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A Hamming Embedding Kernel with Informative
Bag-of-Visual-Words for Video Semantic Indexing
FENG WANG, East China Normal University
WAN-LEI ZHAO, INRIA Rennes
CHONG-WAH NGO, City University of Hong Kong
BERNARD MERIALDO, Institute Eurecom

In this paper, we propose a novel Hamming Embedding kernel with Informative Bag-of-Visual-Words to address two main
problems existing in traditional BoW approaches for video semantic indexing. First, Hamming Embedding is employed to
alleviate the information loss caused by SIFT quantization. The Hamming distances between keypoints in the same cell are
calculated and integrated into SVM kernel to better discriminate different image samples. Second, to highlight the concept-
specific visual information, we propose to weight the visual words according to their informativeness for detecting specific
concepts. We show that our proposed kernels can significantly improve the performance of concept detection.

Categories and Subject Descriptors: I.2.10 [Artificial Intelligence]: Vision and Scene Understanding—Video analysis; I.5.4
[Pattern Recognition]: Applications—Computer vision
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1. INTRODUCTION

In the past decade, image/video semantic indexing (SIN) has attracted a lot of research attentions
especially due to the great efforts of TRECVID Workshop [TRECVID 2012]. SIN task is to automati-
cally detect various concepts (e.g. people, objects, scenes, and events) so as to understand the semantic
content of the given images/videos. This serves as a basic step for many applications such as content
based image/video retrieval, multimedia event detection and recounting. Despite of the encouraging
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Fig. 1. Construction of visual vocabulary.

advances achieved recently, SIN remains a difficult problem due to the well-known semantic gap be-
tween low-level visual information and high-level semantic concepts. Typically SIN is treated as a
one vs. all binary classification problem. Two classes are defined: positive examples which contain the
given concept and negative ones in which the concept is not present. Different approaches and fea-
tures have been proposed. For classifiers, SVM (Support Vector Machine) has been widely adopted.
Various features including color, texture, audio and local features are used. Among these features,
Bag-of-Visual-Words (BoW) [Jiang et al. 2007] has achieved great success due to its efficiency and ef-
fectiveness by capturing discriminative local image information. A lot of efforts have been devoted to
improve the performance of BoW features [Nowak et al. 2006; Quelhas et al. 2007; Sudderth et al. 2008;
Tuytelaars and Schmid 2007; Winn et al. 2005; Batra et al. 2008; Jurie and Triggs 2005; Fulkerson
et al. 2008; Yang et al. 2008; Alhwarin et al. 2008].

For the generation of BoW feature, a visual vocabulary is first constructed on a set of training images
as illustrated in Figure 1. In each image, the local interest points (LIPs) are detected [Mikoljczyk
and Schmid 2004], and described with SIFT (Scale Invariant Feature Transformation) [Lowe 2004].
The LIPs are then clustered into different groups to form a visual vocabulary. This process actually
segments the SIFT descriptor space into different Voronoi cells, each corresponding to a visual word
(see Figure 1). To compute the BoW feature vector of a given image, each detected LIP is assigned to
one or few nearest visual word(s) [Jiang et al. 2007; Jiang and Ngo 2008]. This results in a histogram on
the visual vocabulary, which can be used as the input for classifier training and testing. Although BoW
feature can effectly and efficiently capture the local visual information in an image, in the following,
we discuss two main problems with this approach.

1.1 Information Loss Problem

During the construction of the visual vocabulary, SIFT descriptor space is quantized into Voronoi cells
corresponding to different visual words. Such kind of quantization simply treats all points falling in one
cell as identical which results in an inaccurate distance measure between image samples. Figure 2(a)
illustrates an example. There are 4 points from each of the three images (I1, I2, and I3) assigned to the
same visual word (or lie in the same Voronoi cell c1). With BoW approach, the distances among three
images are all zeros since the BoW histogram simply counts the number of keypoints in each cell.
However, inside the given cell, the distance between I1 and I3 is obviously larger than that between
I1 and I2. This difference is not considered in BoW model which assumes all points in the same cell
to be identical. This is because the representing feature of a keypoint has been lost at quantization
stage. Typically, BoW feature is generated by segmenting the 128-dimension SIFT descriptor space
into only 200 to 20000 cells, and thus the size of each cell is very large. The points assigned to the
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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Fig. 2. (a) Information loss problem with BoW feature: there are 4 points from each of the three images (I1, I2, and I3) mapped
to the same visual word. The distance between I1 and I3 is obviously larger than that between I1 and I2. This difference is
ignored by BoW approach. The information loss differs from the mismatch problem where similar points (e.g. points from I4 and
I1) are mapped to different visual words (see Section 2.1). (b) In our approach, Hamming embedding is employed to attach a
binary signature to each descriptor to encdoe its location inside the cell, which is then used to measure the intra-cell distance.

same visual word could be much different from each other. Because of ignoring this difference, BoW
approach largely loses discriminative power of SIFT descriptors, and suffers from inaccurate distance
measure between different image samples.

1.2 Concept-Specific Informativeness of Visual Words

BoW feature captures the visual distribution of an image on the whole SIFT descriptor space. The
typical size of the visual vocabulary is 200 to 20000, and the number of keypoints in each image ranges
from tens to hundreds. The visual information of a concept actually cannot be evenly distributed over
the whole vocabulary. Given a concept, only some of the visual words frequently appear while the
presence of the others are nearly random. In other words, some visual words are more informative
or important for the detection of a specific concept, while the others may be noisy. For instance, in
Figure 1, the visual word v1 containing a wheel-like image patch is quite important for detecting
the concept Car or Vehicle, but may not contribute to the detection of concept Person. Similarly, the
presence of v2 containing an eye-like image patch implies there is a Person or Human face with high
probability. However, the relation between the concept Car and visual word v2 could be weak.

In the traditional BoW representations, for different concepts, each visual word is treated equally.
The discriminative ability of those informative visual words would be seriously reduced considering
two factors: i) The background of the images from open video domains is extremely complex, which
contains lots of visual information besides the concept-related objects and scenes. Thus, the informa-
tive visual words can be easily noised. ii) In most current datasets, the number of positive examples are
usually limited. For instance, in the datasets used for TRECVID evaluation, there are only tens of pos-
itive examples for many concepts. Therefore, denoising is hard without enough training data available.
This inspires us to select the visual words which are more informative to build more discriminative
classifiers for detecting specific concepts.

In this paper, we propose a novel Hamming Embedding Kernel with Informative Bag-of-Visual-
Words to address the above mentioned problems in BoW based approaches and boost the performance
of video semantic indexing. The remaining of this paper is organized as follows. Section 2 briefly re-
views the related works. In Section 3, we propose to integrate Hamming embedding distance [Jegou
et al. 2008] into SVM kernel to address the information loss problem. In Section 4, we present our ap-
proach to weight the concept-specific informativeness of different visual words to improve the discrim-
inative ability of classifiers. Experiments are conducted on several challenging datasets and presented
in Section 5. Finally, Section 6 concludes this paper.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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2. RELATED WORKS

2.1 Information Loss Problem of Visual Words

In [Gemert et al. 2010; Jiang et al. 2007; Jiang and Ngo 2008], soft weighting is proposed to allevi-
ate the mismatch problem which is also caused by SIFT quantization. For instance, in Figure 2(a),
although two sets of keypoints from I1 and I4 are visually similar, they are assigned to two different
visual words. In [Jiang et al. 2007; Jiang and Ngo 2008], the mismatch problem is alleviated by ex-
panding each keypoint from one word to few nearest neighboring words. This actually enlarges the
Voronoi cells and allows overlap between neighboring cells so that similar keypoints could be assigned
to the same visual words. However, soft weighting does not consider the location information 1 of the
keypoint in the Voronoi cell. All keypoints in the same cell are still assumed identical and expanded
to the same visual words. In this paper, we address the information loss problem. In other words, soft
weighting considers the similarity between keypoints in different cells, while we address the dissim-
ilarity between keypoints in the same cell. Actually, soft weighting would even worsen the intra-cell
dissimilarity by increasing the size of each cell. For instance, in Figure 2(a), when the points from I4
(and other points in neighboring cells) are expanded to the cell c1, all points from 4 images would be
considered identical despite of the large dissimilarities among them.

The above mentioned information loss problem due to SIFT quantization can be alleviated by using a
larger visual vocabulary with smaller Voronoi cells. However, a larger vocabulary generally causes con-
siderably more mismatches. Furthermore, each image just has tens to hundreds of keypoints detected.
A large vocabulary will result in very sparse feature vectors. As a result, the detection model cannot
be fully trained to capture the variations among image samples of the same concept. The situation
becomes even worse when there are not enough positive examples available for training (which is the
case in most current datasets). This will eventually tune down the performance of concept detection.

In this paper, we employ Hamming embedding to alleviate the information loss problem of BoW
features in video semantic indexing. Low-dimension embedding is a critical problem in many applica-
tions to map high-dimension data to low-dimension space [Saul and Roweis 2003]. A lot of approaches
have been proposed such as principal component analysis (PCA), multi-dimensional scaling (MDS)
and locally linear embedding (LLE) [Roweis and Saul 2000]. In multimedia information retrieval, the
low-dimension embedding is also addressed. Yang et al. [2012] propose a semi-supervised approach
to learn a better data representation with relevance feedback information. In [Cai et al. 2011], linear
discriminant projection (LDP) is employed for reducing the dimensionality and improving the discrim-
inability of local image descriptors. In [Jegou et al. 2008], Hamming embedding is employed in BoW
based image search. To achieve a tradeoff between the large memory/time cost by using high-dimension
descriptors and low precision by using BoW representation, SIFT descriptors are mapped to Hamming
space. For each keypoint, a binary signature is generated encoding its location information inside the
cell. The similarity between keypoints mapped to the same visual word is further estimated by the
Hamming distance between their binary signatures to filter out the dissimilar keypoints. In [Jain
et al. 2012], Hamming embedding is used to refine the patch matching for image classification. In
[Sibiryakov 2009], an approach similar to [Jegou et al. 2008] is proposed while Hamming embedding is
learned by maximizing the entropy of the resulting binary codes. In [Jain et al. 2011], an asymmetric
Hamming embedding scheme is proposed for large scale image search. Wang, J. et al. [2012] propose a
semi-supervised approach to maximize the accuracy of the binary partition. In [Shakhnarovich 2005],
different weights are learned and assigned to different bits of the binary signature to boost the perfor-

1In this paper, the terminology “location information” refers to the location of a keypoint in its corresponding Voronoi cell in
SIFT descriptor space, while the coordinate of a keypoint in the image is not considered here.

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.



A Hamming Embedding Kernel with Informative Bag-of-Visual-Words for Video Semantic Indexing • 1:5

mance of Hamming embedding. In [Wang et al. 2006], larger weights are assigned to the higher bits
to highlight their importance for distance measure in image search. In [Jiang et al. 2013], a query-
adaptive approach is proposed to derive finer-grained ranking in image search by addressing the dis-
crete values of Hamming distance. In this paper, we employ Hamming embedding in video semantic
indexing to derive a more precise measure between keypoints mapped to the same visual word, which
is then integrated into SVM kernel for discriminative classification. The novelty of our approach lies
in the proposed Hamming embedding kernel which enhances the distinctiveness of BoW model. By
considering the location information of keypoints in each cell, our proposed kernel can more precisely
measure the distance between different image samples and improve the SVM performance.

2.2 Weighting Concept-Specific Informativeness of Visual Words

As discussed in Section 1.2, the traditional BoW representation ignores the informativeness of differ-
ent visual words for specific concepts. Some attempts have been made to address the concept-specific
information in image categorization. One way is to build concept-specific vocabularies. In [Perronnin
2008], besides the universal vocabulary which describes the visual content of all classes of images, class
vocabularies are constructed by adapting the universal vocabulary using class-specific data. An image
is then characterized by a set of histograms - one per class - where each histogram describes whether
the image content is best modeled by the universal vocabulary or the corresponding class vocabulary.
In [Yang et al. 2007; Moosman et al. 2008], to capture the desired information of a given object cate-
gory, discriminative visual vocabulary is generated. In this kind of approaches, given an image, a set
of BoW histograms are generated on all different concept-specific vocabularies. This would be quite
time-consuming in video semantic indexing when there are thousands of concepts for annotation.

In contrast to constructing discriminative vocabularies, another way is to select informative visual
words from a single universal vocabulary. Some previous works propose to detect and remove the
non-informative visual words. Sivic and Zisserman [2003] consider the visual words that frequently
appear in almost all images as useless. Tirilly et al. [2008] propose to eliminate useless visual words
based on the geometric properties of the keypoints and the probabilistic latent semantic analysis. Yuan
et al. [2007] propose to locate useless information by significance test. Kesorn and Poslad [2012] try
to discover non-informative visual words with document frequency and statistical association between
visual words and concepts. Most of these works borrow ideas from feature selection methods in text
categorization and statistic information is widely employed to detect useless visual words. However,
it is difficult to associate low-level visual words with high-level semantic concepts based on statistic
information in open video domains. Given an image/video, there are usually abundant visual infor-
mation in the background besides the target concepts. For instance, DFs (Document Frequencies) are
popularly used in feature selection for text categorization. However, in video concept detection, DFs
of visual words do not convey much useful information. This is because each image contains a lot of
noisy information in the background, and each visual word can be found in the positive samples of
almost every concept, meaning that DFs for different words are almost the same. Furthermore, in
most datasets, there are usually limited positive examples for many concepts, and thus the statistic
information computed from the training sets are usually not reliable.

Besides the difficulty in computing statistical associations between visual words and semantic con-
cepts, there are still two main problems to address in this kind of approaches. First, although some of
the non-informative visual words are detected and removed, the informativeness of remaining visual
words for specific concepts are not considered. Second, the ultimate aim is to improve the discrimi-
native ability of classifiers. However, the feature selection method based on statistic information is
disconnected from the classifier learning process. The selection of visual words is based on some sta-
tistical rules, instead of their contributions to improve the classifiers’ performances. In this paper, we

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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propose an Informave Bag-of-Visual-Words (IBoW) representation by considering the informativeness
of each visual word for a given concept. A universal visual vocabulary is first constructed. To capture
the concept-specific visual information, different weights are assigned to visual words according to
their contributions to SVM classification. Finally, the resulting weights are used in the SVM kernel for
concept detection.

3. HAMMING EMBEDDING KERNEL

In our approach, a visual vocabulary is first constructed on a set of training images. In each image, key-
points are detected using Difference of Gaussian (DoG) [Lowe 2004] and Hessian-Laplacian detectors
[Mikoljczyk and Schmid 2004], and described with SIFT [Lowe 2004]. K-means algorithm is employed
to cluster all keypoints and construct a visual vocabulary V = {vi|i = 1, 2, · · · , S}. Given an image, each
detected keypoint is assigned to the nearest visual word in V . This results in an S-bin histogram to
describe the visual information in the given image, which can be used as the input for SVM classifiers.
Let Xp = [xp1, xp2, · · · , xpS ] and Xq = [xq1, xq2, · · · , xqS ] be the BoW feature vectors of two images Ip and
Iq respectively. For SVM classification, the following χ2 −RBF kernel is the most frequently used

K(Ip, Iq) = exp(−σ ·
S∑
c=1

|xpc − xqc|2
xpc + xqc

) (1)

As discussed in Section 1, due to the information loss caused by quantization, this traditional BoW
approach simply assumes that all the keypoints assigned to the same visual word to be identical. As a
result, intra-cell distances among keypoints within the same cell are not considered. This reduces the
precision of distance measure considering the large scale of the Voronoi cells. In this section, we pro-
pose a novel Hamming embedding kernel by considering the intra-cell distance for concept detection.
First we briefly recall the algorithm in [Jegou et al. 2008] to associate each descriptor with a binary
signature encoding its location information inside the corresponding Voronoi cell. The Hamming dis-
tance between the signatures of different descriptors are then calculated to estimate their Euclidean
distance. Finally, we integrate Hamming distance into SVM kernel for more precise distance measure
between image samples so as to improve the performance of classification.

3.1 Training Hamming Embedding

The most precise intra-cell distance between descriptors could be computed directly with the SIFT
descriptors. However, this information is lost during quantization. Furthermore, it would be much
space-consuming to keep all 128-dimensional descriptors and time-consuming to compute the distance
between them. To cope with this problem, we associate a binary signature with each descriptor to en-
code its location information inside the Voronoi cell (as illustrated in Figure 2(b)) by employing Ham-
ming embedding, which was previously proposed for image search and copy detection [Jegou et al.
2008]. Hamming embedding follows the scheme of Locality-Sensitive Hashing (LSH) [Indyk and Mot-
wani 1998; Charikar 2002]. The main idea of LSH is that highly similar objects are indexed by the
hash table with high probability. The similarity between two objects x, y can thus be approximated by
the probability of collision of two inputs in the hash table

sim(x, y) = Prh∈F [h(x) = h(y)] (2)

where F is a family of hash functions. This leads to compact representations of high-dimension objects
and efficient algorithms for similarity estimation between them. In Hamming embedding approach,
each SIFT descriptor is first projected onto a set of randomly generated orthogonal vectors. Each pro-
jected component is then binarized by using a threshold learned from a training dataset. The threshold
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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for each component actually partitions the Voronoi cell into two (as illustrated in Figure 2(b) where
two components segment the cell into four). Finally a bit-sequence signature is generated for each de-
scriptor, which provides a more precise representation for the location information of the descriptor in
the corresponding Voronoi cell. The Hamming distance between two signatures can then be used to
estimate the distance between two high-dimensional descriptors.

To generate the binary signature, offline training of Hamming embedding is needed to generate
the projection matrix and the thresholds for binarization. The algorithm for offline training can be
summarized as follows [Jegou et al. 2008]:

—Step 1. Random matrix generation: Generate an orthogonal projection matrix P (lb × S), where
lb is the length of the binary signature, and S is the the vocabulary size. Draw an S × S matrix
of Gaussian values and apply a QR factorization to it. The first lb rows of the orthogonal matrix
obtained by the decomposition form the matrix P. In our implementation, lb is empirically set to 32,
which is enough to precisely describe the location information of the descriptors..

—Step 2. Feature vector projection and assignment: A large set of feature vectors from an in-
dependent dataset are randomly sampled. These feature vectors are first assigned to words in the
visual vocabulary. Additionally, given a descriptor r assigned to a visual word vi, it is further pro-
jected by matrix P. This operation results in a component tr with lb dimensions.

—Step 3. Median values of projected descriptors: For each visual word vi, compute the median
values for lb dimensions based on all projected components tr which fall into word vi. This results in
an S × lb matrix M. Each row of M corresponds to one visual word in the vocabulary.

3.2 Binary Signature Generation

With Hamming embedding, we generate a binary signature for each descriptor to encode its location
information inside the Voronoi cell. This is carried out by first projecting the descriptor onto the above
generated matrix P and then binarizing each component with the learned median value. The algorithm
proceeds as follows. Given a 128-dimention SIFT descriptor r,

—Step 1. Quantize r to the nearest visual word vi.
—Step 2. Project r using matrix P (the same one used at the training stage). This results in a

vector tr with lb dimensions.
—Step 3. Compute the binary signature. By comparing the resulting vector tr with the i-th row

of matrix M which corresponds to visual word vi, a binary signature b(r) = [b1(r), ..., blb(r)] for r is
generated by

bk(r) =
{

1 if trk ≥Mi,k

0 Otherwise (3)

where trk is the k-th element of tr, and the binary signature b(r) records the approximate location of
r in the Voronoi cell.

Given two keypoints with descriptors r and r′ which are assigned to the same visual word, the
Hamming distance between them can be calculated based on the associated binary signatures as

H(r, r′) =
∑

1≤j≤lb
1− δbj(r)bj(r′) (4)

According to Equation 2, the Hamming embedding and binary signature are designed so that the Ham-
ming distance calculated by Equation 4 reflects the Euclidean distance between two descriptors in the
same cell [Jegou et al. 2008]. This provides a way of recording the location information of descriptors

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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Fig. 3. (a) Intra-cell distance by keypoint matching: Two sets of points from two images Ip and Iq respectively are assigned
to the same cell. An optimal matching between two point sets are found and the dashed lines link each point to its matched
point, which can be used to calculate the distance between two point sets. (b) Bipartite point matching between Pc and Qc: The
distance (cost) between each pair is defined in Equation 5.

and estimating the distance between them in the same cell with an elegant representation (by just
appending lb bits to each descriptor together with the index of the word in BoW vector).

3.3 Hamming Embedding Kernel

In this section, with Hamming embedding described above, we propose a new distance measure be-
tween image samples with higher precision by considering the intra-cell distance between descriptors,
and incorporate it into SVM kernel to improve the performance of concept detection.

First we consider only one bin (or visual word) of the BoW histogram. Let Pc = {pc1, pc2, · · · , pcm}
and Qc = {qc1, qc2, · · · , qcn} be two keypoint sets from images Ip and Iq respectively, and assigned to
the same word vc. In traditional BoW approach (see Equation 1), by assuming any two keypoints in
the same cell to be identical, the difference of the two histogram bins dc(Ip, Iq) = |m − n| are used to
calculate the distance between them.

With Hamming embedding to encode each keypoint’s location information inside the Voronoi cell,
the Euclidean distance between any two keypoints in Pc and Qc can be estimated by Equation 4 with
higher precision. This enables us to develop a distance measure between Pc and Qc by considering
the distance between keypoints in the same cell. To this end, we need to find the matching between
Pc and Qc. For image search and ND (Near-Duplicate) detection, geometry constraints [Jegou et al.
2008] can be used to refine the matching points between two images and detect the duplications.
However, for concept detection, geometry alignment does not exist since the images (or image patches)
are usually not duplicate to each other even within the same concept. To measure the distance between
two keypoint sets Pc and Qc, we perform one-to-one matching between them and then use the distance
between matching points as the distance between two images on the visual word vc.

As illustrated in Figure 3(a), the distance between two point sets in the same cell can be calculated by
summing up the distance between each point and its matched point from another image. The problem
is then to find the optimal matching between Pc and Qc. We treat this as a bipartite point matching
problem. In Figure 3(b), m − n virtual points are added to Qc. The cost of each edge e ∈ Pc × Qc is
defined by

{
d(pci, qcj) = H(pci,qcj)

lb
d(pci, q′k) = 1

(5)

where i = 1, 2, · · · ,m, j = 1, 2, · · · , n, k = 1, 2, · · · ,m−n, and H(·) is the Hamming distance between two
keypoints (descriptors) calculated by Equation 4.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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This is a typical assignment problem to match the points between Pc and Qc with the minimum
cost (distance). In our approach, we adopt Hungarian algorithm [Kuhn 1955] to find the globally op-
timal matching between Pc and Qc. The Hungarian method is a classical combinatorial optimization
algorithm which solves the assignment problem in polynomial time. With this algorithm, we find the
globally optimal matching between Pc and Qc. Thus, in the cell corresponding to word vc, each keypoint
is linked to its best match from another image and their Hamming distance is used to measure the
difference between them. The distance between Pc and Qc is then calculated as

d̂c(Ip, Iq) =
m∑

i=1

d(pci, φ(pci)) (6)

where φ(·) is the optimal matching from Pc to Qc. According to the definition in Equation 5, each pair
of matched points contribute to d̂c(Ip, Iq) by a value lying in [0, 1] depending on the Hamming distance
between them. On the other hand, each point that is not matched (or matched to a virtual point) in Pc
will directly contribute a value 1 to the distance between two image samples.

By considering the location information of each descriptor in the Voronoi cell, Equation 6 provides
a more precise distance measure, and thus can better discriminate different image samples. Based
on Equation 6, we then propose a new kernel, namely Hamming Embedding Kernel by modifying
Equation 1 as

K̂(Ip, Iq) = exp(−σ ·
S∑
c=1

d̂2
c(Ip, Iq)
xpc + xqc

) (7)

By comparing the distance measures used in Equations 1 and 7, the traditional BoW approach is
actually a simplified version of Equation 7 by setting d(pci, qcj) = 0 for all point pairs pci and qcj
(1 ≤ i ≤ m, 1 ≤ j ≤ n) in the same cell vc. This implies that all the keypoints assigned to the
same visual word are identical. Since the large variations between them are ignored, the resulting
distance measure suffers from precision loss. In our approach, Hamming distance is used to measure
the intra-cell difference between keypoints. The new kernel in Equation 7 employs a more precise
measure between different image samples. As indicated by comprehensive experiments, it is more
discriminative and demonstrates consistent improvement over traditional models.

4. INFORMATIVE BAG-OF-VISUAL-WORDS

As discussed in Section 1, different visual words are not equivalently important for detecting a spe-
cific concept. In Equations 1 and 7, for every concept, all visual words are treated as the same. In
this section, we further revise the SVM kernel by measuring the informativeness of visual words for
specific concept and then assigning different weights to them accordingly to capture concept-specific
visual information. Here we just consider the detection of one given concept and denote the weight
vector of visual words as w = [w1, w2, · · · , wS ], where

∑S
c=1 wc = 1. By attaching the concept-specific

informativeness of visual words to traditional BoW, we propose the Informative Bag-of-Visual-Words
(IBoW) representation and employ it in SVM classification by rewriting Equation 7 as

K̃(Ip, Iq) = exp(−σ ·
S∑
c=1

wc · d̂
2
c(Ip, Iq)
xpc + xqc

) (8)

where the weight wc measures the informativeness of the word vc for detecting the given concept. As a
result, the more important visual words contribute more to the distance measure between image sam-
ples. In our approach, we calculate a set of weights for each specific concept. This is treated as a kernel
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optimization problem. We first employ Kernel Alignment Score (KAS) to evaluate the discriminative
ability of SVM kernels. The weights of visual words are then iteratively updated so as to produce an
optimal kernel for classification.

4.1 Evaluating SVM Kernels

To measure the fitness of the weights of visual words, the classification accuracy of SVM is the best
hint. However, it is not applicable to evaluate the performance of SVM by training, cross-validation and
testing from time to time during the weighting procedure. The performance of SVM is mainly depen-
dent on the ability of kernel matrix to discriminate between positive and negative samples. Different
factors can affect kernel matrix such as kernel function format, features, and parameter settings. Ker-
nel optimization is to find a better kernel by optimizing these factors. In this paper, we weight the
visual words in the framework of kernel optimization, i.e. we attempt to find the optimal weights that
can produce the best kernels.

For SVM, an optimal kernel Kopt [Cristianini et al. 2002] should satisfy

Kopt
pq =

{
+1 if lp = lq

0 otherwise (9)

where for simplicity, Kopt
pq = Kopt(Ip, Iq) is the kernel value between two image samples Ip and Iq,

lp = l(Ip) is the label of Ip, and lp = +1 (or −1) if Ip is a positive (or negative) sample. In Kopt, the kernel
values between samples with the same labels are maximized, while the values between samples with
different labels are minimized. Thus, this optimal kernel can perfectly discriminate between different
classes.

However, the actual kernels used in practice are usually not optimal due to the imperfect features
and kernel functions. To measure how well a given kernel K̃ is aligned with the optimal kernel defined
by Equation 9, the following Kernel Alignment Score (KAS) [Cristianini et al. 2002] is used

T̄ =

∑
p,q K̃pq · lp · lq

N ·
√∑

p,q K̃
2
pq

(10)

where N is the total number of samples and the denominator is a normalization factor. If lp = lq (p and
q belong to the same class and lp · lq = 1), K̃pq is expected to be maximized in the optimal kernel. Thus,
in Equation 10, a larger (or smaller) K̃pq value will increase (or reduce) the KAS score T as expected.
Similarly, if lp 6= lq, i.e. lp · lq = −1, K̃pq should be minimized and a larger K̃pq value will be penalized
in the calculation of T . Generally, a kernel with higher KAS score is better at discriminating samples
of different classes, and can potentially achieve better performance for classification. In our approach,
we employ KAS to measure the fitness of SVM kernel and weight the informativeness of visual words
by maximizing KAS scores.

Equation 10 assumes the two classes are balanced. However, this is not the case for most current
datasets in video semantic indexing, where there are usually many more negative examples than
positive ones. This may bias the resulting KAS towards the negative class. To deal with this imbalance
problem of the datasets, we modify Equation 10 by assigning different weights to positive and negative
examples as follows

αp =
{

1 if lp = −1
N−
N+ otherwise

(11)
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where N− and N+ are the numbers of negative and positive examples in the training dataset respec-
tively. Equation 10 is then modified as

T =

∑
p<q K̃pq · lp · lq · αp · αq

N ′ ·
√∑

p<q αp · αq · K̃2
pq

(12)

where N ′ =
∑
p<q αp · αq. Eventually the weighting problem is formulated as searching for an optimal

weight vector wopt such that the KAS score T defined by Equation 12 is maximized.

4.2 Gradient-based Weight Optimization

Gradient-descent approach is widely used for optimization. In [Igel et al. 2007], gradient-based al-
gorithm is employed to select SVM parameters for bacterial gene start detection in biometrics. In
our approach, we weight the informativeness of visual words by adopting a similar gradient-descent
algorithm to optimize the SVM kernels by maximizing the KAS score in Equation 12. Based on Equa-
tion 12, we calculate the partial derivative of T to the weight wc as

∂T
∂wc

=
∑
p<q

∂T
∂K̃pq

· ∂K̃pq

∂wc
(13)

∂K̃pq

∂wc
= K̃pq · (−σ · d̂

2
c(Ip, Iq)
xpc + xqc

) (14)

Besides the weights of visual words, we also optimize σ in Equation 8 which is an important parameter
for SVM kernels

∂T
∂σ

=
∑
p<q

∂S

∂K̃pq

· ∂K̃pq

∂σ
(15)

∂K̃pq

∂σ
= K̃pq · (−

S∑
c=1

wc · d̂
2
c(Ip, Iq)
xpc + xqc

) (16)

In Equation 14, the weights of different visual words are assumed to be independent on each other.
According to our experiment, this assumption is reasonable. Strictly speaking, there might be some
weak correlations between the importance of different visual words. For instance, two visually similar
words may have the similar weights. Based on Equations 13 − 16, we iteratively update the weight
vector w of visual words so as to maximize the kernel alignment score defined by Equation 12. Below
is the algorithm for optimization:

(1) Initialize wc = 1
S for c = 1, 2, · · · , S, and σ = σ0. Calculate the initial KAS score T by Equation 12.

(2) For each weight wc and σ, calculate the partial derivative ∂T
∂wc

and ∂T
∂σ by Equations 13-16.

(3) Update weights w′c = wc · (1 + sign( ∂T∂wc ) · δw) and σ′ = σ · (1 + sign(∂T∂σ ) · δσ), where sign(t) =



+1 if t > 0
0 if t = 0
−1 if t < 0

. δw and δσ are two constants to be determined. Get the new weights wc = w′c∑S

k=1
w′
k

.

(4) Calculate the new kernel alignment score T ′ using the updated weights and σ. If T
′−T
T < thres, stop;

otherwise, T = T ′ and go to step 2.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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In step 1, σ0 = N ′/
∑
i<j(−

∑S
c=1 wc · d̂

2
c(Ip,Iq)
xpc+xqc

) which is the inverse of the average distance between
all training samples, and a good empirical choice of σ for SVM paramter selection. In step 3, the weight
vector (and σ) is updated by a small value δw (and δσ). For the determination of δw (and δσ), a larger
value can push the weights (and σ) to the optimal one at higher speed at the beginning. However, this
risks missing the optimal weight vector (and δσ) by skipping a large distance in each step. A smaller
δw (and δσ) can avoid this problem, but it takes more iterations to converge. In our experiments, we
empirically set δw = 0.02 and δσ = 0.1. In step 4, thres is set to be 0.5% so as to stop the optimization
when the improvement on T becomes minor. After the optimization process, the resulting weight vector
is used to train SVMs with the kernel defined in Equation 8 for concept detection.

5. EXPERIMENTS

In this section, we carry out experiments on several datasets for video semantic indexing with our
proposed approaches. The following datasets are used.

—Sound & Vision dataset: There are about 100 hours of news magazine, science news, news reports,
documentaries, educational programming, and archival videos in MPEG-1. This dataset is separated
into development and test sets containing 21532 and 22084 shots respectively.

—IACC.1 collection: This dataset is composed of 4 subsets: IACC.1.tv10.training, IACC.1.A, IACC.1.B,
and IACC.1.C [TRECVID 2012], each containing approximately 200-hour Internet Archive videos.
In total there are about 27200 videos with duration between 10 seconds and 3.5 minutes.

In our experiments, we mainly validate the performance improvement by employing our proposed
approach compared with BoW based approaches. A visual vocabulary is first constructed on the devel-
opment set. One keyframe is used to represent the visual information in each video shot. Difference
of Gaussian (DoG) [Lowe 2004] and Hessian Affine [Mikoljczyk and Schmid 2004] detectors are used
to detect LIPs (Local Interest Points), and 128-dimension SIFT feature [Lowe 2004] is extracted to
describe each local image patch. The visual vocabulary is then generated by clustering all SIFT de-
scriptors from training images into a number of visual words with k-means algorithm. Finally, given
a keyframe, each SIFT descriptor of a LIP is mapped to the nearest visual word to form the BoW
histogram. For classification, SVM with χ2-RBF kernel is employed. This traditional BoW approach is
used in our experiments for comparison.

5.1 Performance of Informative Bag-of-Visual-Words

In this section, we first experiment the Informative Bag-of-Visual-Words (IBoW) with the weights esti-
mated by our approach proposed in Section 4. By considering the weights of visual words for detecting
a specific concept t, χ2-RBF kernel in Equation 1 is modified as

K(Ip, Iq) = exp(−σ ·
S∑
c=1

wc · |xpc − xqc|
2

xpc + xqc
) (17)

We compare our approach with existing weighting methods and dimension reduction approaches in-
cluding uniform weighting, TF-IDF (Term Frequency - Inverse Document Frequency), Chi-square
statistic, Linear Discriminant Analysis (LDA), and Locality Preserving Projection (LPP). For uniform
weighting scheme as used in traditional BoW approach, all visual words are assigned with the same
weights, i.e. wc = 1 for c = 1, 2, · · · , S.

TF-IDF is a classical weighting algorithm widely used in information retrieval. Chi-square statistic
is also intensively studied for feature selection in text categorization. In some recent works [Kesorn
and Poslad 2012; Alhwarin et al. 2008], chi-square statistic is employed to measure the dependency
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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between visual words and concepts to improve the performance of BoW representation. In [Kesorn and
Poslad 2012], the visual words with chi-square values lower than a threshold are considered as useless
and removed. LDA and LPP are two methods widely used for dimension reduction. LDA attempts to
find the interdependency between features by expressing a dependent feature as a linear combination
of other features. LPP can be seen as an alternative to Principal Component Analysis (PCA). It is a
linear approximation of the nonlinear Laplacian Eigenmap and capable of discovering the non-linear
structure of the data manifold [He and Niyogi 2003].

Our experiment is carried out on the Sound & Vision dataset. A visual vocabulary of 1000 words
is constructed on the development set. We adopt Average Precision (AP) to evaluate the performance
of concept detection. Two-fold cross-validation is carried out on development and test sets. Figure 4
compares the performances of different approaches. For TF-IDF approach, minor improvement (0.48%)
on the MAP (Mean Average Precision) for 20 concepts is observed compared with uniform weighting
approach. For different concepts, the performance improvement by TF-IDF is inconsistent. Although
TF-IDF has proved useful in information retrieval, it is not appropriate for weighting the visual words
in concept detection. First, as discussed in Section 1, DFs for different words are almost the same since
each image contains a lot of noisy information in the background, and each visual word can be found
in the positive samples of almost every concept. Second, TF is also not a good hint for the importance
of the visual word. The importance of a visual word for the detection of a concept is dependent on
its informativeness instead of its frequency. For instance, in Figure 1, the presence of word v1 is very
important for detecting the concept Car. Although there is only one keypoint assigned to v1, it is more
important than word v3 with many keypoints in the background assigned to it.

By employing chi-square statistics between visual words and concepts, a slight improvement of 1.87%
is achieved compared with the uniform weighting scheme. On one hand, this shows that chi-square
statistic is better at discovering the dependency between visual words and concepts compared with
TF-IDF. However, as can be seen in Figure 4, the statistic information is reliable and useful only
when there are enough training samples for the given concepts such as Cityscape and Hand. For those
concepts with limited positive samples such as Bus and Classroom, the performance would be even
reduced. For LDA and LPP, no significant improvement or reduction on MAP is observed. This shows
that both of them are able to discover the interdependency between different features and useful for
dimension reduction. On the other hand, the informativeness of features and the interdependency
between features and concepts should be further measured in order to improve the discriminative
abilities of the classifiers.

Figure 4 also presents the performance of our weighting approach proposed in Section 4. Overvall
an improvement of 7.55% is achieved on MAP compared with the uniform weighting scheme. Large
margins on the performances of these two approaches can be observed for some concepts including Bus
(27.4%), Telephone (25.8%), Demonstration (28.9%), and Classroom (21%). These concepts are mostly
object-related with specific exterior appearance. By assigning larger weights to the visual words de-
scribing their appearances, the detection accuracy of these concepts can be significantly improved.
Furthermore, the improvement is consistent for different concepts. Compared with the statistic based
approaches, our proposed weighting algorithm aims at optimizing the discriminative ability of SVM
kernels. This connects the weighting procedure and the classifier training, and thus the resulting
weights can consistently improve the performance of SVM classification.

Figure 5 plots the computed weights of visual words for two concepts: Boat Ship and Telephone by
our approach (for the convenience of illustration, we use a small vocabulary with 200 visual words).
In Figure 5, the visual words are sorted in descending order of their weights for concept Boat Ship,
and the weights for Telephone (red marks) are then plotted accordingly for comparison. From Figure 5,
we can see: i) For a given concept (e.g. Boat Ship), some visual words are assigned with much larger
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Fig. 5. Computed informativeness of visual words for two concepts.

weights than others. This demonstrates the variations of different visual words’ informativeness for
detecting a given concept. Therefore, it is important to select the most informative visual words in
order to improve the discriminative ability of the classifiers. ii) The weights of the same visual word
for different concepts are also quite different. One visual word which is important for a given concept
may not be important for another one. Thus, it is necessary to weight the visual words for different
concepts instead of using the same weights for deteting all concepts.

5.2 Performance of Hamming Embedding Kernel with IBoW

In this section, we experiment the proposed Hamming Embedding Kernel with Informative Bag-
of-Visual-Words. The experiment is carried out on IACC.1 video collections. 50 concepts from the
TRECVID 2012 Semantic Indexing (SIN) task (light submission) [TRECVID 2012] are detected. Ta-
ble I presents the detailed experimental results of five approaches. We first compare our proposed
approaches with the traditional BoW approach in Equation 1. Soft weighting [Jiang and Ngo 2008] is
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 1, No. 1, Article 1, Publication date: January 2013.
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Table I. Comparison between different approaches. (IBoW: Informative
Bag-of-Visual-Words; HE: Hamming Embedding; Soft: Soft weighting.)

IBoW HE HE + IBoW HE +IBoW + Soft
Concept BoW AP Improve AP Improve AP Improve AP Improve
Adult 0.124 0.130 4.55% 0.136 9.49% 0.143 15.12% 0.152 22.46%
Airplane Flying 0.082 0.093 13.24% 0.091 11.27% 0.101 22.94% 0.104 26.66%
Animal 0.036 0.041 15.30% 0.038 7.18% 0.043 22.00% 0.045 26.51%
Asian People 0.029 0.030 3.22% 0.033 14.03% 0.035 20.80% 0.038 31.48%
Bicycling 0.062 0.073 17.58% 0.073 18.38% 0.082 32.68% 0.086 39.03%
Boat Ship 0.120 0.143 19.41% 0.135 12.47% 0.162 35.24% 0.181 50.87%
Building 0.242 0.271 12.33% 0.259 7.34% 0.291 20.57% 0.305 26.15%
Bus 0.072 0.089 22.76% 0.079 8.80% 0.097 34.36% 0.104 43.80%
Car 0.175 0.206 17.88% 0.193 10.51% 0.229 31.00% 0.241 37.71%
Cheering 0.065 0.071 9.98% 0.072 11.08% 0.077 19.92% 0.087 35.05%
Cityscape 0.311 0.364 17.09% 0.335 7.84% 0.382 22.79% 0.389 25.21%
Classroom 0.035 0.044 24.41% 0.037 3.78% 0.043 22.36% 0.045 26.54%
Computer Screens 0.266 0.281 5.76% 0.291 9.62% 0.311 17.15% 0.328 23.42%
Computers 0.061 0.075 22.39% 0.071 15.53% 0.081 31.50% 0.086 41.02%
Dancing 0.101 0.105 4.05% 0.104 3.31% 0.111 10.22% 0.114 12.87%
Dark-skinned People 0.250 0.267 6.80% 0.263 5.33% 0.272 9.14% 0.282 12.89%
Demonstration 0.051 0.063 23.81% 0.055 8.19% 0.061 20.61% 0.065 27.73%
Doorway 0.167 0.177 5.82% 0.185 10.87% 0.199 18.89% 0.216 29.02%
Explosion Fire 0.264 0.289 9.62% 0.299 13.30% 0.317 20.43% 0.327 23.86%
Female Person 0.196 0.221 12.52% 0.213 8.27% 0.235 19.72% 0.245 24.86%
Female-Face 0.243 0.253 4.00% 0.272 11.94% 0.283 16.42% 0.300 23.40%
Flowers 0.069 0.079 14.39% 0.080 16.14% 0.094 36.59% 0.102 48.12%
Ground Vehicles 0.176 0.291 9.23% 0.214 21.52% 0.226 28.44% 0.233 32.73%
Hand 0.090 0.096 6.67% 0.103 13.97% 0.110 22.25% 0.120 32.92%
Helicopter Hovering 0.014 0.019 38.90% 0.017 22.48% 0.025 83.44% 0.030 116.81%
Indoor 0.168 0.178 5.70% 0.183 8.42% 0.194 14.92% 0.206 22.41%
Indoor Sports Venue 0.435 0.460 5.64% 0.494 13.37% 0.530 21.72% 0.552 26.73%
Infants 0.033 0.041 24.16% 0.039 16.53% 0.048 44.68% 0.050 51.26%
Instrumental Musician 0.163 0.172 5.71% 0.188 15.74% 0.203 24.78% 0.222 36.14%
Landscape 0.277 0.291 4.87% 0.303 9.15% 0.321 15.73% 0.330 19.07%
Male Person 0.118 0.125 5.83% 0.125 5.93% 0.136 14.97% 0.147 24.40%
Military Base 0.048 0.052 7.06% 0.050 4.63% 0.054 12.02% 0.055 14.71%
Mountain 0.371 0.390 5.26% 0.400 7.99% 0.440 18.66% 0.446 20.38%
News Studio 0.545 0.572 4.95% 0.564 3.49% 0.592 8.62% 0.617 13.30%
Nighttime 0.232 0.234 0.86% 0.280 20.64% 0.284 22.20% 0.308 32.55%
Old People 0.113 0.117 3.13% 0.130 14.35% 0.133 17.30% 0.149 31.39%
Plant 0.188 0.201 7.01% 0.206 9.45% 0.222 18.40% 0.232 23.38%
Road 0.352 0.381 8.33% 0.371 5.62% 0.398 13.05% 0.411 16.99%
Running 0.093 0.104 12.19% 0.110 19.08% 0.123 32.55% 0.135 45.89%
Scene Text 0.081 0.099 22.01% 0.095 16.70% 0.118 44.90% 0.122 49.90%
Singing 0.133 0.137 3.12% 0.151 13.51% 0.156 17.11% 0.160 20.37%
Sitting Down 0.102 0.108 6.10% 0.109 7.12% 0.115 12.67% 0.127 24.34%
Stadium 0.098 0.114 16.12% 0.111 12.91% 0.129 31.77% 0.134 36.62%
Swimming 0.364 0.398 9.33% 0.390 7.12% 0.428 17.61% 0.434 19.17%
Telephones 0.066 0.081 23.06% 0.074 12.46% 0.093 41.49% 0.100 51.50%
Throwing 0.100 0.103 3.00% 0.109 8.20% 0.112 11.91% 0.118 17.62%
Vehicle 0.131 0.152 16.13% 0.142 8.28% 0.169 29.36% 0.184 40.95%
Walking 0.171 0.186 8.48% 0.190 11.06% 0.203 18.33% 0.219 27.76%
Walking Running 0.154 0.163 5.30% 0.167 8.20% 0.176 13.94% 0.189 22.07%
Waterscape 0.370 0.404 9.05% 0.444 19.76% 0.479 29.18% 0.488 31.81%
MAP 0.165 0.180 8.92% 0.182 10.54% 0.198 20.30% 0.208 26.27%
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Table II. T-test on the significance of the performance improvement by proposed approaches.
Paired difference Sig.

Approach Pair Mean Std. deviation Std. Error Mean 95% Confidence Interval t df (2-tailed)
IBoW - Bow 0.0146 0.0104 0.0015 [0.0116, 0.0175] 9.914 49 0.000
HE - BoW 0.0173 0.0141 0.0020 [0.0133, 0.0213] 8.671 49 0.000
HE+IBoW - BoW 0.0332 0.0220 0.0031 [0.0269, 0.0394] 10.66 49 0.000

then integrated into our approach to further alleviate the mismatch problem caused by SIFT quanti-
zation.

Compared to traditional BoW approach, IBoW and Hamming embedding kernel improves the MAP
by 8.92% and 10.54% respectively. More importantly, the improvements are consistent for different
concepts. By employing the proposed intra-cell distance measure with higher precision, the Hamming
embedding kernel shows to be better at discriminating different classes, and this benefits the detec-
tion of all concepts. By further integrating IBoW into Hamming embedding kernel (HE+IBoW), an
improvement of 20.30% on MAP is achieved compared with the traditional BoW approach. Significant
improvement can be observed for concepts Boat Ship (35.24%), Bicycling (32.68%), Car (31%), Flowers
(36.59%), Helicopter Hovering (83.44%), Scene Text (44.90%) and Telephones (41.49%).

We also combine our approach with soft weighting where one descriptor is assigned to 3 nearest
visual words [Jiang and Ngo 2008]. As can be seen in Table I, an improvement of 26.27% is achieved
compared with the traditional BoW approach. Soft weighting solves the ambiguity problem when as-
signing similar descriptors to different Voronoi cells, while our approach addresses the difference be-
tween descriptors in the same cell due to the information loss. Our experiments show that these two
approaches can complement each other for better BoW representation. Considering that only BoW fea-
ture is employed, the overall MAP (0.208) is quite encouraging and competitive. In Table II, we perform
paired-samples t-test with IBM SPSS (Statistical Product and Service Solutions) software to validate
the significance of the performance improvement by employing the proposed approaches. As can be
seen in Table II, by comparing the difference between three approaches (IBoW, HE, and HE + IBoW)
and traditional BoW, the P− values (Sig.) are close to 0, which indicate that both Hamming embedding
kernel and IBoW can significantly improve the performance of semantic indexing.

In Figure 6, we experiment the effects of various vocabulary sizes on the performance of our ap-
proaches. As discussed in Section 2.1, a large vocabulary can somewhat alleviate the information loss
problem. However, it will cause more mismatch problems by assigning similar keypoints to different
visual words and the performance will be reduced significantly when the vocabulary gets too large.
Thus, as can be seen in Figure 6, no apparent relationship between vocabulary size and detection ac-
curacy is observed. For different vocabulary sizes, both Hamming embedding kernel and IBoW improve
the performances significantly. Even for a large vocabulary (e.g. with 50000 visual words), Hamming
embedding is necessary since each Voronoi cell is still extremely huge by quantizing a 128-dimension
space into 50000 or more words.

Table III shows the performances when different lb values (i.e. the length of the binary signature) are
used in Hamming embedding. According to [Charikar 2002; Sibiryakov 2009], the accuracy of similar-
ity estimation can be increased by using more projection vectors or longer binary signatures. Basically,
larger lb value results in more precise representation of the location information in Voronoi cells and
distance measure between keypoints. As can be seen in Table III, the performance gets better when lb
increases. The improvement becomes insignificant when lb ≥ 32. Thus, in our implementation, we set
lb = 32. This is equivalent to segmenting each Voronoi cell into 232 sub-cells, which is precise enough
to distinguish different keypoints. Furthermore, larger lb value results in longer binary signatures for
keypoints, which take more space to store the feature vectors.
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Fig. 6. Performances of different approaches with various vocabulary sizes.

Table III. Determination of parameter lb in Hamming embedding.
lb 0 8 16 32 64
MAP 0.165 0.170 0.179 0.181 0.181

For the efficiency issue, Table IV presents the time cost for classifier training and testing with dif-
ferent approaches. The experiment is carried out on IACC.1 dataset and a visual vocabulary of 1000
words is used. A workstation with 4 CPUs, 32GB memory and 8TB hard drive is used for computa-
tion. For IBoW, extra computation is needed to weight the informativeness of visual words in training
stage compared with traditional BoW approach. The complexity of this algorithm is O(N2) where N
is the number of samples. This procedure could be further speeded up by employing stepwise instead
of continuous-value weights for visual words. The time for classification procedure is not significantly
increased (except that some additional multiplication operators are inserted in the kernel function).
For Hamming embedding kernel, extra time is spent on the matching between keypoint sets with Hun-
garian algorithm. The complexity of this algorithm is O(n3) with n being the number of points in the
cell. In each image, there are usually hundreds of keypoints in total. Thus, in most cases, only few or
at most tens of keypoints are mapped to the same visual word. The worst case (i.e. many points from
both images are assigned to the same cell) is seldom encountered. To alleviate the computation load,
in our implementation, we use the pre-computed kernel matrix for training so as to avoid repeating
the computation in multiple iterations. Besides Hungarian algorithm, some approximation algorithms
such as the greedy algorithm could be used to find sub-optimal matching between keypoint sets to
speed up this procedure. Overall, although the time cost with HE kernel and IBoW is nearly doubled
compared with traditional BoW approach, it is still affordable for semantic indexing even on a large
dataset.

Table IV. Total training and testing time (hours) with different approaches.
Approaches BoW IBoW HE HE + IBoW HE + IBoW +Soft
Traing 231.4 304.5 360.2 447.6 586.5
Testing 48.4 51.9 75.1 81.8 107.7

To further validate the effectiveness of our proposed approaches, we employ the Hamming embed-
ding kernel and IBoW in TRECVID 2012 Semantic Indexing Task (light submission). In total, 50 con-
cepts are detected and 15 of them are selected by TRECVID for evaluation [Quenot and Awad 2012].
Figure 7 shows the evaluation results of our submissions [Wang, F. et al. 2012]. Among the four sub-
mitted runs, color, texture, audio and traditional BoW features are fused as the baseline. Hamming
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embedding kernel, IBoW, and Soft Weighting are then incorporated into SVM classification for com-
parison.
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Fig. 7. System performance by employing HE kernel and IBoW in TRECVID 2012 SIN Task Evaluation.

As can be seen in Figure 7, compared with the baseline, Hamming embedding improves the MAP by
14.80%. Among all the evaluated concepts, significant improvement can be observed for the concepts
Airplane Flying (20.0%), Bicycling (38.5%), Boat Ship (23.9%), Computers (46.4%), Nighttime (36.4%)
and Instrumental Musician (29.4%). By further incorporating soft weighting, another 4.65% improve-
ment is achieved. This improvement is basically consistent with the results reported in [Jiang and
Ngo 2008]. Lastly, by employing IBoW, an improvement of 6.26% is gained. Among all concepts, sig-
nificant improvements are achieved for Airplane Flying (49.1%), Computers (11%), Boat Ship (8.9%),
and Nighttime (8.5%). Noting that the proposed approach is compared with the whole system (instead
of only BoW based approach), this improvement could be considered significant.

6. CONCLUSION

We have presented a novel Hamming Embedding Kernel with Informative Bag-of-Visual-Words by
addressing two problems existing in traditional Bag-of-Visual-Words approach for semantic indexing.
First, by employing Hamming embedding to encode the location information of each descriptor inside
the Voronoi cell, our proposed approach measures the distance between samples with higher precision
and thus is better at discriminating different classes. Our experiments show that this consistently
and significantly improves the performances of concept detection. Furthermore, we also demonstrate
that the Hamming embedding kernel and the widely-used soft weighting approach are actually com-
plementary to each other to achieve better BoW representations. Second, by weighting the informativ-
ness of each visual word for detecting a given concept, the Informative Bag-of-Visual-Words capture
the concept-specific visual information, which proves to be important in SVM classification. In our
approach, the weighting of visual words is treated as a kernel optimization problem. This directly con-
nects the weighting procedure and the discriminative abilities of SVM kernels. Compared with other
weighting approaches, our algorithm shows to be more effective in capturing the concept-specific visual
information and significantly improves the classification accuracy. For future work, we will extend the
proposed approaches to other applications such as image categorization and video event detection.
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