms—Partial near-duplicate, temporal graph, keyword
matching.

I. I NTRODUCTION

With the popularity of social media, the volume of pro-
fessional and user generated videos is growing exponentially.
Among these massive amount of data, significant portion
belongs to copies or near-duplicates. As a consequence,
visual redundancy analysis [30], [18] becomes a topic of
intensive studies recently, being applied to various emerging
applications including copy enforcement [16], news video
threading [29], and novelty ranking of web videos [12]. In
handling redundant contents, one point of consideration is
if overlapping information are useful or negligible. Previous
methods [27] have mainly considered near-duplicates as re-
dundant and focus on detecting and removing them from the
retrieval list. However, such approach underscores the poten-
tial of near-duplicates. In a recent study, [3] further refined
the definition of near-duplicate videos through a user-centric
survey and concluded that similar clips differing in overlaid
or added visual content should not be perceived as redundant.
Conforming to this observation, [23] has also utilized the
degree of redundancy between the videos to perform automatic
refinement of video tags. The degree of overlap were used to
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Fig. 1. Partial near-duplicate videos. Given a video corpus, near-duplicate
segments create hyperlinks to interrelate different portions of the videos.

define three levels of links, i.e., full-duplicates, part-of and
overlap, which were shown to aid video categorization and
clustering.

In general, there are two scenarios where near-duplicate
videos are useful: (1) fully near-duplicate videos which share
the same main plot but are supplemented by novel contextual
information, or (2)partial near-duplicatevideo where only
certain segments of the videos are near-duplicate to each
other. In this paper, we focus on the detection of partial
near-duplicate video. The rapid populating of partial near-
duplicates among videos indeed forms a media network that
inter-relates different portions of videos. Understanding the
topology of network offers advantages such as tracing the
manipulation history of media [17], and video re-ranking by
Page Rank like algorithm [12]. Nonetheless, in contrast to
HTML web pages, “hyperlinks” of videos do not exist in
reality and apparently automatic creation of such links to
bridge the partial near-duplicate content of videos is not a
trivial issue. Figure 1 depicts an example of several partial
near-duplicate videos. In broadcast videos for example, videos
with partial relationship narrate different aspects of an event or
story which are not present in the other video. The degree of
overlap between video pairs provides a more complete picture
of their relationships by further outlining the hierarchy and
dependency among them.

Most existing techniques focus on the discovery offull
copies or near-duplicates, where clips or shots are regarded
as identical if there are sufficient amount of keyframes or
features being duplicate or similar. While these techniques
are sufficient to handle fully duplicate videos, the localization
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of duplicate video segments are often being carried out in
a heuristic manner. Typical examples include voting scheme
[8] which counts the number of duplicates within different
time stamps of a video to locate duplicate segments. Such
heuristics become difficult to cope with the ever increasing
amount ofpartial near-duplicate videos – a common scenario
in broadcast news video which contains overlapping fragments
of news video. Such scenario are also observed for event-
related queries [11] in social media, where interesting parts of
a video are cut, edited, and then pasted in random positions
at another video of similar or arbitrary theme.

A. Proposed Work

This paper addresses the problem of partial near-duplicate
detection and localization. Given two videos comprisingM

andN frames respectively, partial near-duplicate is defined as
a temporally contiguous set ofK near-duplicate frame-pairs
across the two videos whereK is considerably smaller than
either M or N , or both. The partial-duplicate links among
videos as shown in Figure 1 are established through partially
aligning video content. The partial alignment is modeled asa
network flow problem which essentially takes into account the
joint visual-temporal consistency among videos. Figure 2 de-
picts the major flow of the proposed work. Given two videos, a
temporal network is constructed to model the visual-temporal
consistency among frames. For multiple partial alignment,the
network is further split into multiple partitions. Frames in
each partition are separately aligned by an efficient network
flow algorithm. Further verification is imposed to derive the
sets of must-align and cannot-align frames as constraints,
which formulate the alignment problem in an iterative manner.
Repeating the procedure over all video pairs, threads, which
are groups of partial alignments, are then mined to inter-relate
a large groups of videos.

The preliminary version of the work was published in
[26] which focuses on the modeling of temporal network for
localization of asinglepartial near-duplicate segment between
two videos. In this paper, we further extend the network to han-
dle multiplepartial near-duplicate alignments between videos.
We consider thedivisibility and concisenessof the temporal
network for efficient multiple alignment. The divisibilityof
a network refers to the feasibility of breaking the network
into multiple smaller partitions during alignment. Conciseness,
on the other hand, is a measure that evaluates how compact
or conversely, the degree of redundancy, in the generated
structure, which is related to the placement of frames in the
network. Careful consideration of both properties leads to
a simpler and concise network structure and more efficient
algorithm than [26]. In addition, we consider visual keyword
for alignment verification to get rid of exhaustive matching
of local keypoints as in [26]. To handle robustness issue,
weak geometric and neighborhood constraints are exploitedfor
the matching of visual keywords. Different from [26] which
demonstrated single partial alignment for applications such as
movie tagging, we apply the work in this paper for mining
multiple partial near-duplicates of broadcast videos. Broadcast
videos are especially rich with partial duplicate contentswhich

span across multiple channels and time duration. Mining
all these links is a fundamental but crucial component for
multimedia content analysis such as news story summarization
or indexing.

The remaining of the paper is organized as follows. Sec-
tion II discusses related work on near-duplicate retrievaland
detection. Section III presents temporal network modelingto
detect near-duplicate segments from two videos. The frame-
work to handle multiple near-duplicate segment detection is
then elaborated in Section IV. Section V explores how to
efficiently verify the alignment result through frame-level
matching by means of visual keyword. The proposed approach
is then evaluated on the TRECVID [25] dataset and the results
are reported in Section VI. Finally, we summarize our findings
in Section VIII.

II. RELATED WORK

Copy or near-duplicate detection and retrieval, as a timely
research problem to several emerging application, has been
intensively studied recently. Video copies are identical or
approximately identical videos with similar appearance but
subjected to various degree of transformations. Possible trans-
formations include formatting, photometric and encoding vari-
ations, editing, cropping and caption or logo insertion. Previ-
ous copy detection [18], [10] focus on developing effective
features or matching strategies that are robust towards such
transformations. While copies are normally derived from the
same source, near-duplicates can be sourced from different
recording devices capturing the same scene, object or event.
As a result, near-duplicate videos suffer from additional view-
point distortions and therefore require frame-level matching
[33], [30] to achieve desirable results in most circumstances.
In this paper, the term ‘near-duplicate’ shall be used to refer
to both categories since near-duplicate can be considered as
the superset of copy.

A. Near-Duplicate Detection

Broadly, we can categorize existing works into three main
groups: signature-based, keyframe-based and trajectory-based
approaches. Signature-based approaches summarize video
content into global descriptors for fast retrieval. The signatures
can be computed by “averaging” the global color histogram
[27], ordinal [10] or temporal-ordinal [2] features of the frames
in a video. While being efficient, temporal information is miss-
ing in fingerprints and thus retrieval of partial near-duplicates
is not supported. In addition, the evaluation conducted in [19]
shows that signature-based approaches are effective only for
copies with small transformations, which is not surprising
owing to the information loss from averaging.

Keyframe-based approaches perform sparse analysis of
video content by matching representative frames or keyframes
sampled from videos. Different matching strategies have been
proposed such as dynamic programming [5], [13], graph-based
matching [4], windowing [27] and voting-based approaches
[8]. Sliding window is sensitive to temporal resolution andis
thus not suitable for retrieving near-duplicates with changes in
frame rate. Dynamic programming finds the longest common
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Fig. 2. Partial alignment of videos. Given two videos, a temporal network is constructed to model the visual-temporal consistency between the frames.
A divisibility analysis is carried out to split the network into multiple partitions on which partial alignment is performed. The aligned frame pairs are then
verified by frame-level matching in an iterative manner. Finally, overlapping near-duplicate segments are bridged to form a media network of videos.

subsequence and computes the edit distances to determine
near-duplicate identity. However, the role of dynamic program-
ming is typically limited to extracting temporal entities on the
correspondence set generated from visual content matching. In
the end, the robustness of the approaches relies heavily on the
visual content. Heuristic voting scheme was proposed in [8],
[6] where the aggregation of voting from near-duplicate frames
makes the near-duplicate shot detection robust to individual
near-duplicate false positive frames. However, voting can
only generate coarse alignment results which are not fully
optimized and might not be adequate for precise localization
of partial near-duplicates.

Trajectory-based approaches track points of interest along
the video sequence to enrich keypoint features with spatio-
temporal information. For instance, trajectories have been
utilized to highlight different motion behaviors [18] and then
assign behavioral labels to each local descriptors. In another
recent work [28], the whole shot was represented using a
bag of trajectories where each trajectory in turn is described
as temporal patterns of discontinuities. The extraction of
trajectories is an expensive operation. Moreover, trajectory
features are sensitive to camera motion and therefore their
robustness is limited to copies, but not necessarily robust
for near-duplicates, especially when viewpoint changes are
involved.

B. Scalable Mining

The growing number of videos in Internet has made both
scalable and reliable mining of near-duplicates a timely prob-
lem. Frame-level analysis, based on keypoint matching [31],
[33], is popularly adopted for its robustness to large transfor-
mations and viewpoint distortions. Nevertheless, the analysis
is computationally demanding. Various indexing techniques
including locality sensitive hashing [16] and random histogram
[7] have thus been proposed for fast matching of keypoints.
Vector quantization, through clustering of keypoints to visual
keywords, is also often adopted. By representing a frame as a
sparse vector of keywords, indexing structure such as inverted
file can be utilized for direct keyword matching [14]. In [22],
a signature-specific indexing structure based on the bucketing

of keypoint signature, named Glocal, was also proposed. The
approach, nevertheless, is suitable only for large-scale copy
detection.

To balance detection accuracy and speed, techniques for
distributed and hierarchical mining of near-duplicates have
also been proposed. In [32], domain knowledge is exploited
for distributed mining. A temporal, semantic and visual parti-
tioning model was proposed to divide video corpus into small
overlapping partitions. Mining is performed separately oneach
partition, and the results are eventually merged by transitivity
propagation. In [27], hierarchical mining was proposed by
using global signature to detect candidate videos, followed
by exhaustive search of near-duplicate keyframe pairs through
keypoint matching. However, the speed can still be limited
especially if a large number of candidate frame pairs is
retained for keypoint matching. In [26], to reduce frame pair
comparison, temporal network was proposed to align and
verify the most likely frame pairs by imposing visual-temporal
consistency. Compared to [27], temporal network is faster
by more than 50 times with slight degradation in detection
accuracy.

III. S INGLE PARTIAL ALIGNMENT

In this section, we briefly describe temporal network which
was originally presented in [26]. Conventionally, the mapping
of two frame sequences can be framed as an optimization
problem to find the set of frame-pairs that maximizes the
accumulated similarity while temporality are typically posed
as constraints to the objective function. In contrast, in our
approach, the temporal constraint isstructurally embedded
into a network structure as directed edges. The proposed
structure is referred to as thetemporal network. This structural
embedding novelly converts the alignment problem into a
transportation problem, or more specifically a network flow
problem, where efficient algorithms are readily available.

A. Temporal Network

Given two videos, a video is designated as theanchor
video Q = {q1, ..., q|Q|} and the other as thereferencevideo
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Fig. 3. A temporal network. The columns of the lattice are frames from the
reference videos, ordered according to thek-NN of the query frame sequence.
The label on each frame shows its time stamp in the video. The optimal path
is highlighted. For ease of illustration, not all paths and keyframes are shown.

R = {r1, ..., r|R|} where| · | denotes the number of frames in
the videos. Temporal network is initially formed by querying
the top-k similar frames fromR using the query frames
qi. Figure 3 illustrates an example where an anchor video
consisting of six frames retrieves six columns of top-k frames
from the reference video1. Directed edges are established
across the frames in the columns by chronologically linking
frames according to their time stamp values. For example, the
frame in a column with time stamp valuet can link to another
frame in a right-hand side column with time stamp larger than
t. In other words, when tracing the list of connected edges
from left to right, the time stamp values are monotonically
increasing. Two artificial nodes,sourceand sink nodes, are
included for modeling so that all paths in the network are
originated from the source node and end at the sink node.
The set of all possible paths in the temporal network from
the source to the sink node encompasses all possible frame
alignments between videosQ and R which follow strict
temporal coherency.

Denote the temporal network asG = (N, E) whereN =
{N1, . . . , N|Q|} are columns of frames fromR, where each
columnNi = [n1, ...., nk] is the retrieval result usingqi ∈ Q

as the query, whileE = {eij} is the set of all edges
where eij represents a weighted directed edge linking any
two nodes from columnNi to Nj, respectively. Each edge is
characterized by two terms: weightw(·) and flowf(·). Given
an edgeeij , its weight is proportional to the similarity of the
destination node to its query frame inQ. In this network, the
weight signifies the capacity that an edge can carry

w(eij) = Sim(qj , nj) (1)

wherenj is the node inNj andqj is the query frame which
retrievesnj . Note that the weight does not depend onni which
links to nj. For any edge terminating at the sink node, the
weight is assigned to zero. The flowf(eij), under our problem
definition, is a binary indicator with value equal to 1 or 0. A
valid solution is an unbroken chain of edges forming a path

1In practice, a similarity threshold can be set to further prune highly
dissimilar candidates from the top-k list.

from the source node to the sink node where the flows at the
edges traversed by the path is 1 while for all other edges, the
flow value is 0. The network flow which a path can transport is
equal to the accumulated weights of its edges from the source
to sink nodes. Finding a maximal path with the maximum flow
is thus equivalent to searching for a sequence alignment which
maximizes the similarity betweenQ andR in monotonically
increasing temporal order.

B. Frame Aligment

The optimization is indeed an equivalent of the classical
network maximum flow problem in operations research [1].
The objective is to find the optimal values of the flow variables
f(·) that maximizes the total accumulated weight. In addition,
the solution should obey the equilibrium requirement so that
the path given by the solution must not be broken at any point
between the source and the sink node. To meet this require-
ment, the temporal network must obey the flow conservation
constraint where the net inflows and the outflows at a particular
node must be equal to zero. The frame alignment, based on
network flow optimization, is thus formulated as:

maximize
∑

eij∈E

f(eij)w(eij) (2)

subject to
∑

ein∈Ein(n)

f(ein) −
∑

eout∈Eout(n)

f(eout) = 0, ∀n ∈ N (3)

∑

eout∈Eout(nsrc)

f(eout) = 1 (4)

∑

ein∈Ein(nsink)

f(ein) = 1 (5)

0 ≤ f(eij) ≤ 1, ∀ eij ∈ E (6)

whereEin(n) andEout(n) denote the set of in-coming edges
and out-going edges of noden respectively whilensrc and
ndst denote the source and sink nodes respectively. Equa-
tions 3, 4 and 5 impose theflow conservationconstraints
to control a well-behaved weight transfer from the source
to the sink node. The network flow formulation is a special
constrained linear program which exhibit theunimodality
property [1]. The property ensures that the solution (the values
of f ) must also be binary when the right hand sides of
the constraint equations are binary. This makes network flow
optimization suitable to handle assignment problems. Thus,
the set of nodes traversed by the optimal path indicated
by f(·) = 1 constitutes the solution and only edges along
the selected path contribute to the accumulated weight. The
temporal network always has a feasible solution since there
always exists at least a valid path from the source node to the
sink node and there are no dangling nodes in the structure.
Therefore, by the convexity property, Equation 2 will always
converge into a global solution [1].

IV. M ULTIPLE PARTIAL ALIGNMENT

We consider different configurations of partial alignments
frequently observed in broadcast news videos. Figure 4 depicts
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three typical configurations, namely sequential, cross andself
alignment. News stories can span across a certain period of
time as more updates on a particular story are reported as
it unfolds. In addition, important news can be broadcasted
by various broadcast sources where the placement and visual
editing of the news story are performed independently. In
addition, different stations may also use different footages
captured by different sources of the same scene.

a) Sequential segments b) Cross segments

c) Self-Duplication

Fig. 4. Different configurations of multiple partial near-duplicate.

To handle multiple partial alignment, single alignments are
performed repeatedly on the temporal network where nodes
from previously detected segments are removed from the
structure after each iteration. The step is carried out until no
more new near-duplicate sequence can be found. However, the
length of near-duplicate segment is typically only a fraction
of the query video length and extracting small segments from
a huge temporal network is not desirable. In this respect,
two properties of the network are helpful, i.e., (a)divisibility
which analyzes the feasibility of partitioning the networkinto
multiple sub-networks, and (b)concisenesswhich measures
the compactness of the structure in terms of the placement of
positive keyframes in each column of the temporal network.

A. Divisibility and Early Partitioning

The divisibility of the network refers to the feasibility ofthe
network to be cut into multiple non-interacting partitionsso
that near-duplicate detection can be performed independently
on each partition. The boundaries of the partitions are the
locations where there do not exist any valid sequences that
cross and bridge two neighboring partitions. To find the
partitions at such an early stage, the criterion that we use
is sequence length where sequences which do not meet the
required minimum lengthLmin are discarded. In essence,
Lmin specifies the minimum length of the near-duplicate
segments that are considered as valid. Since no matching
results are available at this point, a pessimistic model is
employed. Given a column, the largestmaximal lengthfor all
nodes in the column is used to determine its divisibility factor.
The maximal length of a node is defined by the length of the
longest path in the structure that traverses the node. It canbe
efficiently found through a variant of the forward-backward
algorithm [26].

Denote the maximal length for nodeni as L(ni). The
maximal length for a columnNk is L(Nk) = max{L(ni)}
whereni ∈ Nk. A new partition starts once a valid columnp
with L(Np) ≥ Lmin is detected, and terminates at columnk

only when the value ofL drops belowLmin and remains
so over a period specified by the temporal windowwnd,

9:;<
=>9>:
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Fig. 5. Early partitioning of a temporal network. The largest value of the
maximal length(y-axis) for all nodes in each column (anchor frames or the
x-axis) is shown. A total of seven partitions are found and near-duplicate
segment detections are then conducted separately on each partition. Ideally,
the frames that make up the nodes in each partition are from the corresponding
segments in reference video, as shown at the bottom of the figure. Thus, near-
duplicate segment extraction can be carried out separatelyon each partition.

or equivalently L(Ni) < Lmin, i = {k, . . . , k + wnd}.
Figure 5 shows the maximal lengthL(Nk) for the columns of
a temporal network constructed from two videos in one of our
experiments. In this example,Lmin is set to 3 and the network
is partitioned into a total of 7 non-interacting partitions. Each
partition is constructed using the frames from various locations
of the reference videos, ideally from the corresponding near-
duplicate segments, based on their similarity to the query
frames in the partition. Thus, each partition is essentially self-
sufficient where near-duplicate extraction can be carried out
separately, without much interference from each other.

Performing multiple smaller network flow problems is sig-
nificantly faster than running a large network flow problem
as highlighted in [26]. This independence property is desir-
able since it supportsparallelization where the processing
of each partition can be safely delegated to different cores
of a multi-core processor, a powerful feature when dealing
with extremely long video sequences. Moreover, the cost to
construct the sub-networks is almost negligible since theycan
be built incrementally from the generic structure.

B. Network Conciseness

The conciseness of the temporal network refers to the size of
the network in each partition that are required to successfully
detect the set of all near-duplicate segments for each partition
where a smaller network is desirable. In other words, it
evaluates the degree of non-redundancy in the constructed
structure. The factor that directly contributes to conciseness
is the choice of the signature used to retrieve and sort the
reference keyframes in each column. Ideally, the top frames
should be devoid of as many non-related frames as possible.

Global dense signatures, e.g., edge histogram and color
moment, are less discriminative when handling near-duplicates
that contain medium to large transformations such as cropping
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and picture-in-picture. As a result, a deeper network with
longer columns becomes necessary to ensure no near-duplicate
segments are missed. On the other hand, local-point signature
such as visual keywords [24] can generate a more relaxed list.
Visual keywords (VK) are generated by quantizing keypoints
into a visual dictionary through a clustering process and each
entry in the dictionary, or the centroid of a cluster, corresponds
to a word.

The scalability of VK for large-scale retrieval of near-
duplicate frames has been investigated in [14]. In our case,
employing VK to retrieve the neighbor lists for each query
frame should translate to a sparser temporal network. Due to
the sparse nature of VK, hashing technique such as inverted
file indexing can be adopted to speed up the entire retrieval
process. In the inverted file, the index stores the keyword-
frame relationship, where each entry corresponds to a keyword
and links to the list of keyframes which contains the word.
Given a frame, the words are hashed into the index and the
matched keyframes can be retrieved rapidly.

V. EFFICIENT ALIGNMENT VERIFICATION

The joint consideration of visual-temporality, with con-
ciseness and divisibility properties, increases the reliability
and speed of temporal network in multiple partial alignment.
Nevertheless, in face of large transformation or view-point dis-
tortion especially when precise localization is desired, frame-
level matching becomes necessary to isolate random noisy
sequences from genuine ones. In this respect, each initial
alignment can serve as a filtering step to produce the set of
most likely frame-pair candidates for matching. The role of
matching is to verify the near-duplicate identity of the frame-
pairs in the extracted sequences and partly to refine their
boundary.

Interestingly, the result from frame-level matching can be
re-used as thea priori information to perform refinement
of the alignment result. Figure 6 illustrates how frame-level
verification is performed in our framework. The results of
verification is utilized to derive the set ofmust-linkandcannot-
link keyframes between two initially aligned sequences. A
node is marked as a must-link node if frame-level matching
between the reference and query frames referenced by the node
identifies them as near-duplicate pair. Otherwise, it is marked
as a cannot-link node. The must-link nodes are novelly used
as stubs which further cut the partition into a series of smaller
sub-networks on which network flows become increasingly
efficient. For each sub-network, the must-link nodes, which
define the boundaries between sub-network, will play the new
role as the source and sink nodes. Cannot-link nodes, on the
other hand, are removed from the sub-networks together with
their edges. The construction of sub-networks is incremental
in nature and therefore the process is an efficient one.

A. Keyword versus Keypoint Matching

In [26], verification is conducted by exhaustive pair-wise
matching amongkeypointsextracted from two keyframes.
Keypoint matching is a computationally expensive process due
to the huge number of keypoint permutations between two

Initial Alignment

Network restructuring and localization refinement

Network Flow Alignment

Concatenate results to get
near-duplicate segment

Temporal Network (Partition k)

vwxy z

Frame-level verification on aligned pairs

{|}~�����} �����~�����}Aligned frame-pair sequence

vwxy �
Network Flow 

Alignment
Network Flow 

Alignment
Network Flow 

Alignment

Iterate 
at most
N times

Fig. 6. Simultaneous verification and alignment. The sequence of candidate
frame-pairs from the initial alignment result is subjectedto frame-level veri-
fication. Near-duplicate frame-pairs (must-links) are used to cut the network
into multiple sub-networks while non near-duplicate pairs(cannot-links) are
removed from the structure. The process is iterated until the alignment
converges. The alignments from sub-networks are then concatenated to form
the near-duplicate segment.

frames. To speed up verification, we adopt visualkeywords
(VK) as an alternative to keypoints. This allows us to skip the
expensive mapping process since the correspondences between
local points are readily available when keypoints are quantized
into their respective keywords. Thus, two local pointsp andq

from two keyframes are assumed to match if they are assigned
to the same keyword index through the Kronecker delta

f(p, q) = δk(p),k(q) (7)

wherek(·) denotes the keyword index of a local point.

Unfortunately, direct matching reduces the discriminative
power of keypoints due to lost in keypoint quantization. As
a result, mapping based on visual keywords are coarse and
noisy at best. Figure 7 (first column) shows the result of VK
matching and as expected, the matching quality is poor and
unacceptable. To overcome noise, we consider the underlying
geometric and neighborhood consistency by two techniques
named scale-rotation intersection (SRI) and neighborhood
intersection (NI).
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(a) VK (b) VK+SRI (c) VK+SRI+NI

Fig. 7. Keyword matching. The correspondences of local points based on (a) Visual Keyword (VK) mapping, (b) VK + Scale-Rotation Intersection (SRI)
and (c) VK + SRI + Neighborhood Intersection (NI) are shown for a positive (top row) and negative example (bottom row).

B. Scale-Rotation Intersection (SRI)

Recently, [14] has examined the geometric consistency
among the set of weakly corresponding point-pairs to prune
keywords which are falsely matched. Two geometric parame-
ters, scale or angle, are used as the basis to perform pruning
of dissimilar local points that deviate from the dominant
transformations as registered by majority of the points. The
parameters are not estimated explicitly but are derived directly
from the local patches. For example, the scalesp of a local
pointp can indicate the level wherep resides in the Difference
of Gaussian (DoG) pyramid while the angleθp is the dominant
orientation of the gray-level intensity of the patch, both of
which are generated during keypoint detection [20]. Given the
initial set of corresponding local points from VK matchingM ,
for all keyword-pairs(p, q) ∈ M , the difference in log-scale
sp,q and orientationθp,q are computed as follows

sp,q = log(2sq−sp) (8)

θp,q = θq − θp (9)

Considering the two parameters separately, the values are
binned into the log-scale histogramhs and orientation his-
togramhθ respectively. Each bin reflects one kind of transfor-
mation performed by a group of keywords.

Ideally, the histogram of two near-duplicate frames should
display a low entropy value and there exists prominent peaksin
which most positive keyword-pairs can be found. By retaining
only correspondences that are consistent with both the dom-
inant scale and orientation, a more reliable correspondence
set can be retrieved. Conversely, the histogram for two non
near-duplicate frames should be relatively flat and has a high
entropy score since the transformation is random and less
focused. As a result, scale and orientation consistency will
eliminate majority of the correspondences. Figure 8 depicts
the mechanism of our approach. The dominant scaleŝ and
angle θ̂ are approximated using the largest bins in the two
histograms and only keywords that are consistent with bothŝ

and θ̂ are retained, resulting in a reduced keyword setMSRI

as follows
MSRI = hs(ŝ) ∩ hs(θ̂) (10)

where MSRI ⊆ M while hs(ŝ) and hs(θ̂) are the bins
which contain the set of matched keywords that contribute

�������� � �������� �
p

s��
s��
q

r� ��� s

s����� ��� ���� ������� ������� ���� ���� ��� �������  �¡ ¢£¤¥¦ � §¡¨ © �
Fig. 8. Scale Rotation Intersection. The difference in the characteristics scale
and orientation between two corresponding local points arecomputed and
binned into the scale histogramhs and orientation histogramhθ respectively.
Only correspondences that are consistent with both the dominant scale and
orientation, i.e. binned into bothhs(ŝ) andhθ(θ̂) respectively, are retained.
In this example, the correspondence(p, s) is considered a noise and is not
included inMSRI .

to the dominant scale and angle respectively. Figure 7 (second
column) illustrates the set of keyword-pairs inMSRI and
clearly SRI manages to prune away a considerable number of
noisy correspondence set from the original mapping produced
by VK alone.

C. Neighborhood Intersection (NI)

SRI-based pruning alone is not sufficient as there still exists
a non negligible number of false keyword-pairs that exhibits
similar geometric transformation by chance. To further refine
the matching quality, the neighborhood consistency of the
corresponding keyword-pair can be employed. Figure 9 depicts
how counting the number of common neighbors can segregate
positive keyword-pairs from noisy ones. Given two near-
duplicate keyframes, the neighbor set of two corresponding
keywords are expected to be stable regardless of the overall
global transformation between the two point set. Conversely,
neighborhood consistency will tend to break apart for non
near-duplicate pairs. Thus, noisy correspondences can be
pruned by removing keyword-pairs which do not contain any
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Fig. 9. Neighborhood Intersection. The ε-neighborhood for the positive
correspondence(p, q) contains two neighbors (solid red line). Under our
definition, the noisy correspondence(r, s) is not a neighbor(p, q), and is
pruned since it does not contain any neighbors.

keyword-pair neighbors.
Given a point p, its neighbor setNε(p) constitutes all

points that fall within a neighborhood of radiusεp, i.e.,
Nε(p) = {np : d(np, p) < εp}. Given two corresponding
keyword-pairs(p, q) and (r, s) from MSRI , with reference
to Figure 9,(r, s) will only be considered to be a neighbor
of (p, q) if (r, s) preserves a neighborhood relationship to
(p, q) at both ends, i.e.,r ∈ Nε(p) and s ∈ Nε(q). In other
words, the keyword correspondence set is returned through the
intersection between theε-neighborhoods of the two points as
follows:

MNI = {(p, q) : Nε(p) ∩ Nε(q) 6= ∅, (p, q) ∈ MSRI}. (11)

The approach is robust to scale change since the size of the
neighborhood is automatically adjusted based on the statistics
of the corresponding keywords in the frame-pairs. In fact, the
appropriate value ofεp varies for each pointp where it is
derived locally from the density of itsk nearest neighbors
Nk(p) as follows:

εp = min(D(np)), np ∈ Nk(p) (12)

D(np) = median(d(r, np)), r ∈ Nk(np) (13)

where d(·, ·) is the L2-distance between two points in the
frame and the densityD(·) of a point is computed from
the median distance of itsk-nearest neighbors. To speed up
NI, kd-tree [9] can be used to retrieve the neighbors of the
points where the time complexity to complete a search is
proportional toO(log(n)) wheren is the number of points in a
frame. Figure 7 (third column) shows the final correspondence
set MNI . Clearly, the quality of the matching pattern are
significantly enhanced through successive prunings using SRI
and NI.

VI. EXPERIMENT-I: NEAR-DUPLICATE DETECTION

We first verify the performance of keyword-based match-
ing, specifically the performance of VK+SRI+NI, for near-
duplicate keyframe detection. The following setup is used.
Local points are detected using the combination of two
detectors DoG [20] and Hessian Laplacian [21], and are
described using the SIFT [20] descriptor. A total of 800K
local features is randomly collected from the dataset. CLUTO
[15], a publicly available clustering algorithm, is employed
to cluster these samples into a visual dictionary. To improve

efficiency, a hierarchical representation is adopted wherethe
first layer contains 2000 clusters, which in turn are further
clustered into 10 sub-clusters, resulting in a visual dictionary
of 20,000 keywords. All experiments are conducted on an Intel
Core2 Duo E8500 3.16GHz CPU with 3GB of RAM. For
abbreviation, we refer our approach as VSN (VK+SRI+NI).

A. Dataset and Evaluation

We use the dataset in [30] for evaluation. The dataset
contains a total of 7,006 shots collected from the TRECVID
2003 [25] dataset which covers 52 broadcasts of CNN and
ABC channels in March of 1998. There is a total of 24,538,515
candidate keyframe-pairs and among them, only 3,384 pairs
are near-duplicates. By VK retrieval using an inverted table,
a total of 251,776 keyframe-pairs are returned. Among the
returned list, 2591 positive frame-pairs or 76% true positives
exist in the list and are subjected to keyword or keypoint
matching.

We compare VSN to OOS (one-to-one symetric) in [31].
OOS employs exhaustive pair-wise keypoint matching to find
the best possible correspondence, and then assesses the spatial
regularity of point correspondence using entropy measure.Due
to the nature of brute-force matching, OOS can basically
achieves the best performance for near-duplicate detection
despite extremely slow in speed. For both VSN and OOS,
we employ SR-PE [30] to determine whether a frame pair is
near-duplicate. SR-PE is a measure which assesses the spatial
regularity of point correspondence using entropy measure.For
evaluation, three measures are used, i.e., recall, precision and
f-measure which are formulated as follows:

Recall=
#Correctly detected near-duplicate frames

#Total near-duplicate pairs
(14)

Precision=
#Correctly detected near-duplicate frames

#Detected near-duplicate pairs
(15)

F-measure=
2 × Precision× Recall

Precision+ Recall
(16)

Recall measures the completeness of the near-duplicates inthe
returned list with respect to the ground-truth while precision
assesses the accuracy of the detected positives. F-measure
calculates the fitness of ground-truth and detected ND pairs
by jointly considering recall and precision.

B. Comparison between Keyword and Keypoint Matching

Table I shows the comparison result between VSN and
OOS for near-duplicate detection. VSN manages to main-
tain a similar precision (above 0.9) as OOS. This confirms
that context information, namely geometric and neighborhood
constraints, is capable of compensating the losses in keyword
quantization. However, a slight drop (around 5%) is observed
in recall performance when keywords are mismatched due
to quantization error during VK mapping and SRI and NI
pruning.

Table II shows the contribution of each component towards
VSN. Clearly, the performance of VK matching alone is not
satisfactory. With SRI and NI, the F-measure is improved by
22% and 25% respectively. VK alone produces the best recall
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TABLE I
COMPARISON BETWEENKEYWORD AND KEYPOINT.

VSN OOS [30]
(Keyword) (Keypoint)

Recall 0.63 0.68
Precision 0.92 0.93

F-Measure 0.75 0.78
VK retrieval timea 2 min 26 sec

Total matching timeb 1h 40s 6h 48m
Average matching time 14ms 97ms

aTotal runtime to retrieve the set of 251,776 keyframe pairs through the
inverted table.

bTotal runtime for VSN to match all keyframe-pairs.

TABLE II
PERFORMANCECONTRIBUTION FROM SRI AND NI.

VK VK+SRI VK+SRI+NI
Recall 0.70 0.68 0.63

Precision 0.52 0.79 0.92
F-Measure 0.60 0.73 0.75

Improvement - 22% 25%

but unfortunately it has a low precision performance, which
makes it unreliable for near-duplicate detection. When SRI
and NI pruning are imposed, recall drops by an acceptable
rate of 10% but there is a significant increase (77%) in preci-
sion which approaches the performance of keypoint matching
(OOS). In average, referring to Table IV, SRI prunes 54% of
the 180 correspondences for a frame-pair comparison while
NI prunes an additional 29%. For negative correspondences,
the pruning removes almost all the correspondences. Table III
further shows the impact of vocabulary sizes towards VK and
VSN in terms of F-Measure. As the vocabulary size increases
from 20K to 40K, the performance of VK improves, mainly
due to better precision, before stabilizing at 35K. On the other
hand, VSN maintains a consistently superior performance to
VK with F-Measure within the range of 0.72 to 0.75.

For speed efficiency, VSN delivers a significant 6 times
speed-up (in average 14ms per frame-pair) compared to OOS,
as shown in Table I. For VSN, a break-up of the execution
time is shown in Table IV for both the positive and negative
keyframe-pairs. Due to the use of k-d tree, the time required
to perform NI-pruning is surprisingly not as large as expected
compared to SRI-pruning despite involving a retrieval process
to determine the neighbors for each point. For the negative
set, the time to perform NI is basically negligible since most
correspondences can be successfully filtered out by SRI.

VII. E XPERIMENT-II: M ULTIPLE PARTIAL ALIGNMENT

M INING IN BROADCAST V IDEOS

In this section, we experiment the performance of temporal
network for mining multiple partial alignments from broadcast
videos. For evaluation, we use the TRECVID 06 corpus [25]
which is composed of news videos from different TV channels
including CNN, MSNBC, LBC, HURRA, CCTV and NTDTV.
The total duration of these videos is 165 hours, spanning over
a period of 2 months (59 days).

TABLE III
F-MEASURE FORDIFFERENTVOCABULARY SIZE.

20K 25K 30K 35K 40K
VK 0.60 0.62 0.63 0.65 0.65

VK+SRI+NI 0.75 0.74 0.72 0.75 0.74

TABLE IV
AVERAGE RUNTIME AND NUMBER OF CORRESPONDENCES.

VK SRI NI SR-PE Othersa

Positive frame-pairs
#Correspondences 180 83 33 - -

Runtime (ms) 0.5 1.9 2.6 4.1 6.7
Negative frame-pairs

#Correspondences 30 3 0 - -
Runtime (ms) 0.5 2.3 0 0 10.7

aIncludes the duration to read input files, I/O operations, etc.

A. Setup and Evaluation

A total of 391,456 keyframes are extracted from the whole
corpus. For each keyframe, keypoints are extracted. A visual
dictionary of size 20K are constructed by randomly selecting
700,000 keypoints. We follow the setup in [32] for per-
formance evaluation. The dataset is temporally divided into
multiple groups. Each temporal group is handled separately
and the final results are retrieved by linking the detected near-
duplicate threads in each group via transitivity propagation.
Since not all videos are compared, the experiment could
complete in a shorter time, without much impact to detection
performance2. The dataset is divided into 10 groups where
each partition spans a duration of 8 days and there is an
overlapping of 2 days for adjacent groups.

We use two-level of evaluation, at the thread and segment
levels. Threads are the partial alignments found on different
videos across time and TV channels while segments3 refer the
locations of the threads in each video.

• Precisionthd andRecallthd are computed at the thread-
level granularity where a ground truth thread is consid-
ered to be detected if at least two segments from the
thread are found to be true positives.

• Precisionseg and Recallseg consider the number of
segments in the detected threads. If the ground truth
thread is split into multiple threads, only the largest thread
would be considered to compute recall.

For recall, we use the ground truth in [32] where neighboring
positive keyframe-pairs are grouped into a total of 107 threads
across videos. The ground truth covers only live news videos
and excludes other contents such as anchor person and news
openings. For precision, we manually annotate the set ofall
detected threads, including those not included in the ground
truth. To avoid ambiguity, the following guidelines are used
for annotation. First, the boundary of partial near-duplicate
segments should include no more than three falsely aligned

2YanTao et al. [32] reported that temporal grouping maintains a 96.7%
recall or completeness of near-duplicate pairs on the same data set

3The left and right boundaries of a near-duplicate segment are derived from
the shot boundaries nearest to the first and the last keyframes of the segment
respectively.
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keyframes. Second, a thread is allowed to contain multiple
near-duplicate scenes if they always co-occur together, e.g.,
the scene of an anchor person followed by a live news footage.
Lastly, the number of noisy segments in a thread must not be
larger than one-fifth of the thread size.

B. Performance Comparison

We compare the proposed approach against Hough Trans-
form (HT) [8]. HT weakly measures the temporal alignment
between videos by projecting the matched keyframes into
a histogram of time lags. In other words, each bin in the
histogram accumulates the number of keyframe matches with
similar time lags. Peaks in the histogram indicate potential
alignments between two videos. To detect near-duplicate seg-
ments of arbitrary time lag, contiguous frame-pairs from each
bin are linked to form segments [22]. HT is popularly adopted
in the literature due to its simplicity and efficiency. In the
implementation, we use the same technique as presented in
Section IV-B to retrieve the set of all corresponding frame-
pairs. Then, weak geometric consistency (WGC) analysis [14]
is performed to verify keyword matching before conducting
HT. In practice, thresholding on the WGC score is necessary
to decide whether there is a match between two frames. The
setting of threshold is sensitive to the mining performance. We
only report the best possible results in this section, with the
threshold set to 0.7.

We also compare the performance to the original version
of temporal network, named TN, in [26]. TN uses edge
histograms (EH) as global signatures without indexing support
to construct the temporal network. The network is denser with
excessive number of nodes due to the use of EH. As a result, a
slight modification is required for TN to achieve a manageable
runtime, where early partitioning as presented in Section IV-A
is also applied to TN. In addition, TN adopts OOS for frame-
level verification, which can produce more reliable keyframe
matching but at the expense of speed efficiency. For abbre-
viation, we name our proposed approach as TN-E, namely
the efficient version of TN. For both approaches, we limit
the number of nodes in each column of the network to a
maximum of 200. To avoid redundant computation, keyframe-
pairs that are highly unlikely to be near-duplicate are filtered
out through thresholding. The threshold value is determined
empirically and is set as low as possible to eliminate only
highly dissimilar keyframe-pairs. For the EH signature used
in TN, the minimum threshold is set to 0.70 and for the VK
signature used in TN-E, the value is set to 0.01.

Tables V and VI show the performance comparison. TN-
E and TN outperform HT in both recall and precision at
thread and segment levels. For HT, the result indicates that
there is a trade-off between recall and precision. HT can
achieve either competitive recall or precision to TN-E, but
not both, by varying the WGC threshold. In addition, TN-
E extracts 89% and 157% more true positive threads and
segments than HT, respectively. This is due to the effective
frame-level verification framework adopted by TN-E and TN,
which is lacking in HT. The boundaries of HT localization
is coarse, leading to neighboring segments being erroneously
joined when grouping segments into threads.

TABLE V
PRECISION OFPARTIAL NEAR-DUPLICATE ALIGNMENT.

HT TN[26] TN-E
Detected Threads 829 941 1492
Positive Threads 767 941 1449
Precisionthd 0.93 0.94 0.97

Detected Segments 3474 4457 7031
Positive Segments 2262 3881 5833

Precisionseg 0.65 0.87 0.83

TABLE VI
RECALL OF PARTIAL NEAR-DUPLICATE ALIGNMENT.

HT TN TN-E
Detected Positive Threads 83 101 107

Recallthd 0.77 0.94 1.00
Detected Positive Segments496 768 737

Recallseg 0.43 0.67 0.64

TN-E delivers almost similar performance to TN but in
addition, manages to detect 54% more positive threads despite
having a similar setting in terms of the maximum number of
nodes per column in the network (set to 200). This shows that
the list of frames retrieved by VK is more precise than EH. As
a result, more near-duplicate segments are embedded into the
temporal network for TN-E. In TN, EH signatures construct
a more complicated temporal structure with more redundant
conductivities compared to VK signatures.

Figure 10 shows four positive threads that mined from
broadcast videos by TN-E in our experiment. Three news
topics are covered by the four threads and they span across
three different TV channels (thread 2) and spread across
three days (thread 1). Threads 2 and 3 are cross-alignment
while threads 2 and 4 are sequential-alignment. Detecting
the near-duplicate segments reveals the co-related parts in
the videos where additional novel information can be found,
as shown by the neighboring frames adjacent to the near-
duplicate segments.

C. Speed Efficiency

Table VII lists the speed for various approaches. Compared
to TN and TN-E, due to the use of binning technique, HT is
highly efficient and requires only 9 minutes to complete frame
alignment. However, HT depends on WGC thresholding to
achieve acceptable alignments and when thresholding runtime
is included, the total runtime for HT is almost similar to TN-E.
In comparison, both TN and TN-E requires a longer time to
match video-pairs for involving optimization to align partial
near-duplicate segments. The average runtime to align two
videos is 55 seconds for TN and around 8 seconds for TN-
E, where TN-E is faster than TN by around 6.8 times. The
improvement for partial alignment alone is more significant,
namely around 10 times, while frame-verification in TN-E is
5.4 times faster than TN.

Table VIII shows the number of nodes, edges and partitions
processed by TN and TN-E. In order to evaluate the concise-
ness of TN and TN-E, we compute the size of the constructed
network asB×C×N whereB andC are the average number
of nodes and edges in a partition, respectively, andN is the
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Fig. 10. Four threads detected by TN-E for 5 videos from 24 to 26 December 2005 from 3 different stations, NBC (English newsstation), Phoenix (Chinese
news station) and LBC (Arabic news station). The threads link the related segments across multiple channels and time on three stories, i.e., ‘Iraq War’ (Thread
2 and 3), ‘One Year after the 2004 Tsunami’ (Thread 1) and ‘Christmas message by the new Pope’ (Thread 4).

number of partitions in the temporal network. The size of the
structure for TN (constructed using EH signature) is at least
27 times larger than TN-E (constructed using VK signatures)
although from Table V, TN-E could detect 58% more near-
duplicate segments from the structure. This shows that TN-E

generates a more concise structure compared to TN.

D. Discussions

In the news domain, broadcast videos contain not only
copies but also near-duplicates where the latter cover a wider
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TABLE VII
TOTAL RUNTIME IN M INING NEAR-DUPLICATE SEGMENT FROM

165-HOUR V IDEOS.

HT TN TN-E
Frame retrieval 3h 48m - 3h 48m

WGC thresholding 8h 24m - -
Partial alignment 9m 3d 12h 56m 7h 50m

Frame-level verification - 8h 46m 1h 38m
Total 12h 21m 3d 21h 42m 13h 16m

TABLE VIII
STATISTICS ON THE SIZE OFTEMPORAL NETWORK.

TN TN-E
Average #Nodes 1185 329
Average #Edges 1937 575

Average #Partitions 23 10
Network size 52,792,953 1,891,750

range of variations especially when derived from different
capturing devices. Figures 11(a)-(c) give some examples of
the near-duplicate segments detected by TN-E in our exper-
iments. Figures 11 (b) and (c) show two difficult examples
due to moving artefact and picture-in-picture transformation
respectively. The ability to detect such sequences is attributed
to the capacity of temporal coherence. Although individual
frame-pair may exhibit low similarity scores, temporal network
successfully gives precedence to the sequence of frames by
compromising temporal consistency and visual similarity.

However, TN-E encounters difficulty when two unrelated
scenes resemble each other. Figures 11(d)-(f) show some false
positives which are erroneously identified by TN-E as near-
duplicate segments. Most of the false positives are caused by
the use of similar template by the same broadcast channel
to report different news events. Another category of error
is similar scene, for example, when both segments show a
person with similar pose and covering a major portion of
the keyframes, a scenario which is common for interview
scenes. Error can also happen when matching textual footages.
These examples, although not considered as near-duplicates,
are indeed visually similar.

While TN-E is competent for matching segments, the
algorithm is not suited to detect isolated near-duplicate
frames which do not display any temporal relationship with
their neighbors. In our experiments, a conservative value of
Lmin = 3 results in significant improvement in speed but
near-duplicate segments shorter thanLmin would be missed.
Another possible limitation with TN-E is the handling of
segments containing reverse scenes where the same scene is
depicted in reverse of the original scene. Such scenes are rare
in general although they can still be found in advertisement
and movie videos. TN-E can handle this case by a slight
modification as follows. An additional temporal network needs
to be constructed differently where the edges are linked based
on a descending instead of an ascending chronological manner.
Since only few valid sequences are expected to be chained, the
network constructed in a reverse order will be sparse. In other
words, the optimization can be efficiently carried out while
incurring few computational overhead.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Six near-duplicate segments detected by TN-E. Onlyone corre-
sponding frame-pair is shown for each near-duplicate segment. (a)-(c) shows
some correctly detected near-duplicate segments. The detected segments
contain various degree of variation from editing effect such as logo insertion,
photometric and view point variations, moving artefact andpicture-in-picture
transformation. (d)-(f) shows several incorrectly detected near-duplicate seg-
ments. The errors are caused by the use of similar templates (d, e and f),
similar scenes (e) and textual footages (f).

VIII. C ONCLUSION

We have presented temporal network for matching par-
tial near-duplicate videos where threads or groups of near-
duplicate segments are mined from news videos. Temporal
constraints are embedded into the network and partial align-
ment is novelly posed as a network flow problem. The frame-
work uses inverted file indexing of visual keywords to ensure
a sparser structure and in addition, partitions the network
into smaller independent parts for multiple partial alignments.
Verification is further conducted by visual keyword matching,
together with scale-rotation and neighbourhood intersection,
resulting in an iterative partial alignment framework. In our
approach, the proposed temporal network is 6.8 times more
efficient than the original version in [26] when performing
mining on a large video corpus of 165 hours. In addition, com-
pared to Hough Transform (HT) technique, temporal network
is capable of keeping a balance between recall and precision.
For future work, we plan to apply the proposed technique
for applications such as news topic discovery, topical video
browsing and summarization. In addition, the performance
of TN-E can be further improved by considering two-tier
temporal filtering. Hough Transform can be utilized to perform
an initial coarse temporal filtering and the precision of TN-E
can be employed to optimize the sequence extraction process.
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