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Circular Reranking for Visual Search
Ting Yao, Chong-Wah Ngo, Member, IEEE, and Tao Mei, Senior Member, IEEE

Abstract— Search reranking is regarded as a common way
to boost retrieval precision. The problem nevertheless is not
trivial especially when there are multiple features or modalities
to be considered for search, which often happens in image and
video retrieval. This paper proposes a new reranking algorithm,
named circular reranking, that reinforces the mutual exchange
of information across multiple modalities for improving search
performance, following the philosophy that strong performing
modality could learn from weaker ones, while weak modality
does benefit from interacting with stronger ones. Technically,
circular reranking conducts multiple runs of random walks
through exchanging the ranking scores among different features
in a cyclic manner. Unlike the existing techniques, the reranking
procedure encourages interaction among modalities to seek a
consensus that are useful for reranking. In this paper, we study
several properties of circular reranking, including how and which
order of information propagation should be configured to fully
exploit the potential of modalities for reranking. Encouraging
results are reported for both image and video retrieval on
Microsoft Research Asia Multimedia image dataset and TREC
Video Retrieval Evaluation 2007-2008 datasets, respectively.

Index Terms— Circular reranking, multimodality fusion, visual
search.

I. INTRODUCTION

THE rapid development of Web 2.0 technologies has
led to the surge of research activities in visual search.

While visual documents are rich in audio-visual content and
user-supplied texts, commercial visual search engines to date
mostly perform retrieval by keyword matching. A common
practice to improve search performance is to rerank the visual
documents returned from a search engine using a larger and
richer set of features. The ultimate goal is to seek con-
sensus from various features for reordering the documents
and boosting the retrieval precision. There are two general
approaches along this direction: visual pattern mining [8] and
multi-modality fusion [1], [2]. The former mines the recurrent
patterns, either explicitly or implicitly, from initial search
results and then moves up the ranks of visually similar docu-
ments. Random walk [9], for instance, performs self-reranking
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through identifying documents with similar patterns based on
inter-image similarity and initial rank scores. This category of
approaches, nevertheless, seldom explores the joint utilization
of multiple modalities. Instead, different modalities are treated
independently. Furthermore, the utilization of a modality is
often application dependent, making it difficult to generalize
the mining for general-purpose search. Multi-modality fusion,
in contrast, predicts the importance of modalities, for instance,
through fusion weight learning, and linearly combines them
for reordering documents. The fusion, however, is done at
the decision stage. More specifically, the estimation of fusion
weights is mainly derived from the ranking scores in different
ranked lists. There is no mechanism, however, where the
interaction among multiple modalities could be exploited for
reranking in a principle way.

This paper proposes a novel algorithm, named circular
reranking, that takes advantages of both pattern mining and
multi-modality fusion for visual search. More importantly,
modality interaction is taken into account, on one hand to
implicitly mine recurrent patterns, and on the other, to leverage
the modalities of different strength for maximizing search per-
formance. Figure 1 shows an overview of our proposed work
compared with the existing methods. Given a ranked list of
visual documents returned from a search engine, conventional
methods use to perform random walk to rerank the results as
shown in Figure 1(a). There are variants of approaches arisen
from this methodology, for instance, conducting random walk
on the original text space [31] or a new space built upon
visual features [8], [10]. Typically each space is viewed as
a graph that specifies the document proximity. More sophis-
ticated approaches include lately fusing the reranked results
from random walks in different feature spaces, or conversely,
performing random walk on a unified graph that is fused
from multiple features [9], [21]. Regardless of these different
versions, a common issue not fully explored and studied is
how the modalities should interact in view that their abilities in
answering different queries could vary largely. We address this
issue, as shown in Figure 1(b), from the viewpoint of mutual
reinforcement. Specifically, different modalities interact by
exchanging their feature spaces while preserving the original
document scores for random walk. The exchange results in
the following outcome: the ranks for documents which remain
sharing similar local view of proximity in a different space
tend to be upgraded. Take the text and bag-of-visual-words
(BoW) feature spaces in Figure 1(b) as an example, the
second and fourth images in the initial ranked list are similar
in both text and BoW feature spaces. After reinforcement
as in Figure 1(b), these group of images remains close in
proximity and thus their ranks are likely to be moved up
after random walk. Meanwhile, the second and third images

1057–7149/$31.00 © 2012 IEEE
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(a) (b) (c)

Fig. 1. Reranking the initial search result (top) returned from Bing for the query “Find the images with car.” The retrieved images are modeled as graphs
respectively in different feature spaces, with nodes (images) attributed by the ranking scores and edges representing feature proximity. (a) Random walks:
perform reranking by treating each feature space independently [9]. (b) Mutual reinforcement: exchanges modality spaces in a pairwise manner for random
walks [30]. (c) Circular reranking: iteratively updates the image ranks by circular mutual reinforcement (this paper). Note that the final reranked list can be
picked from the best performed modality or by linearly combining lists from different modalities (details in Section IV-C).

in the initial ranked list have similar textual descriptions, but
dissimilar visual appearances in the BoW feature space. With
mutual reinforcement, the rank of these two images becomes
far apart from each other in the reranked lists produced by
text and BoW spaces. In brief, similar to visual mining, the
approach in Figure 1(b) implicitly mines the recurrent patterns
of documents through random walk; but different from existing
methods, modality interaction is considered by reinforcing the
mutual exchange and propagation of information relevancy
across different spaces.

By consolidating the idea of mutual reinforcement between
two modalities, circular reranking arranges the reinforcement
in a circular manner, as illustrated in Figure 1(c). The rein-
forcement is posted as a multi-random walk optimization
problem, where the updated scores of documents as a result
of mutual reinforcement is continuously propagated from one
modality to another. The optimization converges when the
propagation does not lead to further change of document
ordering, and ideally, results in better ranking as shown in
Figure 1(c). The preliminary version of this work, which
performs co-reranking or mutual reinforcement in pairwise
manner, is published in [30]. In this paper, we generalize
this work to multiple modalities, where interaction is explored
holistically among all the modalities, as opposed to locally
based on multiple pairwise reinforcements. Furthermore, we
address several issues arisen from this extension. These issues
involve classical problems such as the dynamic adaptation of
modality weights for information fusion. We analyze these
problems in the paper and present solution about the use of
modality importance for circular ordering of features when

more than two modalities are considered. This ordering fully
leverages the modalities of different strength for maximizing
performance of query-dependent search. In addition, extensive
empirical studies are also conducted for both image and video
search reranking.

The main contribution of this work is the proposal of
circular reranking for addressing the issue of multi-modality
interaction in visual search. This issue also leads to the elegant
view of how modalities of different strength should be lever-
aged for fusion, which is a problem not yet fully understood
in the literature. The remaining sections are organized as
follows. Section II describes the related work. Section III
presents the problem formulation of circular reranking and
its solution, while Section IV further details the ordering of
modalities in the circular layout according to their ability in
query answering. Section V presents the experimental results
for image and video reranking. Finally, Section VI concludes
this paper.

II. RELATED WORK

We briefly group the related works for visual search rerank-
ing into two categories: recurrent pattern mining and multi-
modality fusion. The former assumes the existence of common
patterns among relevant documents for reranking. The later
predicts or learns the contribution of a modality in search
reranking.

A. Recurrent Pattern Mining

The research in this direction has proceeded along three dif-
ferent dimensions: self-reranking [6], [9], [7], crowd-reranking
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by exploiting online crowdsourcing knowledge [14], and
example-based reranking by leveraging user-provided queries
[15], [28].

Self-reranking seeks consensus from the initial ranked list
as visual patterns for reranking. Fergues et al. employed
probabilistic Latent Semantic Analysis (pLSA) for mining
visual categories through clustering of images in the initial
ranked list [6]. Candidate images are then reranked based
on the distance to the mined categories. Similar in spirit,
Hsu et al. employed information bottleneck (IB) reranking
to find the clustering of images that preserves the maximal
mutual information between the search relevance and visual
features [7]. Later in [9], [17], Hsu et al. and Richter et al.
further formulated the problem as random walk over a context
graph built through linearly fusing multi-modalities for visual
search. The idea of crowd-reranking is similar to self-reranking
except that consensus is sought simultaneously from multiple
ranked lists obtained from Internet resources. In [14], Liu et al.
proposed a reranking paradigm by issuing query to multiple
online search engines. Based on visual word representation,
both salient and concurrent patterns are respectively mined to
initialize a graph model for random walk based reranking.

Different from self- and crowd-reranking, example-based
reranking relies on a few query examples provided by users for
model learning. In [28], classifiers are learnt by treating query
examples as positive training samples while randomly picking
pseudo-negative samples from the bottom of initial ranked
list. The classifiers which capture the visual distribution of
positive and negative samples are then exploited for reranking.
In another work by Liu et al. [15], query examples are utilized
to identify relevant and irrelevant visual concepts, which are
in turn employed to discover the rank relationship between
any two documents using mutual information for correcting
ranking of document pairs.

In short, while these approaches focus on the mining of
recurrent patterns from different means, such as by random
walk [9], external knowledge [15], and classifier learning [28],
the interaction among modalities is not exploited for reranking.
Our work in this paper contributes by studying not only mining
patterns (or consensus) through random walk, but also how
the consensus can be more reliably estimated by exploring
modality interaction.

B. Multimodality Fusion

Multi-modality fusion based on weighted linear fusion is
widely adopted in the literature [1]. Various combination
operators such as ComSUM and Borda count have been
proposed [27]. In this section, we only review the techniques
based on how fusion weights are derived, where some of
these techniques will be used together with circular reranking.
Broadly, we can categorize the existing research into heuristic
[20], adaptive [21], and query-class-dependent fusion [4], [13],
[29].

Heuristic fusion rule-based defines the weights of modalities
depending on types of user queries. For example, a set of
weights are hand-crafted respectively for text-, concept- and
visual-oriented queries [20]. Despite its simplicity, this strategy

often yields satisfactory search performance as demonstrated
in TRECVID evaluation [19]. Adaptive fusion, which deter-
mines the fusion weights dynamically on a per query basis,
is seldom explored nevertheless. Typical approaches include
exploiting the initial ranked lists of modalities based on
score distribution [26] and rank agreement [21]. In [26],
Wilkins et al. modeled the change of scores in a list to
predict the importance of a modality. Specifically, the gradual
(drastic) change of scores indicates the difficulty (capability)
of a modality in distinguishing relevant from irrelevant items,
and fusion weights are thus determined accordingly. In [21],
Tan et al. leveraged rank agreement mined from multiple lists
iteratively to update the weights of modalities until reaching
an equilibrium stage.

In between the heuristic and adaptive fusion strategies,
query-class-dependent fusion learns the weights based on
training examples [4], [13], [29]. This scheme starts by pre-
defining query classes, and then learning of weights is offline
conducted on the query class level. During search, a given
query is routed into one of the predefined classes, and the
learnt weights are directly applied for fusion. This scheme is
effective in general when the underlying query classes can be
clearly defined and there are enough samples for weight learn-
ing. An alternative scheme based on concept-driven fusion
was recently proposed by Wei et al. when these conditions
could not be fulfilled [24]. Instead of performing query-to-
class mapping, a query is mapped to a large number of
visual concepts, in which the concept-to-modality relationship
is learnt offline to determine the fusion weights.

The aforementioned approaches focus on the derivation of
fusion weights through ranked lists and supervised learning.
Our work is different in the way that we do not estimate
fusion weights, but instead leverage the weights to indicate
the importance of modalities for circular reranking. We exploit
MAD [26] and query-class dependent [12] for this purpose,
which will be elaborated in Section IV.

III. CIRCULAR RERANKING

The basic idea of circular reranking is to facilitate interac-
tion among different modalities through mutual reinforcement.
In this way, the performance of strong modality is enhanced
through communication with weaker ones, while the weak
modality is also benefited by learning from strong modalities.
We begin this Section by presenting the problem formulation,
and followed by the analysis of solution convergence.

A. Problem Formulation

Suppose there are m single modalities, each associated
with its initial ranked list consisting of N documents. We
can have m views of relationship among these documents by
constructing m affinity graphs each on a modality. In each
graph, edges represent the document similarity and nodes carry
the ranked scores. In this way, m runs of random walks can
be conducted separately on each graph to rerank the initial
results of m modalities. The spirit of circular reranking is
to encourage modality interaction in a way that a modality
starts random work by using the affinity graph of another
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modality, while preserving its original document scores. The
exchange of affinity graphs explains the intuition of how
consensus is reached among different modalities: the high
scored documents can always propagate their scores to the
similar set of documents and vice versa, despite the change
of feature spaces. By arranging the m modalities linearly,
such that (i + 1)th order modality uses graph of the i th

order modality, this forms a circular ring. Each modality, once
completing the random walk, will propagate the new result to
influence its neighbor. We call this mutual reinforcement-based
reranking as “circular reranking.” Note that the framework
has no limitation in terms of the type of modalities and
the correlation between modalities. In other words, the used
modalities could be of any types and with any correlations.

Denote pni j as the similarity between any two documents
i and j characterized by the nth modality, and vnj and rnj as
the initial and updated scores of a document j , respectively.
The circular reranking is formulated as following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r (t)
1 j = ω1

∑
i r (t−1)

mi pmi j + (1 − ω1)v1 j

r (t)
2 j = ω2

∑
i r (t)

1i p1i j + (1 − ω2)v2 j

. . .

r (t)
nj = ωn

∑
i r (t)

(n−1)i p(n−1)i j + (1 − ωn)vnj

. . .

r (t)
(m−1) j = ω(m−1)

∑
i r (t)

(m−2)i p(m−2)i j +
(1 − ω(m−1))v(m−1) j

r (t)
mj = ωm

∑
i r (t)

(m−1)i p(m−1)i j + (1 − ωm)vmj

(1)

where the superscript (t) denotes iteration, and the tradeoff
parameter ωn (0 ≤ ωn ≤ 1) weights the importance of the
propagated and initial scores. Note that the first term in the
equation represents information exchange from neighboring
modality, while the second term is the original document score.
The circular reranking starts by running random walk on the
1st modality using the affinity graph from the mth modality.
Once the random walk of the 1st modality completes, the
updated scores are passed to the next modality. The first
iteration ends when all modalities complete their random
walks. This procedure is repeated until there is no change of
document scores. To this end, there are m reranked lists being
produced, with each from a single modality. The final reranked
score R∗ ≡ [r∗

j ]1×N can be obtained by the utilization of these
m reranked lists which will be discussed in Section IV-C.

The spirit of random walk is to rank a document higher if
it is in close proximity with other documents that also have
high scores. Circular reranking enforces additional constraint
that a document is ranked higher if the high scored documents
which are close to it are consistently observed across affinity
graphs of different modalities. In reverse, if an item shares
different set of similar documents in different modality views,
the item will receive lower updated score at the end of an
iteration. Different from the algorithms such as [17], [20]
which explicitly find consensus from modalities for fusion,
circular reranking inherently imposes the consensus in the
graph model as a constraint for adjusting document scores.

B. Convergence Property

Eq. (1) can be expressed in a matrix form as following

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(t)
1 = ω1R(t−1)

m Pm + (1 − ω1)V1

R(t)
2 = ω2R(t)

1 P1 + (1 − ω2)V2
. . .

R(t)
n = ωnR(t)

n−1Pn−1 + (1 − ωn)Vn

. . .

R(t)
m−1 = ωm−1R(t)

m−2Pm−2 + (1 − ωm−1)Vm−1

R(t)
m = ωmR(t)

m−1Pm−1 + (1 − ωm)Vm

(2)

here Rn ≡[rnj ]1×N and Vn ≡[vnj ]1×N are 1 × N matrix
composed of the propagated and initial scores of N documents
respectively. Pn is the affinity graph characterizing document
similarities in n modality. Circular reranking is guaranteed to
converge for having the following property:

lim
t→∞(R(t+1)

n − R(t)
n ) = 0 (3)

Proof:

R(t+1)
n − R(t)

n = ωnR(t+1)
n−1 Pn−1 + (1 − ωn)Vn

− (ωnR(t)
n−1Pn−1 + (1 − ωn)Vn)

= ωn(R(t+1)
n−1 − R(t)

n−1)Pn−1

= ωn(ωn−1R(t+1)
n−2 Pn−2 + (1 − ωn−1)Vn−1)Pn−1

− ωn(ωn−1R(t)
n−2Pn−2 + (1− ωn−1)Vn−1)Pn−1

= ωnωn−1(R
(t+1)
n−2 − R(t)

n−2)Pn−2Pn−1

= . . .

= ωnωn−1 . . . ω1ωmωm−1 . . . ωn+1

(R(t)
n − R(t−1)

n )PnPn+1 . . . PmP1 . . . Pn−1

= (ωnωn−1 . . . ω1ωmωm−1 . . . ωn+1)
t

(R(1)
n − R(0)

n )(PnPn+1 . . . PmP1 . . . Pn−1)
t . (4)

It is easy to see that Eq.(3) can be derived when each row of
Pn is normalized to 1, and 0 ≤ ω1, ω2, . . . ., ωm ≤ 1. �

C. Complexity Analysis

The complexity is governed by the number of modalities
m, and the time required to complete m rounds of random
walks in an iteration. Since the typical complexity of running
a random walk is O(N2) where N is the number of documents,
each iteration of circular reranking takes O(m × N2). Thus,
the running time complexity is O(T ×m×N2), where T is the
number of iterations before convergence. In our experiments,
circular reranking usually converges for T < 20. Take 1,000
documents to be reranked by three modalities for example, our
algorithm takes less than 0.002 seconds on a regular PC (Intel
dual-core 3.33GHz CPU and 4GB RAM) to complete the
whole reranking process. Since the algorithm is for reranking
rather than ranking, where in practice only top 500 or 1,000
of documents in the initial ranked list will be considered, the
speed is highly efficient and provides almost instant response.



1648 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 4, APRIL 2013

IV. RERANKING PROPERTY

The arrangement of modality in circular manner restricts
how information should be exchanged from one to another.
On the other hand, allowing the exchange to be happened
between any two arbitrary modalities is also infeasible due
to excessive number of possible pairs. Thus, a fundamental
problem of circular reranking is the impact of modality order-
ing in affecting the effectiveness of information propagation.
The order apparently is also characterized by the role that
a modality plays in query answering. Furthermore, since the
importance of a modality is expected to change in response
to different types of queries, ideally one should weight the
modality significance and then order modalities adaptively to
maximize performance. In this section, we discuss the issues
about the ordering, prediction, and utility of modalities in the
context of circular reranking.

A. Order Analysis

Without loss of generality, we consider the case when there
are three modalities available. The close form solution of the
modality in the 3rd order is

R∞
3 = S(I − ω3ω2ω1P3P2P1)

−1 (5)

where

S = (1 −ω3)V3 +ω3(1 −ω2)V2P2 +ω3ω2(1 −ω1)V1P1P2.
(6)

Obviously, Eq.(5) is governed by the matrix S since the values
of other parts remain unchanged over iteration. S is a linear
combination of three terms, where each term is contribution
from different modalities. The first term (1−ω3)V3 is its initial
document score; the second term ω3(1 − ω2)V2P2 represents
the influence propagated from 2nd modality; and the third term
ω3ω2(1 − ω1)V1P1P2 is from 1st modality which has been
refined by 2nd modality. Thus the inference of 2nd modality
is indeed higher than that of 1st modality since it affects both
the second and third terms of S. This simple observation leads
to the important conclusion that, to maximize the performance
of 3rd modality, one should place a modality with stronger
performance next to it and followed by weaker ones.

Generalizing this conclusion to m modalities, referring
to Eq.(2), it means to order the modalities in ascending
order of their significance. In other words, the strongest
performed modality should be placed as Rm , followed by
Rm−1 which is the second strongest and so on. The weakest
performed modality should be ordered in the first position as
R1. Circular reranking will start by using the affinity graph
of the strongest modality (mth modality) to influence the
weakest one (1st modality) to ensure the largest possible
improvement for 1st modality. The refined R1 is then in
turn used to influence the 2nd weakest modality. In the end,
the mth modality is affected and refined by m − 1 weaker
modalities before the start of next iteration.

B. Modality Importance

The significance of modalities with respect to a query could
be utilized in two ways. First, as presented in the previous sub-
section, the modalities are prioritized to determine the circular

ordering. Second, the tradeoff parameter ωn in Eq.(1), which
weights the importance of initial document scores provided by
a modality, could also be set according to modality importance.
In this way, stronger modality will have higher influence
than weaker one during information propagation. In practice,
however, the knowledge of modality significance is not always
available. Furthermore, the significance of a modality could be
varied depending on the nature of a given query. This implies
the need for dynamically deciding the importance of modality
on-the-fly during query time. In the literature, nevertheless, the
problem of modality ranking remains an open question, though
there have been several approaches being proposed. Here,
we discuss two popular approaches: MAD (Mean Average
Distance) [25], [26] and query-class-dependent fusion [12],
and their use for circular reranking.

MAD directly derives the weights of modalities from their
ranked lists. The weights, which are sought independently
from one modality to another, are utilized to reflect the relative
importance of modalities. The derivation is query-dependent
for each modality and judged based on the distributions of
scores in a ranked list. The hypothesis is that the shape
of a curve, which depicts how scores are distributed in the
descending order of their query relevance, reveals the degree of
randomness in ranking. The basic idea is that the rapid change
of document scores in the top part of a ranked list indicates the
ability of a modality in distinguishing the relevant items from
irrelevant ones. Conversely, the gradual change of scores gives
clue that a modality is incapable of making clear decision and
the ranking of documents is likely to be random. In MAD,
the document initial scores Vn ≡[vnj ]1×N of a ranked list
given by the nth modality are first normalized using max-min
normalization as following

v ′
nj = vnj − min{vnj }

max{vnj } − min{vnj } (7)

The mean average distance in scores of any two adjacent
documents is then computed as

MAD =
∑N−1

j=1 (v ′
nj − v ′

n( j+1))

N − 1
(8)

The rapid change in scores is then quantitatively determined by
computing the ratio of MAD within the top subset of a ranked
list (topset), versus that of a larger subset of the same ranked
list (largerset). The ratio is named as Similarity Cluster (SC)
in [26] and defined as

SC = MAD{topset}
MAD{largerset} . (9)

In our implementation, the two subsets are selected as follow-
ing: the top 10% ranked documents form the topset , while
the top 90% of documents form the largerset . Basically the
higher the value of SC is, the more important is a modality to
a given query.

Query-class-dependent fusion requires supervised learning
for inferring modality weights. The basic assumption is that
user queries could be classified into a limited number of
classes, where queries in each class have more or less similar
view of modality importance. For instance, a query such as
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Fig. 2. MSRA-MM dataset [23]. The 68 queries representing different visual concepts for web image search: (1) angel, (2) animals, (3) baby, (4) backgrounds,
(5) baseball, (6) batman, (7) beach, (8) bees, (9) birds, (10) boy, (11) cake, (12) car, (13) cartoon, (14) cat, (15) children, (16) chocolates, (17) cow,
(18) cowboys, (19) disney, (20) dogs, (21) dragons, (22) earth, (23) email, (24) fish, (25) flags, (26) flowers, (27) food, (28) football, (29) frogs, (30) fruit,
(31) games, (32) ghosts, (33) golf, (34) hairstyles, (35) hawaii, (36) heart, (37) horses, (38) hotels, (39) indians, (40) jesus, (41) lion, (42) love, (43) maps,
(44) medical, (45) military, (46) nokia, (47) panda, (48) party, (49) people, (50) pigs, (51) plants, (52) police, (53) ronaldinho, (54) rose, (55) school,
(56) snakes, (57) spider, (58) sports, (59) stars, (60) tiger, (61) trees, (62) turtles, (63) war, (64) waterparks, (65) weather, (66) wolves, (67) women, and
(68) youtube.

“find me videos about Lady Gaga” is likely to be answered
by text than visual, while a query such as “find me images with
stars of night sky” is likely to be answered by visual than text.
With this assumption, the optimal fusion weights for each class
are offline learnt from training examples using various search
strategies, aiming to optimize the average search performance
for queries within the same class. In other words, different
from MAD, the fusion weights are optimized on a query-
class basis. During retrieval, a query is routed to one of the
classes, and the learnt optimal weights are applied directly
for modality fusion. Readers can refer to the survey [12]
for technical details. In our case, we employ query-class-
dependent fusion for learning the tradeoff parameters, i.e.,
ωn , for circular reranking. The learning basically characterizes
the importance of initial ranked scores produced by different
modalities w.r.t the nature of a query class.

C. Result Utilization

The result of interacting m modalities by circular reranking
will produce m reranked lists each from a modality. Basi-
cally, there are three major ways of utilizing this result. The
simplest way is by prioritizing the importances of modalities
as described in Section IV-A, and then directly adopting the
reranked score Rm produced by mth modality as the final
score R∗. An alternative way is by introducing another fusion
stage to linearly combine the m ranked lists from different
modalities. There are various algorithms such as ComSUM
[27] that can be employed for this purpose. Finally, for
target-oriented search task such as color-based retrieval where
color is the dominant feature while other modalities play the
complementary roles, the circular reranking can be ordered in
the manner that color is placed as the mth modality followed
by other modalities according to their importances. In this way,
the final score R∗ is simply taken from the reranked score
produced by color.

V. EXPERIMENTS

We empirically verify the merit of circular reranking from
three aspects: 1) when strong and weak modalities are inter-
acted, 2) when the modality significance is predicted by MAD,
and 3) when the tradeoff parameters are learnt by query-
class-dependent fusion. Three experiments were conducted

TABLE I

SEARCH RESULT IMPROVEMENT FOR 2-D POINT RANKING BY USING

CIRCULAR RERANKING. RESULT INDICATES THE IMPROVEMENT

(PERCENTAGE OF RESERVED PAIRS BEING CORRECTED)

INTRODUCED FOR A MODALITY (FIRST ROW) AFTER

INTERACTING WITH ANOTHER MODALITY (SECOND ROW)

Initial
x x + y

y x + y x xy

20% Noise 19.1% 64.1% 42.7% 48.5%

30% Noise 17.6% 62.5% 22.7% 32.4%

40% Noise 16.8% 60.9% 19.4% 31.9%

respectively on the simulated, image and video datasets. The
first experiment examines the degree on which search per-
formance could be boosted when interacting modalities of
different strength by circular reranking (V-A). The second
experiment compares the performance of proposed approach
with late fusion under oracle setting on MSRA-MM web
image dataset [23]. The optimal results are then compared
against a more practical scenario when MAD is used to
estimate the modality importance (V-B). Finally, the adaptive
setting of parameters for circular reranking is demonstrated
by employing query-class-dependent fusion for video search
conducted on TRECVID 2007 and 2008 datasets [22] (V-C).

A. Simulation

We first examined how search performance is affected
when modalities of strong and weak interact through circular
reranking. The experiment was conducted on a toy dataset of
500 points randomly generated on the x-y coordinate. These
points were ordered according to their Euclidean distance from
the origin. We generated three lists from here by randomly
exchanging the positions of 20%, 30% and 40% of points
respectively, representing the initial ranked lists of different
noise degree. Our task is to rerank the points in the lists by
four modalities: x , y, xy and x + y. Apparently the former
two modalities are considered weak in point ordering, while
the later two are regarded as strong modalities. Furthermore,
the modalities carry different levels of correlation: x and y are
independent, x and y are moderately correlated with x + y,
while xy and x + y are highly correlated. Note that the quality
of an initial rank list will impact the performance of reranking.
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We designed four runs to compare the performances of
circular reranking as a result of combining two different
modalities. In the simulation, the generated noisy lists were
directly treated as different initial ranked lists for reranking.
Table I shows the search performances for modalities x and
x + y when circular reranking is employed. By using x-only
modality for reranking, there are 50% of adjacent point pairs
being incorrectly ordered in the top-10 result list. While for
x + y which being a relatively strong modality, the percent-
age of reverse point pairs is 6.7%. Table I basically shows
different levels of improvement when modalities of different
strength are integrated for circular reranking. For instance,
when weak modality x is interacted with a strong modality
x + y, more than 60% of improvement is attained. When
combining with weak modality y, however, less than 20%
of improvement is observed. Similar results are also obtained
for strong modality x + y, where the larger improvement is
achieved when interacting with modality xy than x . When
further taking into account the quality of an initial ranked list,
similar improvement trend is also observed, except that the
degree of improvement is inversely proportional to the increase
of noise level. This simulation verifies the basic features of
circular reranking. The best possible improvement in reranking
is achieved when interacting with a strong modality. In addi-
tion, the result from strong modality could also be improved
when interacting with weaker one. In general, improvement is
always expected even when interacting two weak modalities
such as x and y and starting from a noisy initial list. It is worth
noticing that the degree of improvement is directly related to
the strength of modalities in interaction, and we observe no
clear relationship of how modality correlation will impact the
performance.

B. Web Image Reranking

The second experiment was conducted on the MSRA-MM
dataset that consists of 68 queries collected from the query
log of Microsoft Bing Search [3]. The queries covers various
visual concepts as listed in Figure 2. Each query is associated
with a ranked list of 900 images, and the surrounding text
of each image is also provided. In total, the dataset contains
60,275 images. In the experiment, the top 500 images are
reranked since in practice very few relevant images could
be found when going deeper into the list [9], [14]. Three
modalities are used for reranking: text, color moment (CM)
and bag-of-visual-words (BoW). The text modality represents
each image as a vector of keywords extracted from its sur-
rounding text. To consider only salient terms for retrieval,
only top 2000 frequent keywords are considered and each
word is weighted by its term frequency. CM divides each
image into 5-by-5 partitions and extracts a feature vector
of 225 dimensions. BoW generates a visual vocabulary of
2000 words to describe image. Given an image, scale-invariant
feature transform (SIFT) descriptors are computed for local
regions detected by Difference of Gaussian (DoG) [16]. Each
descriptor is then encoded as a word, and similar to text
modality, BoW represents an image as a vector of visual words
weighted by term frequency.

In the MSRA-MM dataset, the ground-truth of queries is
given. The relevancy of each image is labeled in the scale
of 0 to 2, indicating relevant (2), fair (1) or irrelevant (0).
We adopted Normalized Discounted Cumulative Gain (NDCG)
which takes into account the measure of multi-level relevancy
as the performance metric. Given a query q , the NDCG score
at the depth of d in the ranked list is defined by

N DCG@d = Zd

d∑

j=1

2r j − 1

log(1 + j)
(10)

where r j represents the rating of an image in the ground-
truth, Zd is a normalization constant and is chosen so that
N DCG@d = 1 for perfect ranking.

1) Initial Ranked Score: The initial ranked list for each
modality is generated from the original list provided by the
dataset. Similar to [5], [7], the ranking of images in an initial
list is based on the intuition that relevant items are of similar
to each other, while irrelevant items are likely to be different
from one another. We employed k-means to partition the set
of images in the original list as clusters. The images are then
ranked according to the size of the clusters they belong to.
Denote the initial ranked list of N images for nth modality as
Vn ≡[vni ]1×N , the score of an image ranked at i th position is
computed as

vni = λ × vc
ni + (1 − λ) × vBi (11)

where vc
ni is the score assigned as a result of clustering, and

vBi is the ranking in the original list normalized by N . The
tradeoff parameter between the two terms is set as λ = 0.9 as
in [7], with the assumption that the original list is noisy and
should be given much less weighting.

2) Performance Comparison: We compared the following
approaches for performance evaluation.

• Single modality random walk [9]. Each modality reranks
the initial search list by performing random walk on its
affinity graph. The nodes in the graph are initialized
by the scores computed using Eq.(11), and the edges
between nodes are weighted by the cosine similarity
between them. The three runs based on Text, CM and
BoW are named as RWT, RWC and RWB respectively.

• Co-reranking [30]. Similar to circular reranking, except
that only two modalities text and BoW are considered for
mutual reinforcement. We name this run as C O in short.

• All-pairs Co-reranking. This run performs co-reranking
for all the pairs among the modalities Text, CM and BoW.
The result is reported based on the pair that exhibits the
best performance. We name this run as C O∗.

• Late fusion [27]. There are variants of algorithms for
linear fusion of multiple ranked lists. We employed
CombSUM which exhibits superior performance than
others as demonstrated in [27]. ComSUM first normalizes
the scores of images in a list in the range of [0,1].
The final ranking of an image is decided by weighted
summation of its normalized scores from multiple lists.
The optimal weight of each modality is estimated by
exhaustive grid search at per query level. The result of
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Fig. 3. NDCG of different approaches for web image reranking.

fusion basically indicates the best possible performance
of late fusion in this dataset. We name this run as L F∗.

• Circular reranking. We designed four runs for our pro-
posed approach: Cir+, Cir−, Cir and Cir∗. The first
run Cir+ ranks the importance of modalities by MAD
on their initial ranked lists, and orders them accordingly
for reranking. The result is reported for the modality
that achieves the highest NDCG. The second run Cir−
ranks the modalities in reverse order of their importance,
and the result of the modality that gets the lowest
NDCG is shown. Basically, Cir+ and Cir− show the
best and worst performances respectively when predicting
modality significance by MAD. Cir is the actual run,
where the result is reported based on the most important
modality as selected by MAD. Finally, Cir∗ is an oracle
run that exhaustively evaluates all the possible orders of
modalities, and the result corresponds to the order that
exhibits the highest NDCG is reported.

Figure 3 shows the NDCG performances of eleven runs
averaged over 68 queries in MSRA-MM dataset. The NDCG
of baseline is evaluated based on the original list of a query
provided by MSRA-MM. By random walk, the three single
modalities runs slightly improve the baseline. RWT appears
to be a weaker modality since the surrounding texts of images
are not always content related. Overall, the results across
different depths of NDCG consistently indicate that reranking
using multi-modalities leads to a larger performance boost
against baseline compared to single modality. Furthermore,
circular reranking utilizing all three modalities also exhibits
significantly better performance than C O which uses only
text and BoW for mutual reinforcement. C O∗ significantly
improves C O, but the overall performance in the best case
is still lower than that of circular reranking in the worst
case (Cir−). The result basically indicates the advantage of
exploring interaction holistically among all modalities than in
the pairwise manner.

There is a significant performance gap between the two
oracle runs L F∗ and Cir∗. Though both runs involve utiliza-
tion of all the three single modalities, they are fundamentally
different in the way that the performance of L F∗ is as a result
of combining different modalities, and Cir∗ is by boosting

Fig. 4. Performance improvement of different modalities by circular
reranking. The performances are compared against the results w.r.t their ranked
lists at NDCG@50.

each other through mutual reinforcement. As indicated by
our results, allowing modality interaction can constantly lead
to better performance gain than simple linear fusion. An
interesting observation is that the performance gain of Cir∗
tends to be large for the top few ranked results. The gain is
however gradually decreased when going deeper into the list.
In contrast, the improvement of L F∗ is more obvious for the
lower ranked items. Especially, the improvement is marginal
if considering only the top-10 items in the ranked lists. This
somewhat reveals the weakness of linear fusion, where when
one of modalities is strong enough, further fusion will not
lead to apparent improvement. In practice, the fusion may
even degrade the performance of strong modality since fusion
weights are query-dependent and not known in prior. Cir∗,
in comparison, is benefited from the mechanism of modality
interaction. The chance that a strong modality can learn from
weaker modalities and lead to performance gain is better.

Compared to oracle run, the performance of Cir+ which
predicts modality importance by MAD approaches that of
Cir∗ along with the increasing of depth in the list. There-
fore, using MAD as a prediction of modality importance is
effective for web image reranking. In addition, Cir+ performs
consistently better than Cir− at different depths of the list,
which verifies the order analysis presented in Section IV-A
as well. Figure 4 further shows the degree of improvement
on three different modalities introduced by different versions
of circular reranking. The result indicates that improvement
can be generally expected, and larger degree of improvement
is attained when modality importance could be correctly
predicted.

Figure 5 details the performance across different queries.
The NDCG values is normalized with respect to the best
and worst results. Using circular reranking and MAD, Cir+
exhibits better NDCG than single modalities run in 67 out of
68 queries. The improvement is observed in different types
of queries. For instance, the images relevant to the queries
“animal” and “flower” are diverse in appearance, resulting in
poor performance by BoW or CM alone. Instead, text feature is
found to be more helpful for these queries. Cir+ successfully
boosts up the normalized NDCG of both queries to 1. Similar
degree of improvement is also found for queries such as
“love” and “rose” where text description is highly noisy and
visual features show better performance. In the extreme cases
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Fig. 5. Normalized NDCG@50 of different approaches across 68 queries. Note that NDCG is scaled with max–min normalization.

where all modalities are found to be less helpful, such as
queries “baby” and “cake,” improvement is also observed
in Cir+.

3) Parameter Sensitivity: A common problem with random
walk based algorithm is the need to set the parameters to
tradeoff the initial and updated scores. In the previous experi-
ments, these values were optimally set in order to examine the
performance of circular reranking irrespective of the parameter
influence. Furthermore, we conducted experiments to test the
sensitivity of ωn parameters towards search performance. The
result shows that the performance surface is always convex
for most queries. With NDCG@50 as an example, the perfor-
mance fluctuates within the range of 0.02, when the values of
parameters are set from 0.1 to 0.9. According to our analysis,
the values of different parameters at an optimal point reflect the
performance of their initial ranked lists. This gives clue that the
values should be set according to the relative effectiveness of
modalities in search for a given query, though the exact values
vary across different query types. When training examples
are available, the values of parameters can be estimated. In
Section V-C, we will further show how the values are learnt
based on query-class dependent fusion.

C. Video Search Reranking

The third experiment was conducted on TRECVID 2007
(TV07) and 2008 (TV08) video benchmarks [22]. The datasets
consist of 50 and 100 hours of Dutch videos respectively
from the Netherland Institute for Sound and Vision. TV07
has 18,142 shots and TV08 has 35,766 shots. There are 24
multimedia queries in TV07 labeled with id from 197 to 220,
and 48 queries in TV08 labeled with id from 221 to 268. Each
query consists of a short text description, and a few image
and video examples. Figure 6 shows examples of queries
in TV07 and TV08. The task of video search is to retrieve
and rank top 1,000 relevant shots for each query. Following
TRECVID, we used average precision (AP) to measure the
reranking performance for each query. The final result is pre-
sented with mean AP (MAP) which averages AP over all the

Fig. 6. Examples of textual and visual queries in TRECVID datasets.

queries.
We compared the following approaches, with the main

focus is to examine how the tradeoff parameters ωn learnt
from query-class-dependent fusion for circular reranking will
impact the performance.

1) Single modality search. We designed three baseline runs
using Text, CM and BoW respectively. Text run uses
the provided text descriptions of queries for search.
The queries are matched against the speech transcripts
of video shots, and the similarity is measured by
BM25 [11]. CM and BoW use the image and video
examples of queries to match against the keyframes in
video shots. The query-shot relevancy is measured by
cosine similarity. In the case when there are multiple
image and video examples as query, the score of a shot
is decided upon the example which is most similar to
the shot.

2) Circular reranking. We designed five runs: ET , E B ,
EC , QC and Cir∗. The tradeoff parameters of former
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Fig. 7. Per query AP performance of different runs on TRECVID datasets. Note that AP (y-axis) is scaled with max-min normalization.

four runs are learned using training examples, where
TV07 is used for training and TV08 for testing. The
experiment is further repeated by using TV08 for
training and TV07 for testing. In ET , E B and EC , the
parameters are learnt and then fixed for all the queries
for text, BoW and CM respectively. The learning is
based on the exhaustive search of optimal parameters
which offer the best MAP performance in the training
set. These three runs are collectively called Fi x . In QC ,
parameters are learnt based on query-class-dependent
fusion [4], [29], where each query is mapped to a class
defined by TRECVID. There are four classes defined
for the queries: named entities (NE), person-thing (PT),
event (E) and place (P). For each query class, the
optimal values for tradeoff parameters are exhaustively
search for each possible order of modalities. During
search, a query is mapped to one of the classes. MAD
was then employed to determine the order of modalities
in circular reranking, and the learnt values of tradeoff
parameters are applied. If a query belongs to multiple
classes, we used the average of corresponding optimal
parameters. Finally, Cir∗ is an oracle run where the
optimal parameters are exhaustively search for each
query. This run represent the best possible performance
that could be achieved by circular reranking.

Table II shows the MAP performance of different runs.
Circular reranking consistently outperforms single modality
runs in two datasets. In addition, QC , which adapts parameters
at query class level, also exhibits better performance than Fi x .
Note that because TV07 has much more training queries than
TV08, it is not surprise that the MAP of TV07 is better than
TV08. Figure 7 further details the AP performance for all the
72 queries. Basically different modalities respond differently to
queries. For instance, query id-212: “find shots in which a boat
moves past,” is better retrieved with BoW. On the other hand,
the query id-219: “find shots that contain the Cook character
in the Klokhuis series” shows much better result with text
modality. In the experiment, circular reranking successfully
brings up the MAP performance of these queries. Among all
the queries, QC outperforms Fi x in 50 out of 72 queries.
As TRECVID only defines four general query classes, the

TABLE II

MAP OF DIFFERENT RUNS FOR VIDEO RERANKING ON

TRECVID 2007 AND 2008 DATASETS

TV- Text BoW CM ET E B EC QC Cir∗
07 .029 .009 .024 .039 .016 .035 .045 .053

08 .010 .004 .005 .011 .007 .006 .015 .021

TABLE III

SIGNIFICANCE TEST AT 0.05 LEVEL (X � Y INDICATES THAT X IS

SIGNIFICANTLY BETTER THAN Y )

TV- Reranking Methods

07 Cir∗ � QC � ET � E B , EC

08 Cir∗ � QC � ET � E B , EC

mapping from query to class could be ambiguous in some
cases. The learning of optimal parameters is also practically
not an easy task when the mapping is ambiguous. Though QC
shows better MAP than Fi x , queries such as id-207: “find
shots of waterfront with water and building” and id-229: “find
shots of one or more people where a body of water can be
seen” show worse performance than Fi x . The fact that many
queries in TRECVID are categorized as Person-thing (PT) has
made the searching of optimal weights difficult for this class.
This in turn affects the overall performance stability. Among
the 72 queries, compared to the methods other than Cir∗, QC
achieves the best performance for 46 queries, followed by ET
for 12 queries, EC for 9 queries and E B for 5 queries. There
are 26 queries where the performance of QC is close to that of
Cir∗. Among them, 23 queries share similar values of tradeoff
parameters as Cir∗. The general observation is that, as long
as the estimated values do not deviate too much from the
optimal ones, the performance of QC is expected to be close
to Cir∗.

To verify that the performance of different runs presented
in Table II is not by chance, we also conducted significance
test using the randomization test [18] suggested by TRECVID.
The target number of iterations used in the randomization is
100,000. The results at 0.05 significance level are shown in
Table III. In both datasets TV07 and TV08, Cir∗ is found to
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be significantly better than QC , and QC is in turns better than
other runs.

VI. CONCLUSION

We have presented circular reranking which explores infor-
mation exchange and reinforcement for visual search rerank-
ing. Particularly, we analyze the placement of modalities
in the circular framework which could lead to the highest
possible retrieval gain in theory for search reranking. To
verify our claim, we have presented approaches based on the
existing works in the literature for predicting the modality
importance to sort and weight the modalities accordingly
for circular reranking. Experiments conducted for image and
video retrieval basically validate our proposal and analysis.
Performance improvement is also observed when comparing
to other reranking techniques such as linear fusion based on
oracle setting and fixed weights learnt from training exam-
ples. The degree of improvement, though, is limited by how
accurate the modality importance and fusion weights can be
estimated, which could be noticed from our empirical results
when comparing to the oracle setting of circular reranking.
Thus, our future works include more in-depth studies of how
fusion weights could be determined to boost the effectiveness
of circular reranking.
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