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Efficient Mining of Multiple Partial Near-Duplicate
Alignments by Temporal Network

Hung-Khoon Tan, Chong-Wah Ng&lember, IEEEand

Tat-Seng ChuaMember, IEEE

Abstract—This paper considers the mining and localization of
near-duplicate segments at arbitrary positions of partial near-
duplicate videos in a corpus. Temporal network is proposedd
model the visual-temporal consistency between video sequee
by embedding temporal constraints as directed edges in the
network. Partial alignment is then achieved through netwok
flow programming. To handle multiple alignments, we conside
two properties of network structure: conciseness and divibility,
to ensure that the mining is efficient and effective. Framedvel
matching is further integrated in the temporal network for
alignment verification. This results in an iterative alignment-
verification procedure to fine tune the localization of near-
duplicate segments. The scalability of frame-level matchi is en-
hanced by exploring visual keyword (VK) matching algorithms.
We demonstrate the proposed work for mining partial alignments
from two months of broadcast videos and across six TV sources
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i Partial near-duplicate videos. Given a video cormesar-duplicate

segments create hyperlinks to interrelate different postiof the videos.

Index Terms—Partial near-duplicate, temporal graph, keyword
matching.

define three levels of links, i.e., full-duplicates, paftamd

I
With the popularity of social media, the volume of pro

INTRODUCTION

fessional and user generated videos is growing exponigntial . In general,
J
t
B?formation, or (2)partial near-duplicatevideo where only

certain segments of the videos are near-duplicate to each

Among these massive amount of data, significant porti
belongs to copies or near-duplicates As a consequence
visual redundancy analysis [30], [18] becomes a topic
intensive studies recently, being applied to various eimgrg
applications including copy enforcement [16], news vide

threading [29], and novelty ranking of web videos [12]. i

handling redundant contents, one point of consideration
if overlapping information are useful or negligible. Praws

methods [27] have mainly considered near-duplicates as
dundant and focus on detecting and removing them from t
retrieval list. However, such approach underscores thernpot
tial of near-duplicates. In a recent study, [3] further refin
the definition of near-duplicate videos through a user+oent
survey and concluded that similar clips differing in ovatla

overlap, which were shown to aid video categorization and
clustering.

there are two scenarios where near-duplicate
deos are useful: (1) fully near-duplicate videos whiclargh
e same main plot but are supplemented by novel contextual

gther. In this paper, we focus on the detection of partial
ear-duplicate video. The rapid populating of partial near
qglplicates among videos indeed forms a media network that

inter-relates different portions of videos. Understagdthe

ngology of network offers advantages such as tracing the

H@nipulation history of media [17], and video re-ranking by
Page Rank like algorithm [12]. Nonetheless, in contrast to
HTML web pages, “hyperlinks” of videos do not exist in

reality and apparently automatic creation of such links to
bridge the partial near-duplicate content of videos is not a

or added visual content should not be perceived as redundgﬁ\f'al issue. Figure 1 depicts an example of several partia

Conforming to this observation, [23] has also utilized th

degree of redundancy between the videos to perform automdY

refinement of video tags. The degree of overlap were used
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gear-duplicate videos. In broadcast videos for examptkos
jth partial relationship narrate different aspects of earg or

ry which are not present in the other video. The degree of
overlap between video pairs provides a more complete gictur
of their relationships by further outlining the hierarchgda
dependency among them.

Most existing techniques focus on the discovery folfi
copies or near-duplicates, where clips or shots are redarde
as identical if there are sufficient amount of keyframes or
features being duplicate or similar. While these techréque
are sufficient to handle fully duplicate videos, the locatian



of duplicate video segments are often being carried out $pan across multiple channels and time duration. Mining

a heuristic manner. Typical examples include voting schera#t these links is a fundamental but crucial component for

[8] which counts the number of duplicates within differenimultimedia content analysis such as news story summavrizati

time stamps of a video to locate duplicate segments. Suzhindexing.

heuristics become difficult to cope with the ever increasing The remaining of the paper is organized as follows. Sec-

amount ofpartial near-duplicate videos — a common scenarition |l discusses related work on near-duplicate retriewvad

in broadcast news video which contains overlapping fragmemletection. Section 11l presents temporal network modetimg

of news video. Such scenario are also observed for evedétect near-duplicate segments from two videos. The frame-

related queries [11] in social media, where interestingspafr  work to handle multiple near-duplicate segment detect®n i

a video are cut, edited, and then pasted in random positiaghen elaborated in Section IV. Section V explores how to

at another video of similar or arbitrary theme. efficiently verify the alignment result through frame-léve

matching by means of visual keyword. The proposed approach

is then evaluated on the TRECVID [25] dataset and the results

A. Proposed Work are reported in Section VI. Finally, we summarize our finding
This paper addresses the problem of partial near-duplic&ieSection VIII.

detection and localization. Given two videos comprisihf

and N frames respectively, partial near-duplicate is defined as 1. RELATED WORK

a temporally contiguous set df’ near-duplicate frame-pairs Copy or near-duplicate detection and retrieval, as a timely

across the two videos wheliE is considerably smaller than research problem to several emerging application, has been

either M or N, or both. The partial-duplicate links among : . ' ; : .
: L ) Snt ly studied tly. Vid dentical
videos as shown in Figure 1 are established through pgrtlagl ensively Sucied recently. Video copies are idenfical o

lioni id tent. Th tial ali ti deled pproximately identical videos with similar appearancé bu
aligning vigeo content. fthe partial aighment IS modele assubjected to various degree of transformations. Posgibfest

pgtwork flow problem whigh essentially takgs into qccouat tr}ormations include formatting, photometric and encodiag-v
joint visual-temporal consistency among videos. Figuree2 dations editing, cropping and caption or logo insertiorevir

picts the major flow of the proposed work. Given two videos,&ls copy detection [18], [10] focus on developing effective

temp.o;al network is fconstru<|::ted o Irtrjoldel tht.e }/'Slgal'ti:ﬁorfeatures or matching strategies that are robust towards suc
consistency among frames. -or muttiple partial algnmetd, ., <o rmations. While copies are normally derived frora th

netvzork l[st further split "Itcl) mﬁlt'plz Eamuon?r. _Fratmi ' same source, near-duplicates can be sourced from different
each partition are separately aligned by an €fficient n Wolrecording devices capturing the same scene, object or.event
flow algorithm. Further verification is imposed to derive th

ts of t-ali q t-alian f rai As a result, near-duplicate videos suffer from additioriaiw
Sets Of must-align and cannot-aligh frames as constraify; gistortions and therefore require frame-level maigh
which formulate the alignment problem in an iterative mann

; ) . 133], [30] t hi desirabl Its i t Ci Sten
Repeating the procedure over all video pairs, threads, whi I, [30] to achieve desirable results in most circum ¢

f partial ali i th ined to intett this paper, the term ‘near-duplicate’ shall be used termef
are groups of partial alighments, are then mined to INTAEE |,y categories since near-duplicate can be consideyed a
a large groups of videos.

th t of :
The preliminary version of the work was published in © stiperset of copy

[26] which focuses on the modeling of temporal network for _ )

localization of asinglepartial near-duplicate segment betweeft- Near-Duplicate Detection

two videos. In this paper, we further extend the network to-ha Broadly, we can categorize existing works into three main
dle multiple partial near-duplicate alignments between videogroups: signature-based, keyframe-based and trajebtsge
We consider thalivisibility and concisenessf the temporal approaches. Signature-based approaches summarize video
network for efficient multiple alignment. The divisibilitpf content into global descriptors for fast retrieval. Thensityres

a network refers to the feasibility of breaking the networkan be computed by “averaging” the global color histogram
into multiple smaller partitions during alignment. Corenigss, [27], ordinal [10] or temporal-ordinal [2] features of thames

on the other hand, is a measure that evaluates how compaa video. While being efficient, temporal information isgst

or conversely, the degree of redundancy, in the generaiad in fingerprints and thus retrieval of partial near-doates
structure, which is related to the placement of frames in tl®not supported. In addition, the evaluation conducted 8] [
network. Careful consideration of both properties leads shows that signature-based approaches are effective only f
a simpler and concise network structure and more efficiettipies with small transformations, which is not surprising
algorithm than [26]. In addition, we consider visual keydiorowing to the information loss from averaging.

for alignment verification to get rid of exhaustive matching Keyframe-based approaches perform sparse analysis of
of local keypoints as in [26]. To handle robustness issueideo content by matching representative frames or keydsam
weak geometric and neighborhood constraints are explfited sampled from videos. Different matching strategies havenbe
the matching of visual keywords. Different from [26] whichproposed such as dynamic programming [5], [13], graph+base
demonstrated single partial alignment for applicationshsas matching [4], windowing [27] and voting-based approaches
movie tagging, we apply the work in this paper for mining8]. Sliding window is sensitive to temporal resolution aisd
multiple partial near-duplicates of broadcast videos.d8igast thus not suitable for retrieving near-duplicates with adesin
videos are especially rich with partial duplicate contevitéich frame rate. Dynamic programming finds the longest common
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Fig. 2. Partial alignment of videos. Given two videos, a temap network is constructed to model the visual-temporaiststency between the frames.
A divisibility analysis is carried out to split the networkto multiple partitions on which partial alignment is perfeed. The aligned frame pairs are then
verified by frame-level matching in an iterative manner.afiin overlapping near-duplicate segments are bridgedmm fa media network of videos.

subsequence and computes the edit distances to deternoihkeypoint signature, named Glocal, was also proposed. The
near-duplicate identity. However, the role of dynamic peog- approach, nevertheless, is suitable only for large-scafs c
ming is typically limited to extracting temporal entities the detection.
correspondence set generated from visual content matdning To balance detection accuracy and speed, techniques for
the end, the robustness of the approaches relies heavilyeondistributed and hierarchical mining of near-duplicateseha
visual content. Heuristic voting scheme was proposed in [8llso been proposed. In [32], domain knowledge is exploited
[6] where the aggregation of voting from near-duplicatefes for distributed mining. A temporal, semantic and visualtpar
makes the near-duplicate shot detection robust to indaliduioning model was proposed to divide video corpus into small
near-duplicate false positive frames. However, voting caverlapping partitions. Mining is performed separatelyeach
only generate coarse alignment results which are not fulbartition, and the results are eventually merged by tratgit
optimized and might not be adequate for precise localinatipropagation. In [27], hierarchical mining was proposed by
of partial near-duplicates. using global signature to detect candidate videos, foltbwe
Trajectory-based approaches track points of interestgaloly exhaustive search of near-duplicate keyframe pairsitiro
the video sequence to enrich keypoint features with spatikeypoint matching. However, the speed can still be limited
temporal information. For instance, trajectories havenbeespecially if a large number of candidate frame pairs is
utilized to highlight different motion behaviors [18] anlden retained for keypoint matching. In [26], to reduce framerpai
assign behavioral labels to each local descriptors. Inhemotcomparison, temporal network was proposed to align and
recent work [28], the whole shot was represented usingvarify the most likely frame pairs by imposing visual-teralo
bag of trajectories where each trajectory in turn is desdibconsistency. Compared to [27], temporal network is faster
as temporal patterns of discontinuities. The extraction by more than 50 times with slight degradation in detection
trajectories is an expensive operation. Moreover, trajgct accuracy.
features are sensitive to camera motion and therefore their

robustness is limited to copies, but not necessarily robust I1l. SINGLE PARTIAL ALIGNMENT
for near-duplicates, especially when viewpoint changes ar _ . . . .
involved. In this section, we briefly describe temporal network which

was originally presented in [26]. Conventionally, the miagp

- of two frame sequences can be framed as an optimization

B. Scalable Mining . . o

problem to find the set of frame-pairs that maximizes the

The growing number of videos in Internet has made boycumulated similarity while temporality are typically qeal

scalable and reliable mining of near-duplicates a timebpr as constraints to the objective function. In contrast, in ou

lem. Frame-level analysis, based on keypoint matching, [3Hpproach, the temporal constraint structurally embedded

[33], is popularly adopted for its robustness to large #f@Rs jnto a network structure as directed edges. The proposed

mations and viewpoint distortions. Nevertheless, theyamal strycture is referred to as themporal networkThis structural

is computationally demanding. Various indexing techn&lu@ mpedding novelly converts the alignment problem into a

including locality sensitive hashing [16] and random hgsm  transportation problem, or more specifically a network flow

[7] have thus been proposed for fast matching of keypoinfs:ohlem, where efficient algorithms are readily available.
Vector quantization, through clustering of keypoints teual

keywords, is also often adopted. By representing a frame as a

sparse vector of keywords, indexing structure such as tiester™: 1€mporal Network

file can be utilized for direct keyword matching [14]. In [22] Given two videos, a video is designated as #mechor
a signature-specific indexing structure based on the bimgketvideo @ = {q1, ..., q|¢|} and the other as theeferencevideo



Anchor Video

from the source node to the sink node where the flows at the
edges traversed by the path is 1 while for all other edges, the
flow value is 0. The network flow which a path can transport is
equal to the accumulated weights of its edges from the source
to sink nodes. Finding a maximal path with the maximum flow
is thus equivalent to searching for a sequence alignmergtwhi
maximizes the similarity betwee@ and R in monotonically
increasing temporal order.

V4

B. Frame Aligment

: The optimization is indeed an equivalent of the classical

Top-k frames from the reference video retrieved by each anchor frames network maximum flow problem in operations research [1]
The obijective is to find the optimal values of the flow variable

Fig. 3. A temporal network. The columns of the lattice arerfes from the  f(.) that maximizes the total accumulated weight. In addition,

reference videos, ordered according to ittldN of the query frame sequence. ; i :
The label on each frame shows its time stamp in the video. Plienal path the solution should Obey the equmb“um requirement sd tha

is highlighted. For ease of illustration, not all paths aegifkames are shown. the path given by the solution must not be broken at any point
between the source and the sink node. To meet this require-

ment, the temporal network must obey the flow conservation
R = {r1,...,mr/} where| - | denotes the number of frames inconstraint where the net inflows and the outflows at a pasticul
the videos. Temporal network is initially formed by queiryin node must be equal to zero. The frame alignment, based on
the top% similar frames fromR using the query frames network flow optimization, is thus formulated as:
¢;- Figure 3 illustrates an example where an anchor video o
consisting of six frames retrieves six columns of toframes maximize Z Fleij)w(es;) @
from the reference vidéo Directed edges are established €ij €B
across the frames in the columns by chronologically linkingubject to

frames according to their time stamp values. For exampée, th

frame in a column with time stamp valuesan link to another Z flein) — Z fleour) =0, VneN (3)
frame in a right-hand side column with time stamp larger tharfi~ €Zin (%) €out EEout (1)

t. In other words, when tracing the list of connected edges Z fleout) =1 4)
from left to right, the time stamp values are monotonically Cout €Bout (Nare)

increasing. Two artificial nodesource and sink nodes, are

included for modeling so that all paths in the network are Z flein) =1 ®)
originated from the source node and end at the sink node. ein€Bin (Noink)

The set of all possible paths in the temporal network from 0< fle;) <1, Ve €E (6)

the source to the sink node encompasses all possible fra\m%reEm
alignments between video@ and R which follow strict
temporal coherency.

Denote the temporal network & = (N,E) whereN =
{N1,...,Ng} are columns of frames fron®, where each

(n) and E,,+(n) denote the set of in-coming edges
and out-going edges of node respectively whileng,. and
ngs¢ denote the source and sink nodes respectively. Equa-
tions 3, 4 and 5 impose thBow conservationconstraints
_ ! h to control a well-behaved weight transfer from the source
column N; = [n1, ..., nt] is the retrieval result using; € @ 5 the sink node. The network flow formulation is a special
as the query, whileE = {e;;} is the set of all edges congirained linear program which exhibit thenimodality
where ¢;; represents a weighted directed edge linking anyonerty [1]. The property ensures that the solution (tHeem
two nodes from columnV; to IV;, respectively. Each edge iSgt r) must also be binary when the right hand sides of
characterized by two terms: weight-) and flow f(-). Given he’constraint equations are binary. This makes network flow
an edgez;;, its weight is proportional to the similarity of the 5 iimization suitable to handle assignment problems. Thus
destination node to its query frame @ In this network, the (e set of nodes traversed by the optimal path indicated
weight signifies the capacity that an edge can carry by f(-) = 1 constitutes the solution and only edges along
w(ey;) = Sim(qj,n;) (1) the selected path contribute to the qccumulatgd w_eight. The
temporal network always has a feasible solution since there
wheren; is the node inN; andg; is the query frame which gways exists at least a valid path from the source node to the
retrievesn;. Note that the weight does not dependrgwhich  sink node and there are no dangling nodes in the structure.
links to n;. For any edge terminating at the sink node, theherefore, by the convexity property, Equation 2 will alsay

weight is assigned to zero. The flofife;;), under our problem converge into a global solution [1].
definition, is a binary indicator with value equal to 1 or 0. A

valid solution is an unbroken chain of edges forming a path IV. MULTIPLE PARTIAL ALIGNMENT

lin practice, a similarity threshold can be set to further ngrthighly We consider diﬁerent configurations pf partia}l a"gnmenFS
dissimilar candidates from the tdpfist. frequently observed in broadcast news videos. Figure Ltepi



three typical configurations, namely sequential, crosssatid
alignment. News stories can span across a certain perio
time as more updates on a particular story are reportec 5
it unfolds. In addition, important news can be broadcas
by various broadcast sources where the placement and vi
editing of the news story are performed independently.
addition, different stations may also use different foetac
captured by different sources of the same scene.

121 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401
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Fig. 5. Early partitioning of a temporal network. The largealue of the
maximal length(y-axis) for all nodes in each column (anchor frames or the
. . . . . x-axis) is shown. A total of seven partitions are found andrskiplicate
To handle multiple partial alignment, single alignments akegment detections are then conducted separately on egittopaldeally,

performed repeatedly on the temporal network where nodésframes that make up the nodes in each partition are frerodhresponding
ffom previously detected segments are removed from (= 1 eerence video, = shoun f e bt o efghus, near
structure after each iteration. The step is carried out meti

more new near-duplicate sequence can be found. However, the

length of near-duplicate segment is typically only a fraeti or equivalently L(N;) < Lyin, i = {k,...,k + wnd}.

of the query video length and extracting small segments frofigure 5 shows the maximal lengfi{ V;,) for the columns of

a huge temporal network is not desirable. In this respegttemporal network constructed from two videos in one of our
two properties of the network are helpful, i.e., @yisibility experiments. In this examplé,.,,, is set to 3 and the network
which analyzes the feasibility of partitioning the netwamko s partitioned into a total of 7 non-interacting partitio&ach
multiple sub-networks, and (bjoncisenessvhich measures partition is constructed using the frames from varioustiocs
the compactness of the structure in terms of the placemeniggfihe reference videos, ideally from the corresponding-nea
positive keyframes in each column of the temporal networkgyplicate segments, based on their similarity to the query
frames in the partition. Thus, each patrtition is essetisif-
sufficient where near-duplicate extraction can be carried o
L o separately, without much interference from each other.

The divisibility of the network refers to the feasibility tie Performing multiple smaller network flow problems is sig-

network to be cut into multiple non-interacting partitioss  iicantly faster than running a large network flow problem
that near-dup_llf:ate detection can be performed_mdep&lyder(lis highlighted in [26]. This independence property is desir
on e_ach partition. The boundarl_es of the partitions are BBle since it supportparallelization where the processing
locations Whe_re there do r_IOt eX|_st any Y‘?‘“d Sequences Rpteach partition can be safely delegated to different cores
cross and bridge two neighboring partitions. To find thge 5 myiti-core processor, a powerful feature when dealing
partitions at such an early stage, the criterion that we Uggy, eytremely long video sequences. Moreover, the cost to

IS sequence _Iength where sequences which do not meet {3&qct the sub-networks is almost negligible since taey
required minimum lengthl,..;, are discarded. In ESSENCeha puilt incrementally from the generic structure.
Ly specifies the minimum length of the near-duplicate

segments that are considered as valid. Since no matching _

results are available at this point, a pessimistic model B Network Conciseness

employed. Given a column, the largestiximal lengtffor all The conciseness of the temporal network refers to the size of

nodes in the column is used to determine its divisibilitytéeic the network in each partition that are required to succégsfu

The maximal length of a node is defined by the length of thdetect the set of all near-duplicate segments for eachtiparti

longest path in the structure that traverses the node. Ilbeanwhere a smaller network is desirable. In other words, it

efficiently found through a variant of the forward-backwardvaluates the degree of non-redundancy in the constructed

algorithm [26]. structure. The factor that directly contributes to conoiss
Denote the maximal length for node; as L(n;). The is the choice of the signature used to retrieve and sort the

maximal length for a colummV;, is L(Ny) = max{L(n;)} reference keyframes in each column. Ideally, the top frames

Fig. 4. Different configurations of multiple partial neansglicate.

A. Divisibility and Early Partitioning

wheren; € Ni. A new partition starts once a valid column
with L(Np) > Ly, is detected, and terminates at coluin
only when the value ofL drops belowL,,;, and remains
so over a period specified by the temporal windawmd,

should be devoid of as many non-related frames as possible.
Global dense signatures, e.g., edge histogram and color

moment, are less discriminative when handling near-dafg

that contain medium to large transformations such as cngppi



and picture-in-picture. As a result, a deeper network with Initial Alignment

longer columns becomes necessary to ensure no near-daplica

segments are missed. On the other hand, local-point signatu W
such as visual keywords [24] can generate a more relaxed list Temporal Network (Partition k)
Visual keywords (VK) are generated by quantizing keypoints -

into a visual dictionary through a clustering process archea Network Flow Alignment i
entry in the dictionary, or the centroid of a cluster, copasds =

to a word.

- : Frame-level verification on aligned pairs
The scalability of VK for large-scale retrieval of near-

duplicate frames has been investigated in [14]. In our case,
employing VK to retrieve the neighbor lists for each query

frame should translate to a sparser temporal network. Due to
the sparse nature of VK, hashing technique such as inverted
file indexing can be adopted to speed up the entire retrieval
process. In the inverted file, the index stores the keyword-
frame relationship, where each entry corresponds to a kelywo

and links to the list of keyframes which contains the word] 4
Given a frame, the words are hashed into the index and tt v
matched keyframes can be retrieved rapidly. 3

lterate
at most
N times

V. EFFICIENT ALIGNMENT VERIFICATION =

The joint consideration of visual-temporality, with con- Network Flow Network Flow Network Flow
ciseness and divisibility properties, increases the biiig Al Al Al
and speed of temporal network in multiple partial alignment
Nevertheless, in face of large transformation or view-pdis-
tortion especially when precise localization is desiredirfe- i
level matching becomes necessary to isolate random noisy Concatenate results to get I

. . e near-duplicate segment
sequences from genuine ones. In this respect, each initial
alignment can serve as a filtering step to produce the set of
most likely frame-pair candidates for matching. The role dfig. 6. Simultaneous verification and alignment. The secei@f candidate

matching is to verify the near-duplicate identity of thenfrex frame-pairs from the initial alignment result is subjectedrame-level veri-

irs in th tracted d ty t fi thfication. Near-duplicate frame-pairs (must-links) aredut® cut the network
pars In the extracted sequences and partly to retine thglf multiple sub-networks while non near-duplicate pdgannot-links) are

boundary. removed from the structure. The process is iterated ungél alignment
Interestingly, the result from frame-level matching can benverges. The alignments from sub-networks are then temmizd to form

re-used as the priori information to perform refinement e near-duplicate segment.

of the alignment result. Figure 6 illustrates how frameelev

verification is performed in our framework. The results of

verification is utilized to derive the set ofust-linkandcannot-

link keyframes between two initially aligned sequences. ames. To speed up verification, we adopt viskeywords

node is marked as a must-link node if frame-level matchirfyK) as an alternative to keypoints. This allows us to skig th

between the reference and query frames referenced by tlee nexpensive mapping process since the correspondencesinetwe

identifies them as near-duplicate pair. Otherwise, it iskeer local points are readily available when keypoints are gaadt

as a cannot-link node. The must-link nodes are novelly us#do their respective keywords. Thus, two local poiptandg

as stubs which further cut the partition into a series of fnal from two keyframes are assumed to match if they are assigned

sub-networks on which network flows become increasingtg the same keyword index through the Kronecker delta

efficient. For each sub-network, the must-link nodes, which Fp.q) =6 )

define the boundaries between sub-network, will play the new P> ) = Ok(p) k(a)

role as the source and sink nodes. Cannot-link nodes, on tieerek(-) denotes the keyword index of a local point.

other hand, are removed from the sub-networks together with

their edges. The construction of sub-networks is increalent Unfortunately,_ direct matching reduce§ the dis_crir_nirmtiv
in nature and therefore the process is an efficient one. power of keypoints due to lost in keypoint quantization. As
a result, mapping based on visual keywords are coarse and

_ ) noisy at best. Figure 7 (first column) shows the result of VK
A. Keyword versus Keypoint Matching matching and as expected, the matching quality is poor and
In [26], verification is conducted by exhaustive pair-wiseinacceptable. To overcome noise, we consider the undgrlyin
matching amongkeypointsextracted from two keyframes.geometric and neighborhood consistency by two techniques
Keypoint matching is a computationally expensive process dnamed scale-rotation intersection (SRI) and neighborhood
to the huge number of keypoint permutations between tviiatersection (NI).

Network restructuring and localization refinement




(b) VK+SRI (€) VK+SRI+NI

Fig. 7. Keyword matching. The correspondences of local tedised on (a) Visual Keyword (VK) mapping, (b) VK + Scaletdion Intersection (SRI)
and (c) VK + SRI + Neighborhood Intersection (NI) are shown dgpositive (top row) and negative example (bottom row).

B. Scale-Rotation Intersection (SRI) KEYFRAMED KEYFRAME 2

Recently, [14] has examined the geometric consistency
among the set of weakly corresponding point-pairs to prune
keywords which are falsely matched. Two geometric parame-
ters, scale or angle, are used as the basis to perform pruning
of dissimilar local points that deviate from the dominant
transformations as registered by majority of the pointse Th
parameters are not estimated explicitly but are derivestcdir
from the local patches. For example, the scgleof a local
pointp can indicate the level wheperesides in the Difference
of Gaussian (DoG) pyramid while the andlgis the dominant
orientation of the gray-level intensity of the patch, both o
which are generated during keypoint detection [20]. Given t f Msri= h*&) N h°0) 4
initial set of corresponding local points from VK matching,
for all keyword-pairs(p, q) € M, the difference in log-scale Fig. 8. Scale Rotation IntersectiofThe difference in the characteristics scale

; ; and orientation between two corresponding local points camaputed and
sp,q and orientatior,, , are computed as follows binned into the scale histograh? and orientation histograrh? respectively.
s - Io (2sqfsp) (8) Only correspondences that are consistent with both the rdohiscale and

p:q & orientation, i.e. binned into both®(3) and h?(0) respectively, are retained.

9p,q = 9q — 9p (9) In this example, the correspondengg, s) is considered a noise and is not

included inMgR;.

Considering the two parameters separately, the values are
binned into the log-scale histograh? and orientation his-
togramh? respectively. Each bin reflects one kind of transfotto the dominant scale and angle respectively. Figure 7 (gkco
mation performed by a group of keywords. column) illustrates the set of keyword-pairs Msr; and

Ideally, the histogram of two near-duplicate frames shoufdéarly SRI manages to prune away a considerable number of
display a low entropy value and there exists prominent peakg10iSy correspondence set from the original mapping pradiuce
which most positive keyword-pairs can be found. By retagninty VK alone.
only correspondences that are consistent with both the dom-
inant scale and orientation, a more reliable corresporglere Neighborhood Intersection (NI)
set can be retrieved. Conversely, the histogram for two non
near-duplicate frames should be relatively flat and has h hi
entropy score since the transformation is random and |
focused. As a result, scale and orientation consistencly
eliminate majority of the correspondences. Figure 8 depi
the mechanism of our approach. The dominant séaénd
angled are approximated using the largest bins in the
histograms and only keywords that are consistent with ot
andd are retained, resulting in a reduced keyword &Bfr;
as follows

SRI-based pruning alone is not sufficient as there stilltexis
Jon negligible number of false keyword-pairs that exbibit
|miIar geometric transformation by chance. To furthemefi
e matching quality, the neighborhood consistency of the

corresponding keyword-pair can be employed. Figure 9 depic

tV\}aow counting the number of common neighbors can segregate
hoositive keyword-pairs from noisy ones. Given two near-
duplicate keyframes, the neighbor set of two corresponding
keywords are expected to be stable regardless of the overall
_ 1s(a S(A global transformation between the two point set. Convegysel
Msrr = h*(5) 0 h*(6) (10) neighborhood consistency will tend to break apart for non
where Msr; C M while h*(3) and h®(d) are the bins near-duplicate pairs. Thus, noisy correspondences can be
which contain the set of matched keywords that contribupguned by removing keyword-pairs which do not contain any



KEYFRAME 1 O KEYFRAME2 o efficiency, a hierarchical representation is adopted wileee
first layer contains 2000 clusters, which in turn are further

clustered into 10 sub-clusters, resulting in a visual ditiry

of 20,000 keywords. All experiments are conducted on ad Inte

Core2 Duo E8500 3.16GHz CPU with 3GB of RAM. For

abbreviation, we refer our approach as VSN (VK+SRI+NI).

A. Dataset and Evaluation

Fig. 9. Neighborhood IntersectionThe e-neighborhood for the posive ~ We use the dataset in [30] for evaluation. The dataset
correspondencep, g) contains two neighbors (solid red line). Under ourcontaing g total of 7,006 shots collected from the TRECVID
definition, the noisy correspondence, s) is not a neighbor(p, ¢), and is .
pruned since it does not contain any neighbors. 2003 [25] dataset which covers 52 broadcasts of CNN and
ABC channels in March of 1998. There is a total of 24,538,515
candidate keyframe-pairs and among them, only 3,384 pairs
keyword-pair neighbors. are near-duplicates. By VK retrieval using an inverted gabl
Given a pointp, its neighbor setN.(p) constitutes all a total of 251,776 keyframe-pairs are returned. Among the
points that fall within a neighborhood of radius, i.e., returned list, 2591 positive frame-pairs or 76% true posi
Nc(p) = {n, : d(ny,p) < €,}. Given two corresponding exist in the list and are subjected to keyword or keypoint
keyword-pairs(p, ¢) and (r,s) from Mgr;, with reference matching.
to Figure 9,(r,s) will only be considered to be a neighbor We compare VSN to OOS (one-to-one symetric) in [31].
of (p,q) if (r,s) preserves a neighborhood relationship t&OS employs exhaustive pair-wise keypoint matching to find
(p,q) at both ends, i.es € N.(p) ands € N.(q). In other the best possible correspondence, and then assessesttake spa
words, the keyword correspondence set is returned thrdwegh kegularity of point correspondence using entropy meagwe.
intersection between theneighborhoods of the two points agdo the nature of brute-force matching, OOS can basically
follows: achieves the best performance for near-duplicate detectio
despite extremely slow in speed. For both VSN and OOS,
My ={(p,q) : N(p) "\ Ne(q) # 0, (p,q) € Msrr}. (11) \ye employ SR-PE [30] to determine whether a frame pair is

The approach is robust to scale change since the size of ﬂ@@r—dgplicate..SR-PE is a measure ‘_’VhiCh assesses thal spati
neighborhood is automatically adjusted based on the titatis "egularity of point correspondence using entropy meastoe.
of the corresponding keywords in the frame-pairs. In fdue, t €valuation, three measures are used, i.e., recall, ppacisid
appropriate value ot, varies for each poinp where it is f-measure which are formulated as follows:
derived locally from the density of it¢ nearest neighbors _ #Correctly detected near-duplicate frames

Recall= - g 14
Ni(p) as follows: #Total near-duplicate pairs (14)

. . #Correctly detected near-duplicate fram
e = min(Dny)), np € Ni(p) (12) - Precision-= #Detected near-duplicate pairs ?ES)
D(np) = median(d(r,np)), v € Ni(n,) ~ (13) E 2 x Precisionx Recall (16)
-measure= —
where d(-,-) is the L2-distance between two points in the Precisior+ Recall

frame and the densityD(-) of a point is computed from Recall measures the completeness of the near-duplicaties in
the median distance of it8-nearest neighbors. To speed upeturned list with respect to the ground-truth while primis

NI, kd-tree [9] can be used to retrieve the neighbors of thgssesses the accuracy of the detected positives. F-measure
points where the time complexity to complete a search dgiculates the fitness of ground-truth and detected ND pairs

proportional toO(log(n)) wheren is the number of points in a by jointly considering recall and precision.
frame. Figure 7 (third column) shows the final correspondenc

set M. Clearly, the quality of the matching pattern ar

significantly enhanced through successive prunings usilg .
and NI. Table | shows the comparison result between VSN and

OOS for near-duplicate detection. VSN manages to main-
tain a similar precision (above 0.9) as OOS. This confirms
that context information, namely geometric and neighbotho
We first verify the performance of keyword-based matcltonstraints, is capable of compensating the losses in kelywo
ing, specifically the performance of VK+SRI+NI, for nearquantization. However, a slight drop (around 5%) is obsérve
duplicate keyframe detection. The following setup is useth recall performance when keywords are mismatched due
Local points are detected using the combination of twd quantization error during VK mapping and SRI and NI
detectors DoG [20] and Hessian Laplacian [21], and apguning.
described using the SIFT [20] descriptor. A total of 800K Table Il shows the contribution of each component towards
local features is randomly collected from the dataset. COUTVSN. Clearly, the performance of VK matching alone is not
[15], a publicly available clustering algorithm, is empémly satisfactory. With SRI and NI, the F-measure is improved by
to cluster these samples into a visual dictionary. To impro22% and 25% respectively. VK alone produces the best recall

. Comparison between Keyword and Keypoint Matching

VI. EXPERIMENT-I: NEAR-DUPLICATE DETECTION



TABLE | TABLE Il

COMPARISON BETWEENKEYWORD AND KEYPOINT. F-MEASURE FORDIFFERENTVOCABULARY SIZE.
VSN OOS [30] 20K 25K 30K 35K 40K]|
(Keyword) | (Keypoint) VK 0.60 0.62 063 0.65 0.6
Recall 0.63 0.68 VK+SRI+NI | 0.75 0.74 0.72 0.75 0.73
Precision 0.92 0.93
F-Measure 0.75 0.78 TABLE IV
VK retrieval timé& 2 min 26 sec AVERAGE RUNTIME AND NUMBER OF CORRESPONDENCES
Total matching time 1h 40s 6h 48m
Average matching timg  14ms 97ms | VK_SRI__NI | SR-PE__ Others
Positive frame-pairs
aTotal runtime to retrieve the set of 251,776 keyframe pam®ugh the #Correspondences 180 83 33 - -
bTotal runtime for VSN to match all keyframe-pairs. Negative frame-pairs
#Correspondencefs 30 3 0 - -
TABLE Il Runtime (ms) 0.5 2.3 0 0 10.7

PERFORMANCECONTRIBUTION FROMSRIAND NI.
8Includes the duration to read input files, 1/0O operations, et

VK VK+SRI | VK+SRI+NI
Recall 0.70 0.68 0.63
Precision | 0.52 0.79 0.92 .
F-Measure | 0.60 | 0.73 0.75 A. Setup and Evaluation
Improvement| - 22% 25% A total of 391,456 keyframes are extracted from the whole

corpus. For each keyframe, keypoints are extracted. A visua

dictionary of size 20K are constructed by randomly selgctin
but unfortunately it has a low precision performance, which00,000 keypoints. We follow the setup in [32] for per-
makes it unreliable for near-duplicate detection. When SRirmance evaluation. The dataset is temporally divided int
and NI pruning are imposed, recall drops by an acceptalsfeiltiple groups. Each temporal group is handled separately
rate of 10% but there is a significant increase (77%) in pre@nd the final results are retrieved by linking the detectext-ne
sion which approaches the performance of keypoint matchidgplicate threads in each group via transitivity propamati
(O0S). In average, referring to Table IV, SRI prunes 54% &ince not all videos are compared, the experiment could
the 180 correspondences for a frame-pair comparison whilemplete in a shorter time, without much impact to detection
NI prunes an additional 29%. For negative correspondencpsrformancé The dataset is divided into 10 groups where
the pruning removes almost all the correspondences. THbledach partition spans a duration of 8 days and there is an
further shows the impact of vocabulary sizes towards VK aryerlapping of 2 days for adjacent groups.
VSN in terms of F-Measure. As the vocabulary size increasesWe use two-level of evaluation, at the thread and segment
from 20K to 40K, the performance of VK improves, mainlylevels. Threads are the partial alignments found on differe
due to better precision, before stabilizing at 35K. On theept videos across time and TV channels while segniemtfer the
hand, VSN maintains a consistently superior performance lteations of the threads in each video.
VK with F-Measure within the range of 0.72 to 0.75. o Precision,q and Recally,q are computed at the thread-

For speed efficiency, VSN delivers a significant 6 times level granularity where a ground truth thread is consid-

speed-up (in average 14ms per frame-pair) compared to OOS, ered to be detected if at least two segments from the
as shown in Table I. For VSN, a break-up of the execution thread are found to be true positives.
time is shown in Table 1V for both the positive and negative « Precisions., and Recalls., consider the number of
keyframe-pairs. Due to the use of k-d tree, the time required segments in the detected threads. If the ground truth
to perform NI-pruning is surprisingly not as large as expédct thread is split into multiple threads, only the largest #ure
compared to SRI-pruning despite involving a retrieval pssc would be considered to compute recall.

to determine the neighbors for each point. For the negatigg, recall, we use the ground truth in [32] where neighboring
set, the time to perform NI is basically .negligible since mo?)ositive keyframe-pairs are grouped into a total of 107abse
correspondences can be successfully filtered out by SRI. 5cross videos. The ground truth covers only live news videos
and excludes other contents such as anchor person and news
VII. EXPERIMENT-1I: M ULTIPLE PARTIAL ALIGNMENT openings. For precision, we manually annotate the setliof
MINING IN BROADCAST VIDEOS detected threads, including those not included in the gfoun
truth. To avoid ambiguity, the following guidelines are dse
In this section, we experiment the performance of tempofyr annotation. First, the boundary of partial near-dugtéc
network for mining multiple partial alignments from bro@ast segments should include no more than three falsely aligned
videos. For evaluation, we use the TRECVID 06 corpus [25]
which is composed of news videos from different TV channels?YanTao et al. [32] reported that temporal grouping mairstain 96.7%
including CNN, MSNBC, LBC, HURRA, CCTV and NTDTV, recall or completeness of near-duplicate pairs on the saatee st

. . . . 3The left and right boundaries of a near-duplicate segmentarived from
The total duration of these videos is 165 hours, Spanning OYge shot boundaries nearest to the first and the last keyfrainthe segment

a period of 2 months (59 days). respectively.
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TABLE V

keyframes. Second, a thread is allowed to contain multiple PRECISION OFPARTIAL NEAR-DUPLICATE ALIGNMENT.
near-duplicate scenes if they always co-occur togethgr, e.

the scene of an anchor person followed by a live news footage. HT TN[26] TN-E
Lastly, the number of noisy segments in a thread must not be Detected Threads| 829 941 1492
) . Positive Threads | 767 941 1449
larger than one-fifth of the thread size. Precisions,g 0.93 0.94 0.97
. Detected Segments 3474 4457 7031
B. Performance Comparison Positive Segmentsy 2262 3881 5833
We compare the proposed approach against Hough Trans- Precisionseg 065 087 083

form (HT) [8]. HT weakly measures the temporal alignment
between videos by projecting the matched keyframes into
a histogram of time lags. In other words, each bin in the

TABLE VI
RECALL OF PARTIAL NEAR-DUPLICATE ALIGNMENT.

histogram accumulates the number of keyframe matches with _ HT TN TN-E
similar time lags. Peaks in the histogram indicate poténtia Detected Positive Threads 83 101 107
Recalling 0.77 0.94 1.00

alignments between two videos. To detect near-duplicate se
ments of arbitrary time lag, contiguous frame-pairs frorohea

bin are linked to form segments [22]. HT is popularly adopted
in the literature due to its simplicity and efficiency. In the

implementation, we use the same technique as presented iftN_g delivers almost similar performance to TN but in

Section IV-B to retrieve the set of all corresponding frameyqgition, manages to detect 54% more positive threadstdespi
pairs. Then, weak geometric consistency (WGC) analysik [14,ying a similar setting in terms of the maximum number of
is performed to verify keyword matching before conductingoges per column in the network (set to 200). This shows that
HT. In practice, thresholding on the WGC score is necessapy, jist of frames retrieved by VK is more precise than EH. As
to decide whether there is a match between two frames. Theegyit, more near-duplicate segments are embedded mto th
setting of threshold is sensitive to the mining performaite o nora) network for TN-E. In TN, EH signatures construct
only report the best possible results in this section, Wi t 5 1ore complicated temporal structure with more redundant
threshold set to 0.7. . _conductivities compared to VK signatures.

We also compare the performance to the original ver5|on|:igure 10 shows four positive threads that mined from

of temporal network, named TN, in [26]. TN uses edgfqaqgcast videos by TN-E in our experiment. Three news
histograms (EH) as global signatures without indexing 8PP ,hieq are covered by the four threads and they span across
to construct the temporal network. The network is denselt Wiy, .o gifferent TV channels (thread 2) and spread across
excessive _n_umper_of nodgs due to the use _Of EH. As aresulfhpee days (thread 1). Threads 2 and 3 are cross-alignment
shght modification is requ_lr_ed_forTN o achleve_amanggeak\;vh"e threads 2 and 4 are sequential-alignment. Detecting
runtime, where early partitioning as presented in SeCibAl o pear.duplicate segments reveals the co-related parts |
is also applied to TN. In addition, TN adopts OOS for frampe \igeos where additional novel information can be found,

level verification, which can produce more reliable keyf(a'amas shown by the neighboring frames adjacent to the near-
matching but at the expense of speed efficiency. For abb[ﬁj’plicate segments.

viation, we name our proposed approach as TN-E, namely

the efficient version of TN. For both approaches, we limit .

the number of nodes in each column of the network to & SPeed Efficiency

maximum of 200. To avoid redundant computation, keyframe- Table VII lists the speed for various approaches. Compared

pairs that are highly unlikely to be near-duplicate arerfiite to TN and TN-E, due to the use of binning technique, HT is

out through thresholding. The threshold value is deterchingighly efficient and requires only 9 minutes to complete feam

empirically and is set as low as possible to eliminate onblignment. However, HT depends on WGC thresholding to

highly dissimilar keyframe-pairs. For the EH signature duseachieve acceptable alignments and when thresholdingmenti

in TN, the minimum threshold is set to 0.70 and for the VKs included, the total runtime for HT is almost similar to TB\-

signature used in TN-E, the value is set to 0.01. In comparison, both TN and TN-E requires a longer time to
Tables V and VI show the performance comparison. TNnatch video-pairs for involving optimization to align patt

E and TN outperform HT in both recall and precision abear-duplicate segments. The average runtime to align two

thread and segment levels. For HT, the result indicates tiideos is 55 seconds for TN and around 8 seconds for TN-

there is a trade-off between recall and precision. HT cdfh where TN-E is faster than TN by around 6.8 times. The

achieve either competitive recall or precision to TN-E, buimprovement for partial alignment alone is more significant

not both, by varying the WGC threshold. In addition, TNnamely around 10 times, while frame-verification in TN-E is

E extracts 89% and 157% more true positive threads aBdl times faster than TN.

segments than HT, respectively. This is due to the effectiveTable VIII shows the number of nodes, edges and partitions

frame-level verification framework adopted by TN-E and TNprocessed by TN and TN-E. In order to evaluate the concise-

which is lacking in HT. The boundaries of HT localizatiomess of TN and TN-E, we compute the size of the constructed

is coarse, leading to neighboring segments being erroheousetwork asB x C' x N whereB andC are the average number

joined when grouping segments into threads. of nodes and edges in a patrtition, respectively, ahds the

Detected Positive Segments496 768 737
Recallseq 0.43 0.67 0.64
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26 Dec 2005

e A

Channel: NBC

25 Dec 2005

THREAD 1

o—

—| THREAD 2 l—

Channel: NBC

THREAD 3
L

Channel: LBC
24 Dec 2005
HNEE = =
Channel: NBC

Fig. 10. Four threads detected by TN-E for 5 videos from 24@&d2cember 2005 from 3 different stations, NBC (English netasion), Phoenix (Chinese
news station) and LBC (Arabic news station). The threadstle related segments across multiple channels and timeree stories, i.e., ‘lraq War’ (Thread
2 and 3), ‘One Year after the 2004 Tsunami’ (Thread 1) andi$imas message by the new Pope’ (Thread 4).

number of partitions in the temporal network. The size of thgenerates a more concise structure compared to TN.
structure for TN (constructed using EH signature) is attleas

27 times larger than TN-E (constructed using VK signatureB). Discussions

although from Table V, TN-E could detect 58% more near- | the news domain, broadcast videos contain not only
duplicate segments from the structure. This shows that TNeBpjes but also near-duplicates where the latter cover arwid
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TABLE VIl

TOTAL RUNTIME IN MINING NEAR-DUPLICATE SEGMENT FROM
165+HOUR VIDEOS.
HT TN TN-E .
Frame retrieval 3h 48m - 3h 48m
WGC thresholding 8h 24m - -
Partial alignment 9m 3d 12h 56m  7h 50m
Frame-level verification - 8h 46m 1h 38m
Total 12h 21m 3d 21h 42m 13h 16m
TABLE VI (@) (b) (©

STATISTICS ON THE SIZE OFTEMPORAL NETWORK.

TN TN-E
Average #Nodes 1185 329
Average #Edges 1937 575 — )
Average #Partitions 23 10 TR
Network size 52,792,953| 1,891,750

i~
'-v;

range of variations especially when derived from different . SHoULD Yousa
capturing devices. Figures 11(a)-(c) give some examples of
the near-duplicate segments detected by TN-E in our exper- (d) (e) 0]
iments. Figures 11 (b) and (c) show two difficult examples
due to moving artefact and picture-in-picture transfoiorat Fig. 11.  Six near-duplicate segments detected by TN-E. ©nly corre-
respectively. The ability to detect such sequences isoated SPonding frame-pair is shown for each near-duplicate sagn@)-(C) shows
. ... ., spme correctly detected near-duplicate segments. Thecteddtesegments
to the capacity of temporal coherence. Although individu@bntain various degree of variation from editing effectrsas logo insertion,
frame-pair may exhibit low similarity scores, temporalvmm[k photometric and view point variations, moving artefact aieture-in-picture
successfully gives precedence to the sequence of frames!" formation. (d)-(f) shows several incorrectly deechear-duplicate seg-
L . . L ments. The errors are caused by the use of similar templdfes &nd f),
compromising temporal consistency and visual similarity. similar scenes (e) and textual footages (f).
However, TN-E encounters difficulty when two unrelated
scenes resemble each other. Figures 11(d)-(f) show sose fal
positives which are erroneously identified by TN-E as near- VIIl. CONCLUSION
duplicate segments. Most of the false positives are cauged bWe have presented temporal network for matching par-
the use of similar template by the same broadcast chantigl near-duplicate videos where threads or groups of near-
to report different news events. Another category of errefuplicate segments are mined from news videos. Temporal
is similar scene, for example, when both segments showcanstraints are embedded into the network and partial -align
person with similar pose and covering a major portion ghent is novelly posed as a network flow problem. The frame-
the keyframes, a scenario which is common for interviework uses inverted file indexing of visual keywords to ensure
scenes. Error can also happen when matching textual foatage sparser structure and in addition, partitions the network
These examples, although not considered as near-duglicaii@to smaller independent parts for multiple partial aligmts.
are indeed visually similar. Verification is further conducted by visual keyword matahin
While TN-E is competent for matching segments, thtogether with scale-rotation and neighbourhood intersect
algorithm is not suited to detect isolated near-duplicatesulting in an iterative partial alignment framework. laro
frames which do not display any temporal relationship withpproach, the proposed temporal network is 6.8 times more
their neighbors. In our experiments, a conservative value efficient than the original version in [26] when performing
Lnmin = 3 results in significant improvement in speed bumining on a large video corpus of 165 hours. In addition, com-
near-duplicate segments shorter thap;, would be missed. pared to Hough Transform (HT) technique, temporal network
Another possible limitation with TN-E is the handling ofis capable of keeping a balance between recall and precision
segments containing reverse scenes where the same scef@iisfuture work, we plan to apply the proposed technique
depicted in reverse of the original scene. Such scenes e far applications such as news topic discovery, topical @ide
in general although they can still be found in advertisemebtowsing and summarization. In addition, the performance
and movie videos. TN-E can handle this case by a slight TN-E can be further improved by considering two-tier
modification as follows. An additional temporal network dee temporal filtering. Hough Transform can be utilized to perfo
to be constructed differently where the edges are linkeddasan initial coarse temporal filtering and the precision of EN-
on a descending instead of an ascending chronological manean be employed to optimize the sequence extraction process
Since only few valid sequences are expected to be chaired, th
network constructed in a reverse order will be sparse. leroth REFERENCES
words, the optimization can be efficiently carried out whilejy; g k. anuja, T. L. Magnanti, and J. B. OrlinNetwork Flows: Theory,
incurring few computational overhead. Algorithms, and Applications Prentice Hall, Reading, Massachusetts,
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