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Fast Covariant VLAD for Image Search
Wan-Lei Zhao, Chong-Wah Ngo, and Hanzi Wang, Senior Member, IEEE

Abstract—Vector of locally aggregated descriptor (VLAD) is a
popular image encoding approach for its simplicity and better
scalability over conventional bag-of-visual-word approach. In
order to enhance its distinctiveness and geometric invariance,
covariant VLAD (CVLAD) is proposed to pool local features
based on their dominant orientations/characteristic scales, which
leads to a geometric-aware representation. This representation
achieves rotation/scale invariance when being associated with
circular matching. However, the circular matching induces several
times of computation overhead, which makes CVLAD hardly
suitable for large-scale retrieval tasks. In this paper, the issue
of computation overhead is alleviated by performing the circular
matching in CVLAD’s frequency domain. In addition, by operating
PCA on CVLAD in its frequency domain, much better scalability
is achieved than when it is undertaken in the original feature
space. Furthermore, the high-dimensional CVLAD subvectors are
converted to dozens of very low-dimensional subvectors, which
is possible when transforming the feature into its frequency
domain. Nearest neighbor search is therefore undertaken on very
low-dimensional subspaces, which becomes easily tractable. The
effectiveness of our approach is demonstrated in the retrieval
scenario on popular benchmarks comprising up to 1 million
database images.

Index Terms—Circular matching, covariant pooling, covariant
vector of locally aggregated descriptor (CVLAD), similar image
search.

I. INTRODUCTION

A S the bandwidth accessible to average users is increasing,
multimedia data, in particular images and videos, become

the fastest growing data type in Internet. Especially with the
popularity of social media, there has been exponential growth
in images and videos available on the Web. Among these huge
volumes of images and videos, there exist large amount of sim-
ilar images or exact copies [1]. The need of instant search for
these similar contents arises from several contexts such as copy-
right reinfringement detection [2], e-commerce and land-mark
identification [3]. In addition, similar image/video search also
plays very important role in data-driven image/video annota-
tion [4]–[6].
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Thanks to the introduction of discriminative image local fea-
tures such as SIFT [7] and SURF [8], large scale image retrieval
has witnessed a sequel of breakthroughs in the last decade. Bag-
of-words (BoW) framework [9], [10] is popularly adopted for
quantizing local features extracted from images into vectors of
visual words for image search. Large size vocabulary is trained
for quantization, while inverted file [11], [12] is employed to
index visual words for efficient image similarity comparison.
Due to the side effect of quantization, two types of typical er-
rors, namely mismatch and false match of visual words, will be
introduced during comparison.

Several attempts have been made to improve the performance
of BoW [13]–[17], mostly focusing on pruning false matches
of visual word by post-processing such as visual [13], [17], ge-
ometric [13]–[15] verifications or query expansion [16], [17].
However, post-processing results in heavy burden of large mem-
ory requirement when scaling up the size of reference set to bil-
lions of images. For instance, BoW representation alone could
occupy around 6G bytes of memory for one million images.
If Hamming embedding signatures [13] for post-processing is
further incorporated, the memory consumption increases to 18G
bytes.

By using different feature encoding schemes than vector
quantization, better performance in scalability has been re-
ported recently. Representative approaches include the Fisher
Vector [18]–[20], VLAD [21] and its variants such as VLAT [22]
and VLAD⊗ [23], [24]. VLAD can be viewed as a simplified
representation of Fisher vector [21]. The basic idea of these
approaches is to aggregate local features of an image into a
lengthy dense vector followed by dimensionality reduction. By
doing so, each feature can be compressed into few dozens of
bytes, scaling up efficient search to few hundred millions of
images. In addition to retrieval, superior performance is also
reported in [20] for visual object classification.

The advantages of aforementioned approaches over BoW
are three folds. First, relatively small vocabulary is required,
which significantly cuts short the time for quantization. Second,
the generated features are compatible with tools such as linear
SVM [18] and PCA [21], as Fisher kernel is built upon genera-
tive model [25]. Finally, these approaches transform a variable
size of features into a fixed length vector. This is especially in-
teresting when local features are densely extracted to achieve
better coverage over image content. In contrast, dense feature is
hardly compatible with BoW in image retrieval as the inverted
files become no longer efficient for dense BoW vector.

In brief, Fisher Vector approaches aggregate image local fea-
tures into different visual words. When comparing two images,
features aggregated into the same visual word are compared.
As revealed in [26], [27], this amounts to cross-matching fea-
tures from two images that are quantized into the same visual
word. It is therefore imaginable that correct feature matches

1520-9210 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

http://www.ieee.org/publications_standards/publications/rights/index.html


1844 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 18, NO. 9, SEPTEMBER 2016

are mixed with large amount of false matches since visual or
geometric verification as [13] are no longer applicable. Recent
approaches [23], [24], [28]–[30] intend to incorporate orienta-
tion coherence constraint to reduce undesired feature matches.
In these works, the dominant orientation/characteristic scale
is treated as a pooling variable to reduce irrelevant matches.
In [28], [29], the dominant orientation of feature points has been
quantized on different granularity at the feature representation
stage. To achieve rotation/scale invariance, during the matching,
the optimization procedure in the classifier searches for the best
match between features pooled across different orientation bins.
Similarly in [30], the proposed covariant VLAD (or CVLAD)
achieves rotation/scale invariance by allowing features that are
pooled into different orientation/scale bins to be best matched.

This paper aims at addressing the scalability issue that most
of current image/video retrieval systems face. The main contri-
bution of this paper is on improving CVLAD in terms of feature
robustness, scalability and generation speed. First, CVLAD [30]
is sped up by carrying out circular matching directly in the fre-
quency domain than its original feature space. Second, by oper-
ating in frequency domain, PCA can be more effectively applied
to Discrete Cosine Transformed (DCT) feature than in the orig-
inal feature space. Third, CVLAD in frequency domain can
be readily converted into a series of sub-vectors in very low-
dimensional space. This property is appealing because large-
scale nearest neighbor search (NNS) become easily tractable on
low dimensional data. Furthermore, parallel computing frame-
work, such as Mapreduce [31], can be employed to distributedly
process these sub-vectors for large-scale retrieval.

The remaining of the paper is organized as follows. Section II
reviews state-of-the-art works in image search. Section III gives
a brief overview about VLAD* [32] and CVLAD [30], serving
as a basis for discussions in later sections. Section IV presents
the efficient operation of circular matching in frequency domain,
and more effective way of applying PCA on the transformed
features. Section V further details feature indexing with product
quantizer (PQ) [33], the state-of-the-art data structure for NNS.
Finally, Section VI presents intensive experiments to validate
the improvements on several benchmark datasets.

II. RELATED WORK

Global image signatures are known to be less tolerant to ge-
ometric and photometric transformations. Local features such
as SIFT [7] and SURF [8], which are robust to various content
changes such as rotation, scaling and even occlusion and back-
ground clutter, are demonstrated to be well-suitable for visual
matching. To speed up matching between local features of two
images, BoW [9], [13] is popularly adopted for feature repre-
sentation despite heavy consumption of memory space. BoW
takes more than 1K bytes to represent a medium-size image,
and is therefore hardly scalable to image set of more than few
millions. Several attempts have been made to reduce the mem-
ory consumption [34], [35], whereas it is still hard to achieve a
good trade-off between search quality and memory cost.

Apart from BoW approach, recent works [18]–[20], [36]
propose more concise but still discriminative representation,
namely Fisher Kernel approach. In this approach, each vi-

sual word is represented by a GMM (Gaussian mixture model)
component. The set of features (e.g., SIFT or SURF), denoted
as X , from an image are characterized by the following gradient
vector:

�log p(X|λ) (1)

where X = [x1 ,x2 , . . . ,xn ] has n feature points and λ is the
parameter set characterizing GMM. Typically, this gradient vec-
tor can be divided into three sub-vectors by its parameter types:
weight (wi), mean (ci) and variance (σi) (i = 1· · ·k), where k
is the number of Gaussians or visual words. For instance, given
γt(i) as the soft assignment of descriptor xt to ith Gaussian,
the gradient on ci is given as

∂L(X|λ)
∂cd

i

=
1

n
√

wi

n∑

t=1

γt(i)
xt − ci

σi
(2)

where d is the dimension of feature xt . In the complete Fisher
Kernel approach, three sub-vectors defined on wi , ci and σi are
concatenated as the feature representation.

Interestingly, VLAD [36] is shown to achieve similar or even
better performance [21], despite being a simplified version of
(2) as following:

∂L(X|λ)
∂cd

i

≈
∑

x∈X :q(x)=ci

x − ci (3)

where q(x) is a vector quantizer. The advantage of VLAD over
Fisher vector is that it leads to more compact encoding on feature
set X . PCA and the compression-based indexing structure [33]
jointly reduce the feature dimension further, such that VLAD
requires at least one order of magnitude lower memory than
that of BoW, while achieving even better search quality. Several
pre-processing and post-processing steps [32], [37], [38] have
been recently proposed to boost the performance.

Due to its superior performance, VLAD encoding scheme
has also been applied on sub-image level, which allows fast
object search/classification and localization [27], [39]. Particu-
larly, in [27] sub-vector of VLAD is further quantized to support
efficient dot products calculation between VLAD vectors. Alter-
natively, the matching of sub-image level pooled VLAD can also
be sped-up by the branch-and-bound search framework [40]. In
our paper, the focus is on the enhancement of the scalability
of VLAD encoding scheme and the design of suitable indexing
structure for large-scale search task. The schemes proposed in
this paper could be complementary for visual instance search in
large-scale.

As a new trend, similar image search has been addressed
recently by using features trained with convolutional net-
works (ConvNets) [41], [42]. An image is encoded by a high-
dimensional (e.g., 256 dimensions) vector which is extracted
from the deep layer of ConvNets. These approaches demon-
strate very promising results on several evaluation benchmarks.
The focus of these works is on the design of distinctive features.
While the NNS indexing on this well-designed feature, which is
another indispensable part of an image search system, remains
unaddressed.

In this paper, the problems of feature representation and in-
dexing in large-scale are jointly addressed. Firstly, CVLAD [30]
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is sped-up by performing circular matching in its frequency do-
main. Moreover, taking the advantage of the special structure
of DCT transformed CVLAD, the NNS indexing is operated on
very low-dimensional sub-vectors, which leads to high scalabil-
ity for the proposed fast CVLAD.

III. BACKGROUND: VLAD* AND COVARIANT VLAD

This section starts with a brief review of VLAD* [32]
and CVLAD [30], which serves as a basis for subsequent
Sections IV and V. The schemes introduced by VLAD* will
be fully incorporated into the design of CVLAD.

A. VLAD* Baseline

VLAD* is proposed in [32] mainly for addressing the bursti-
ness issue in VLAD. The proposal includes several pre and post
processing operations as following.

1) RootSIFT, which performs square-rooting on the the (pos-
itive) components of the SIFT feature, is adopted for its
superior performance in retrieval [43].

2) �2-normalization on the residue before feature aggrega-
tion, i.e., (3) is rewritten as

vi =
∑

x∈X :q(x)=ci

x − ci

‖x − ci‖2
. (4)

Note that �2-normalization is not originally proposed
in [32]. We employ the normalization in this paper for
it leads to better performance.

3) Power-law normalization is applied to scale vi as

vi,j := sign(vi,j )×|vi,j |α (5)

where α is a constant in the range of (0, 1], which is fixed
to 0.2 in all our experiments. The normalization is shown
to be particularly effective in reducing the negative effect
of visual bursts [21].

4) PCA is employed for rotating feature descriptor prior to
feature aggregation. Note that dimensionality reduction
could be detrimental and thus is not performed during
feature rotation.

Other schemes that aim to boost the performance of VLAD
have also been proposed, such as using multiple vocabularies
to reduce the quantization noise [44] or introducing a per-cell
normalization strategy instead of power-law [37]. We do not
consider these complementary schemes in the paper, although
we mention that they cover other aspects of VLAD and should
be complementary with the approach introduced in our paper.

B. Covariant VLAD

Measuring similarity between two VLADs is comparable to
a series of cross-matching between two sets of aggregated fea-
tures [26]. As features with different dominant orientation are
aggregated together, estimation of geometric transformation be-
tween two features becomes impossible. As a result, these glob-
alized features introduce either too much invariance when using
orientation-invariant or scale-invariant features, or there is no
invariance if non-oriented features are densely extracted. This

is in contrast with matching techniques such as weak geometric
constraint (WGC) [13], which incorporates feature-point-level
geometrical information.

Covariant VLAD (CVLAD) [30] was proposed to address
this problem by pooling features according to their characteristic
geometrical quantities. The quantities are characteristic scales
and dominant orientations [7] which are obtained as byproducts
of the feature extraction.

Take pooling on dominant orientation as an example, given
θ as the dominant orientation associated with a given feature x,
and let

bB (θ) =
⌊
B

θ

2π

⌋
(6)

be the quantization function used to quantize angles with B
equally sized bins. The pooling strategy modifies (3) as

pb,i =
∑

x∈X :q(x)=ci ∧bB (θ)=b

x − ci . (7)

In (7), the pooling of the feature x is controlled by both its
quantization index q(x) and its quantized dominant orientation
bB (θ). The resulting CVLAD, P = [p1 , . . . ,pB ] can be viewed
as a concatenation of B numbers of VLAD vectors. Each sub-
vector encodes the features having the same quantized dominant
orientation, producing a vector B times longer. VLAD* is incor-
porated here by performing the series of pre and post processing
on each of the sub-vector separately. Pooling on characteristic
scale can be performed similarly. However, as reported in [28],
[30], [45], the performance is not as effective as pooling on
orientation, and therefore is not considered in this paper.

C. Naive Circular Matching

The similarity S(·, ·) between two CVLAD vectors P and Q
is defined on the basis of VLAD* sub-vectors as

S(P,Q) = max
Δt∈0...B−1

B−1∑

t=0

{pt ,qmod (t+Δt,B )}. (8)

Equation (8) amounts to selecting the orientation maximizing
the similarity between the two vectors. This process is com-
parable to estimating the dominant rotation transformation be-
tween two feature sets in WGC [46]. The major difference is
that CVLAD performs the estimation on aggregated vectors
rather than on histograms of dominant orientations. Note that
the method also allows us to restrict the comparison to a subset
of possible rotations. Fig. 1(a) visualizes this matching process.
Compared to VLAD*, circular matching incurs more computa-
tional overhead depending on the number of quantization bins
B. As depicted in Fig. 1(b), the CVLAD descriptor Q circularly
shifts for eight times to search for the best match, implying eight
times overhead in computation.

Circular matching also gives rise to two possible ways of
applying PCA, either holistically to the CVLAD vector or par-
tially to its sub-vectors. The former has the deficiency that the
resulting rotation might not be optimal, as features pooled from
different orientation bins will jam into each other. For the lat-
ter, applying PCA separately to each sub-vector is not possible,
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Fig. 1. Illustration of naive circular matching between two CVLAD vectors.
The given vector on the upper side is fixed to its position, while the vector on the
lower side shifts one sub-vector forward each time to search for the best match
between two CVLAD vectors. Circular matching in (a) can be interpreted as 1D
correlation on sub-vector level as shown in (b).

because sub-vectors of different orientation is not comparable
after the projection. Instead, a universal PCA mapping has to be
trained for all the sub-vectors in different orientations. Although
feasible, the solution is also sub-optimal as the structure latent
in each orientation will be diluted by the universal mapping. In
the next section, we will show that performing PCA directly on
the frequency domain is a more realistic solution.

IV. FAST COVARIANT VLAD: CVLAD+

A. Transform CVLAD Into Frequency Domain

As discussed in Section III, the CVLAD vector is a con-
catenation of VLAD* sub-vectors. Since the similarity for
CVLAD is defined on sub-vector basis, to facilitate our dis-
cussion, CVLAD vector is viewed as a B ×n matrix, viz
P = [p1 , . . . ,pi , . . . ,pB ]T ∈ RB×n , where n is the dimen-
sion of sub-vector pi . In order to find the best match be-
tween two CVLAD vectors, (8) performs a circular match-
ing. This circular matching is nothing more than correlation
that is undertaken between two series of vectors. Based on the
relation between convolution and correlation [47], given that
two CVLAD vectors P,Q ∈ RB×n and their column notations
P = [PT

(:,1) , . . . , P
T
(:,n) ]

T and Q = [QT
(:,1) , . . . , Q

T
(:,n) ]

T , (8) is
rewritten as cyclic convolution form [48], [49]

S(P,Q) = max[s1 , . . . , sB ]

where [s1 , . . . , sB ] =
n∑

i=1

P(:,i)�Q(:,i) . (9)

� is the cyclic convolution operator.
In one round of correlation [illustrated in Fig. 1(b)], Q(:,i)

shifts one dimension forward each time and repeats B times,
which results in a vector of B dimensions.

According to [49], cyclic convolution between two vectors of
equal length can be converted to element wise multiplication if
P(:,i) and Q(:,i) have been transformed into frequency domain.
Before the transformation, CVLAD vector (consists of B sub-
vectors) is reorganized into n sub-vectors [Step 1 in Fig. 2(a)].
This amounts to transposing P and Q. DCT or Discrete Fourier
Transform (DFT) is performed on each of these B-dimensional
sub-vectors. The resulting vector is composed of n numbers of

B-dimensional sub-vectors. This process is visualized as Step 1
and 2 in Fig. 2(a). CVLAD after DCT/DFT is updated to a new
name: CVLAD+ .

As will be seen in Section VI-B, the performance of DCT-
transformed CVLAD is close to the performance of DFT-
transformed CVLAD. Employing DCT instead of DFT is due
to the consideration of computational cost and convenience. In
DFT, keeping complex vectors and performing Hermitian prod-
uct will basically double the overall cost of speed and space
for similarity computation. Furthermore, only adhoc solution
available to index complex vector with product quantizer [48],
in which a d-dimensional complex vector is treated as 2d-
dimensional real vector. In constrast, the use of DCT could
avoid such complexity. Moreover, DCT actually causes no in-
formation loss during the transformation [50]. For convenience,
only DCT is referred in the following discussion. However, to
the same context, DFT fits as well.

After the transformation, naive circular matching in (8) is
rewritten as element wise multiplication in the frequency do-
main

S(P,Q) = max[s1 , . . . , sB ]

where [s1 , . . . , sB ] =
n∑

i=1

T −1(T (P(:,i))	T (Q(:,i))). (10)

T (·) and T −1(·) in (10) are 1D DCT and inverse DCT re-
spectively. 	 performs element wise multiplication between
T (P(:,i)) and T (Q(:,i)). Due to the linearity of Fourier oper-
ator, (10) is rewritten as following such that only one inverse
operation is required

S(P,Q) = max

(
T −1

(
n∑

i=1

P(:,i)	Q(:,i)

))

where P(:,i) = T (P(:,i)),Q(:,i) = T (Q(:,i)),P,Q ∈ RB×n .
(11)

Given {P(j,:)}j=1···B and {Q(j,:)}j=1···B are the row nota-
tions of P and Q respectively after DCT, (11) actually performs
inner-product between P(j,:) and Q(j,:) . As a result, above equa-
tion is rewritten as

S(P,Q) = max(T −1({P(j,:) ,Q(j,:)}j=1···B )). (12)

In (12), max(·) operator is on B scalar values, which are the
result of inner products on B pairs of sub-vectors. Comparing
(12) to (8), no sub-vector shifting is required. As a result, the
computation overhead due to B times shifting has been allevi-
ated. However, one sub-vector P(j,:) is still in several thousand
dimensions, when doing NSS, the dimensional complexity is
still very high even after dimension reduction. To address this
issue, we propose an alternative similarity measure between P
and Q, which performs inner-product directly between P(:,i)
and Q(:,i) . In addition, the max(·) operator is replaced by Σ·.
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Fig. 2. Illustration on the flow of transforming CVLAD to CVLAD+ . (a) shows the general steps for the transformation. Step 1 and Step 2 transform CVLAD
to CVLAD+ by DCT, while Steps 3–5 perform PCA mapping on CVLAD+ . (b) details the regroup operation of Step 3 in (a). Signals from the same frequency
are regrouped into one sub-vector. For the sake of clarity, we use four pooling orientations, while in practice, eight orientations are used.

This new similarity measure is given in (13)

Ŝ(P,Q) =
n∑

i=1

{P(:,i) ,Q(:,i)}

where P,Q ∈ RB×n . (13)

As one can see, the similarity score in (13) is defined in the
frequency domain. Basically, the inner-product in (13) measures
how similar the energy distributions of two signals are across
different frequencies. Although Ŝ(P,Q) returns different simi-
larity score from (12), it is sufficient for retrieval task as long as
the rankings produced by them are similar. Notice that the full
rotation invariance that is held by (12) is undermined in (13).
However, as emprically revealed later, (13) still shows satisfac-
tory performance as the rotation transformation is in presence.
Although (12) and (13) involve the same number of operations,
the latter leads to much lower dimensional complexity in view-
ing the fact that B 
n.

Notice that when measuring similarity between CVLAD+ s
in their frequency domain, the comparison between two high-
dimensional vectors is converted to a series of comparisons
between pairs of low-dimensional vectors. With such a low di-
mensionality, the NNS search problem becomes easily tractable.
Furthermore, NNS can be potentially undertaken in parallel as
the similarity score in (13) is the summation of hundreds of
inner-products.

B. PCA on CVLAD+

After transforming CVLAD to its frequency domain, the
computation overhead have been largely alleviated. However,
the memory complexity remains considerably high considering
that CVLAD+ is a high dimensional vector. For this reason, the
dimension reduction is still necessary.

An intuitive way of doing this in frequency domain is by
applying PCA to each P(:,i) and Q(:,i) in (13). Nevertheless,
the effect will not be prominent, given that P(:,i) comprises
B elements from different frequencies. Instead, we re-group the

vector elements such that PCA is applied to vectors composed of
elements from the same frequency. Concretely, PCA is applied
on column vector P(j,:) of DCT transformed P . Accordingly,
given column vector P(j,:) has been projected from n to q di-
mensions, (12) is re-written as

S(P, Q) = max
(
T −1 ({PCA(P(j, :) ), PCA(Q(j, :) )}j=1 ···B )

)
(14)

which performs inner products B times between two series of
sub-vectors from P and Q. Note that (14) and (12) are equivalent
if PCA is not considered. Similarly, (13) remains largely the
same except that the inner products are conducted on q instead
of n numbers of sub-vectors.

Discussion: While implementing circular matching in fre-
quency domain is straightforward, the careful design of
CVLAD+ enables two missing peculiarities in other variants
of VLAD. First, PCA is performed in the frequency domain,
and keeps the significant components of each frequency chan-
nel individually, regardless of whether a channel is in high or
low frequency. This design is in contrast to conventional way
of compression that simply strips away high frequency com-
ponents. Second, a fundamental difference from other variants
of VLAD is that CVLAD+ has B different PCA mapping ma-
trices each for a frequency channel (versus one matrix only in
CVLAD), ensuring that the structures latent in each orientation
bin could be fully explored by PCA. In short, CVLAD+ has
additional plus over CVLAD in the way that special design is
taken into account such that PCA can be suitably implemented
and fully exploited. This design is critically significant in turn-
ing CVLAD+ a highly scalable feature than CVLAD as will be
empirically shown in the experimental section.

V. INDEXING CVLAD+ WITH PRODUCT QUANTIZER

In the large-scale image search task, to deploy the features like
VLAD and CVLAD+ , which are dense and in high dimension,
it is necessary to employ the multi-dimensional NNS structure
for indexing. There are several off-the-shelf techniques, such as
ANN [51], E2LSH [52], FLANN [53] and product quantizer
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Fig. 3. NNS performance of PQ on 8-dimensional and 128-dimensional data
of 1 million. The IVFPQ for both is constructed by using 8192 coarse quantizers
and 256 product quantizers. The performances of considering the first nearest
coarse quantizer (w = 1) and of considering top-16 nearest coarse quantizers
(w = 16) are presented. Following the convention in [33], the recalls at top-τ
(τ = 1, 10, 50, 100) of NNS results are studied.

(PQ) [33], that could be employed for indexing CVLAD+ . This
paper adopts PQ for its simplicity and superior performance
in retrieval. In PQ, a vector is encoded by multiple product
quantizers in lower dimensional space. Note that PQ is lossy
and indexing subjects to an error function as following. Let
D be the dimension of a vector, m and k be the number and
vocabulary size of product-quantizer respectively, the error ε
induced by PQ is bounded by

ε ∝ D

m·k . (15)

Usually k is set to few hundreds (typically k = 256) to trade-
off between NNS quality and efficiency in memory and speed.
As seen in (15), if the value of k is fixed, the lower the ratio
D/m, the smaller the error will be. However, in order to achieve
high memory efficiency, m cannot be set to arbitrarily large,
which corresponds to the number of bytes to encode a vector.
As a result, similar to other indexing structures, PQ also shows
better performance on low-dimensional data than that of high-
dimensional cases, as k and m are fixed to certain range.

Fig. 3 verifies our analysis by showing NSS on SIFT1M
dataset [33]. One million of vectors are used for testing the
performance difference when the vectors are in 8 and 128 di-
mensions. As shown in the figure, when all other parameters
are fixed, PQ demonstrates much better performance on low-
dimensional data.

Based on above analysis, similarity measure introduced in
(13) is favored over (14) since the inner-product is performed
between B-dimensional sub-vectors in (13). This is in contrast to
(14), which performs inner product between high dimensional
sub-vectors based on the fact B 
 q.

After PCA, CVLAD+ feature is composed of q num-
bers of sub-vector, i.e., U = {u1 , . . .,ui , . . .,uq} [as shown

TABLE I
STATISTICS ON THE FOUR EVALUATION DATASETS

Dataset Size Number of queries

Holidays [13] 1492 500
Paris [54] 6692 55
Oxford5K [12] 5063 55
Oxford105K [12] 105,063 55

TABLE II
PERFORMANCE (MAP) OF CVLAD ON HOLIDAYS,

OXFORD5K, AND PARIS DATASETS

Methods Holidays Oxford5K Paris

HesAff ODns HesAff ODns HesAff ODns

Fisher 66.0 73.9 33.0 28.7 38.7 34.0
VLAD* 70.6 75.2 41.5 42.6 44.1 43.5
CVLAD 78.6 82.3 49.6 55.0 52.1 52.1
CVLAD	+ 77.9 80.9 49.8 56.0 51.7 53.0
CVLAD�+ 79.3 83.2 48.9 55.4 50.9 52.3
CVLAD+ 74.7 77.9 49.5 55.2 51.7 53.6

in Fig. 2(a)]. According to (13), the similarity between two
CVLAD+ s are the aggregation of inner product between sub-
vectors. IVFADC for CVLAD+ is therefore built on sub-vector
level. In other words, IVFADC is constructed in each sub-vector
space for CVLAD+ . One can imagine that q numbers of IV-
FADCs are constructed in total. Given that a series of product
quantizers φi

j (j = 1· · ·m) are trained in sub-space i and d(., .) is
the l2 distance measure, the inner product [in (13)] between one
sub-vector vi from query and one sub-vector ui from reference
image is approximated as

{vi ,ui} ≈ 1 −
∑m

j=1 d2(vi
j , φ

i
j (u

i
j ))

2

where ‖vi‖2 = 1 and ‖ui‖2 = 1. (16)

As a result, the overall similarity between query and a refer-
ence image is the summation of q inner products between the
sub-vectors. Notice that the dimension of sub-vector ui is very
low (typically 8), according to the analysis presented above,
good approximation to the true similarity between vi and ui

is expected. The advantage of using (13) instead of (14) is not
only limited to its low dimension complexity but also makes
it possible to conduct the NNS in high parallel. As the query
with (16) is conducted on each sub-space independently, the
whole search process fits very well to the popular MapReduce
framework [31].

In the paper, PQ indexing is also adopted for Fisher vector and
VLAD*, which are to be compared with. In particular, asym-
metric distance computation (ADC) with the support of inverted
files (IVFADC) is adopted for all these features. Following com-
mon practice, IVFADC is applied on these features after they
have been undergone dimension reduction by PCA. As to Fisher
vector and VLAD*, only one IVFADC is constructed for each.
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Fig. 4. Effect of dimensionality reduction by PCA on mAP performance with ODns features. Similar performance trends are observed with HesAff features.
(a) Holidays. (b) Oxford5K. (c) Paris.

TABLE III
PERFORMANCE (MAP) OF CVLAD VARIANTS WHEN PCA IS APPLIED

TO COMPRESS THE FEATURE FROM 65, 536 TO 512 DIMENSIONS

Methods Holidays Oxford5K Paris

HesAff ODns HesAff ODns HesAff ODns

VLAD* 66.4 77.7 35.9 41.9 39.1 44.3
CVLAD 64.8 75.1 31.5 35.0 33.7 38.6
CVLAD	+ 64.1 73.2 33.9 40.8 34.6 36.9
CVLAD+ 65.1 72.2 35.4 44.7 39.8 44.7

VI. EXPERIMENTS

This section evaluates the performance of CVLAD+ on three
benchmark datasets, in comparison to several baselines and
state-of-the-art techniques. The empirical studies examine the
degree of performance fluctuations in response to dimension-
ality reduction, increase in database size, and the employment
of PQ.

A. Datasets and Evaluation Protocol

The evaluation is conducted on four datasets: Holidays [13],
Paris [54], Oxford5K [12] and Oxford105K [12]. Table I lists
the number of images and queries on each dataset. For scala-
bility test, the one million images in Flickr1M [55] are used as
distractors for the former three datasets. As for preprocessing,
each image is resized to 512 pixels on the longer side with-
out altering the aspect ratio. Two local features are employed:
Hessian-Affine (HesAff) [56] and Oriented-Dense (ODns). On
average, each image has 1519 features extracted by HesAff. The
sampling rate for ODns is one feature per five pixels along the x
and y directions.1 The sampling is conducted on one scale only.
The dominant orientation is estimated with the way proposed
in [7]. Both types of features are represented with RootSIFT de-
scriptors [43]. In the evaluation, all the Fisher approaches such

1The sampling rate in [30] is 7 pixels. The denser sampling rate and the
employment of (4) make the results of VLAD* and CVLAD in this paper
slightly better.

as Fisher Vector, VLAD*, CVLAD, CVLAD+ share the same
vocabulary for the same feature. The vocabularies are trained
on Flickr60K [13]. The vocabulary size is 64 and is fixed for all
the experiments. We adopt mAP (mean Average Precision) as
the evaluation measure.

B. Performance Comparison

We compare four different variants of CVLAD: CVLAD+

(13), CVLAD	+ (12), CVLAD�+ (12) and CVLAD [30], and
two baselines: VLAD* [32] and Fisher vector [19]. CVLAD	+

is the same as CVLAD�+ except that the former transforms
CVLAD with DCT, while the latter uses DFT. Note that PCA is
not applied for feature compression and PQ is not adopted for in-
dexing in this experiment. Same as [30], the pooling orientation
is set to 8. Table II summarizes the performances of these ap-
proaches on three datasets across two types of features. CVLAD
and its variants consistently outperform VLAD and Fisher vec-
tor. The performance of CVLAD	+ and CVLAD�+ is fairly
close to that of CVLAD, though not exactly the same. More
importantly, CVLAD+ , which derives matching score directly
in the frequency domain, only suffers slight performance drop.
On Paris dataset, the performances are even better than CVLAD
when using ODns for feature extraction. As discussed in [30],
dense sampling does not perform better than region detector
if the extracted features are aggregated with VLAD. However,
using CVLAD+ with a fairly tiny vocabulary size (64) achieves
result close to the best reported result in [46] on Holidays (mAP
= 81.3) which uses a large vocabulary of size 20 000 and region
detector.

In terms of speed efficiency, CVLAD is slower than
CVLAD+ and CVLAD	+ by about 7.5 times, based on
brute-force search on Holidays+Flickr1M dataset. CVLAD+

and CVLAD	+ , nevertheless, do not significantly differ in
speed. The ‘max’ operator in (12) is computationally cheaper
than

∑
· operation in (13), which compensates the time cost for

inverse DCT. As a result, calculating similarity for CVLAD	+

is as efficient as CVLAD+ . Due to costly Hermitian product
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Fig. 5. Scalability peformance when data size is increased to 1 million images. Note that all features (except BoW+HE) are compressed to 512 dimensions.
(a) Holidays+1M. (b) Oxford5K+1M. (c) Paris+1M.

on complex vectors, the retrieval cost of CVLAD�+ is tripled
over that of CVLAD	+ and CVLAD+ .

Next, we study the effect of PCA on CVLAD, CVLAD+ and
CVLAD	+ . Note that only one mapping matrix is learnt respec-
tively for VLAD* and CVLAD when applying PCA. In contrast,
there are 8 matrices being learnt for CVLAD+ and CVLAD	+ ,
where each corresponds to a sub-vector in the frequency domain.
The only difference between CVLAD+ and CVLAD	+ lies in
the similarity measure. Fig. 4 shows the performance differ-
ence, where CVLAD+ outperforms CVLAD with large margin
on two datasets. Taking ODns feature on Oxford5k as example,
CVLAD+ in 256 dimensions already exhibits better mAP than
CVLAD with 512 dimensions. We attribute the performance
gain of CVLAD+ to the way that features are organized such
that PCA can be separately applied on each subspace to achieve
the overall less information loss but with higher compression
rate. Note that the compression rate of VLAD* (e.g., from 8,
192 to 512 dimensions) is eight times lower than CVLAD and
CVLAD+ (from 8 × 8192 to 512 dimensions). When these fea-
tures are mapped to very low dimension, VLAD* shows better
performance. Until the compression reaches to certain ratio,
the performance of VLAD* is bypassed by other approaches.
For example, CVLAD+ outperforms VLAD* when dimen-
sion exceeds 256 and 512 respectively on Oxford5k and Paris
datasets. On Holidays dataset, the performance gap gets closer
with the increase of dimension between CVLAD+ and VLAD*.
Table III lists the detailed result when the feature is reduced to
512 dimensions.

C. Scalability Test

This section studies the change in mAP with respect to the in-
crease of dataset size from few thousands to one million images.
We compare the performance of CVLAD+ , CVLAD	+ with
CVLAD, VLAD* and Hamming Embedding (BoW+HE) [46].
For fairer comparison, CVLAD+ , CVLAD	+ , CVLAD and
VLAD* are all compressed to 512 dimensions, since their per-
formances are closer when d = 512 as observed in Fig. 5(a)–(c).
A visual vocabulary of size 65 K is learnt for BoW+HE, using

HesAff as feature extractor and RootSIFT as descriptors. No
indexing structure is used in the experiment.

Fig. 5 compares their mAPs across three datasets, where
Flickr1M images are gradually included as distractors. As the
data size increases, the mAPs of all approaches drop. The de-
gree of performance degradation is observed to be less severe
for CVLAD+ and CVLAD	+ compared to other approaches,
especially on Oxford5k+1M and Paris+1M datasets. The re-
sult clearly shows the advantage of applying PCA in frequency
domain, despite undergoing eight times higher compression
rate than VLAD*. Meanwhile, CVLAD+ demonstrates clearly
much better performance over CVLAD	+ on two datasets. This
indicates that inner-product defined on shorter sub-vector level
is able to reflect more minor differences between two vectors,
which is particularly helpful when feature loses its distinctive-
ness after PCA. With much higher dimension, BoW+HE ex-
hibits the best performance when data size is small. Similar to
VLAD*, nevertheless, BoW+HE degrades rapidly with larger
data size and performs significantly worse than CVLAD+ on
dataset with one million images.

Fig. 6 displays the similarity distribution of similar and dis-
similar image pairs from four different features. As shown
in the figure, the similarity distributions of similiar image
pairs are actually similar for different features. The advantage
of CVLAD	+ and CVLAD+ is that they make similarities
between the dissimilar images more concentrating to 0. This is
more apparent for CVLAD+ , which makes it more robust to
noises.

D. Feature Indexing

This section experiments the performance of CVLAD+ in
terms of retrieval precision and speed efficiency when PQ, more
specifically the indexing structure IVFADC, is employed. We
compare CVLAD+ against VLAD*, Fisher vector, BoW+HE
and BoW. IVFADC is also applied for VLAD* and Fisher vector.
While for BoW+HE and BoW, inverted index is used. Similar
to the previous experiment, CVLAD+ , VLAD* and Fisher are
compressed to 512 dimensions. For CVLAD+ , there are 64 IV-
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Fig. 6. Similarity distribution of similar (positive) and dissimilar (negative)
image pairs from VLAD*, CVLAD, CVLAD	+ , and CVLAD+ . Distances
are collected when retrievals on Holidays and Oxford5k are conducted with
100K distractors. Note that features are PCA mapped to 512 dimensions in this
experiment. (a) VLAD*. (b) CVLAD. (c) CVLAD	+ . (d) CVLAD+ .

FADCs constructed, each for a sub-vector of 8 dimensions.
While for VLAD* and Fisher, only one IVFADC structure
is built respectively. For these three approaches, the numbers
of coarse and PQ quantizers are set to 8192 and 256 respec-
tively. Note that the complexity of querying 64 8-dimensional
IVFADCs is almost identical to that of querying one 512-
dimensional IVFADC, since similar number of operations is
involved.

Fig. 7 shows the performance comparison on three datasets.
CVLAD+ maintains fairly similar performance when the scale
of data size increases to one million. The degree of perfor-
mance drop is less than BoW and BoW+HE, which do not
suffer from lossy compression as three other approaches due to
the use of PQ. The scalability of CVLAD+ is not achieved by
VLAD* or Fisher vector. We attribute the superior performance
of CVLAD+ to its feature discriminability and low complexity
in NNS. More concretely, NNS is performed in 8-dimensional
space versus VLAD* and Fisher in 512-dimensional space.

Table IV lists the average speed of querying one image us-
ing different approaches on Holidays+Flickr1M dataset. All the
approaches are implemented in C++ and experimented on a
standard PC with 2.4 GHz CPU and 32G memory. As shown
in the table, the querying time is about 1 second for all the
approaches except for BoW+HE. Denote n̄ as the average num-
ber of local features per image, k as vocabulary size and N as
the number of reference images, the complexity of query pro-
cessing isO( n̄2

k ·N) for BoW and BoW+HE. While for Fisher

Fig. 7. Effect of indexing structure. CVLAD+ , VLAD*, and Fisher use
IVFADC, while BoW and BoW+HE use inverted file. (a) HesAff. (b) ODns. (c)
HesAff. (d) ODns. (e) HesAff. (f) ODns.

TABLE IV
AVERAGE TIME COST (S) PER QUERY ON HOLIDAYS+FLICKR1M

Method BoW BoW+HE VLAD* Fisher CVLAD+

Time cost 1.060 1.867 0.992 0.992 1.029

Approaches such as VLAD*, Fisher and CVLAD+ are supported by
IVFADC indexing structure.

approaches, the dimension of the aggregated feature plays a
critical role. With the support of IVFADC, for VLAD*, Fisher
and CVLAD+ , the complexity of processing one image query
is O(D

k ·N), where D is the feature dimension after PCA. As the
three approaches use the same number of dimensions and size
of vocabulary, the difference in querying time is indeed insignif-
icant. CVLAD+ has an additional advantage, nevertheless, as
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TABLE V
PERFORMANCE (MAP) OF CVLAD+ VERSUS COMPARABLE

APPROACHES OF THE STATE OF THE ART

Method k D Hol. Ox5k Ox105k

BoW [46]‡ 200k 200,000 58.3 39.1 -
VLAD [21]‡ 64 4,096 55.6 37.8 -
Fisher [21]‡ 64 4,096 59.5 41.8 -
VLAD*+LCS+RN [32]‡ 64 8,192 65.8 51.7 45.6
VLAD*+LCS+RN [32]‡ 64 →128 - 32.2 26.2
VLAD-intra [37]‡ 256 32,536 65.3 55.8 -
VLAD-intra [37]‡ 256 →128 62.5 44.8 -
PVLAT [22]‡ 64 8,192 66.4 54.2 -
PVLAT [22]‡ 64 →256 60.6 - -
VLAD⊗ [23], [24]‡ 32 28,672 81.0 61.8 53.9
VLAD⊗ [23], [24]‡ 32 →1024 - - 40.7
CVLAD+ (HesAff) 64 65,536 74.7 49.5 47.1
CVLAD+ (HesAff) 64 →512 65.5 35.5 33.0
CVLAD+ (ODns) 64 65,536 77.9 55.2 54.9
CVLAD+ (ODns) 64 →512 72.2 44.7 42.9

‡: numbers are cited directly from the referred papers.

querying of 64 IVFADC structures can be run in parallel, which
can potentially introduce further speed-up.

E. Comparison With State-of-the-Art Approaches

Table V compares the performance of CVLAD+ with
the best reported results in the literature. CVLAD+ clearly
outperforms most of the approaches including Fisher [21],
VLAD* [32], VLAD-intra [37] and PVLAT [22]. The per-
formance of CVLAD+ is comparable to VLAD⊗, where the
former achieves the best mAP on Holidays and Oxford105k
datasets, while the latter attains the best result on Oxfor5K
dataset. However, VLAD⊗ turns out to be incompatible with
PCA rotation and power-law normalization (RN) scheme as
discussed in Section III. In order to integrate RN with VLAD⊗,
the VLAD⊗ query has to be rotated eight times. As a result,
similar as CVLAD, eight more computational overhead is in-
curred. Fig. 8 further shows the scalability of some approaches.
In contrast to other approaches, CVLAD+ is the only approach
that can maintain performance without noticeable drop in mAP
when increasing the data size from few thousand to one million
images.

Table VI details the memory consumption of different ap-
proaches. CVLAD+ needs 256 bytes of storage space per im-
age. Among them, 64 bytes are used for feature encoding, while
the remaining 3× 64 bytes are for PQ. Specifically, each im-
age is indexed by its ID which takes 3 bytes. Since CVLAD+

maintains 64 IVFADC structures, a total of 192 bytes is required
per image. VLAD* needs 64 + 3 bytes per image since using
only one IVFADC for indexing. The extra space requirement of
CVLAD+ , however, is traded off by nearly 7% mAP improve-
ment than VLAD*. Furthermore, compared to other approaches
such as BoW+HE, it consumes 65 times less storage space
while achieving significantly better mAP. Overall, CVLAD+

demonstrates excellent compromise between storage space and
retrieval performance.

Fig. 8. Performance of CVLAD+ in comparison with the state-of-the-art
approaches in the large-scale image search task. The performance of state-of-
the-art approaches are cited directly from the papers referred.

TABLE VI
MEMORY EFFICIENCY OF CVLAD+ IN COMPARISON WITH STATE-OF-THE-ART

APPROACHES ON HOLIDAYS+FLICKR1M

Method k D Mem. cost per mAP
image (bytes)

BoW [46]‡ 200k 200k 8,885 33.8
BoW+HE [46] 65k 65k 18,228 51.7
miniBoF [35]‡ 1k 1k 640 24.4
Fisher+IVFADC [21]‡ 256 4,096 384 38.1
CPVLAT [22]‡ 64 512 67 33.4
VLAD*(HesAff)+IVFADC 64 512 67 41.9
VLAD*(ODns)+IVFADC 64 512 67 57.4
CVLAD+ (HesAff)+IVFADC 64 512 256 44.1
CVLAD+ (ODns)+IVFADC 64 512 256 63.7

‡: numbers are cited directly from the referred papers.

VII. CONCLUSION

We have presented fast CVLAD feature representation, viz
CVLAD+ , for similar image search, on which the circular
matching associated with CVLAD has been replaced by a se-
ries of inner products between sub-vectors. In such a way, the
computation overhead caused by circular matching is allevi-
ated. In the meantime, good discriminativeness of CVLAD fea-
ture is still well preserved. CVLAD+ feature particularly shows
satisfactory performance when being combined with Oriented-
Dense feature.

Moreover, the careful design of CVLAD+ enables two miss-
ing peculiarities in other variants of VLAD. First, PCA is per-
formed in the frequency domain, and keeps the significant com-
ponents of each frequency channel individually. This design
is different from conventional way of compression that simply
strips away high frequency components. Second, a fundamen-
tal difference from other variants of VLAD is that CVLAD+

has B different PCA mapping matrices each for a frequency
channel (versus one matrix only in CVLAD), ensuring that the
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structures latent in each orientation bin could be fully explored
by PCA. In the experiments, high scalability has been observed
in the large-scale image search task. CVLAD+ outperforms
BoW+HE considerably on million level reference sets while us-
ing 65 times less memory. To the best of our knowledge, this
is the highest scalability that is ever achieved in recent works.
With such a good trade-off between search quality and mem-
ory efficiency, CVLAD+ is naturally extensible to large-scale
content-based video retrieval and visual object classification.
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