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A

Semantic Reasoning in Zero Example Video Event Retrieval

M.H.T. de Boer, TNO and Radboud University, The Netherlands
Yi-Jie Lu, City University of Hong Kong, Hong Kong
Hao Zhang, City University of Hong Kong, Hong Kong
Klamer Schutte, TNO
Chong-Wah Ngo, City University of Hong Kong, Hong Kong
Wessel Kraaij, TNO and Leiden University, The Netherlands

Searching in digital video data for high-level events, such as a parade or a car accident, is challenging when
the query is textual and lacks visual example images or videos. Current research in deep neural networks is
highly beneficial for the retrieval of high-level events using visual examples, but without examples it is still
hard to 1) determine which concepts are useful to pre-train (Vocabulary challenge); 2) which pre-trained
concept detectors are relevant for a certain unseen high-level event (Concept Selection challenge). In our
paper, we present our Semantic Event Retrieval System which 1) shows the importance of high-level con-
cepts in a vocabulary for the retrieval of complex and generic high-level events and 2) uses a novel concept
selection method (i-w2v) based on semantic embeddings. Our experiments on the international TRECVID
Multimedia Event Detection benchmark show that a diverse vocabulary including high-level concepts im-
proves performance on the retrieval of high-level events in videos and that our novel method outperforms a
knowledge-based concept selection method.

CCS Concepts: rInformation systems→ Query representation; Video search;

General Terms: Experimentation, Performance

Additional Key Words and Phrases: content-based visual information retrieval, multimedia event detection,
zero shot, semantics

1. INTRODUCTION
The domain of content-based video information retrieval has gradually evolved in the
previous 20 years. It started as a discipline mostly relying on textual and spoken
information in news videos, and moved towards richer multimedia analysis leverag-
ing video, audio and text modalities. The last 10-15 years have shown impressive
progress in image classification, yielding larger and larger concept vocabularies. In
2011, the TRECVID MED task defined a testbed for even deeper machine understand-
ing of digital video by creating a challenge to detect high level or complex events, de-
fined as “long-term spatially and temporally dynamic object interactions” [Jiang et al.
2012]. Examples of high-level events are social events (tailgating party) and proce-
dural events (cleaning an appliance) [Jiang et al. 2012]. Given the extreme difficulty
of the MED task, in early years of TRECVID system development was facilitated by
providing a set of example videos for the event, making this essentially a supervised
video classification task. In the last few years, the MED task has stepped up towards
its real challenge: retrieving relevant video clips given -only- a precise textual descrip-
tion of a complex event. In TRECVID MED context, this task is referred to as the zero
example case, since no visual examples are provided [Over et al. 2015]. The problem
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A:2 M.H.T. de Boer et al.

of detecting multimedia events is different from the TRECVID datasets from 2005
to 2008 [Kennedy and Hauptmann 2006; Smeaton et al. 2006]. The TRECVID MED
events contain complex and generic high-level events, such as winning a race with-
out a vehicle. This query is generic because it is referring to a wide variety of races,
including running, swimming, jumping and crawling. The query is also significantly
more complex than the entity-based queries, e.g. emergency vehicle in motion, used in
multimedia research ten years ago, because the number of relevant concepts is higher
and the relationship between the concepts plays an important role. Not only should
the awareness of a race be captured, but also the winning of a race and the absence of
a vehicle in the race (although vehicles could be present on the parking lot near the
race or at the side of the street in a marathon).

In our paper, we describe the challenges of building an effective system for zero
example complex event retrieval in video. The main issue in zero example video event
retrieval is that state of the art machine learning techniques cannot be used, because
no training examples are available. A common approach is to use a set of pre-trained
classifiers and try to map the event to a set of classifiers. Within this approach two
challenges exist: what set of pre-trained classifiers to use (Vocabulary challenge) and
how to map the event to a set of classifiers (Concept Selection challenge).

The Vocabulary Challenge deals with the determination of a good set of concepts to
pre-train and put in the vocabulary. This vocabulary is built with pre-trained concept
detectors on off-the-shelf datasets. Whereas five to ten years ago fewer than a 1000
pre-trained concepts were available, previous work [Hauptmann et al. 2007b; Aly et al.
2012] was focused on simulations to show how many concepts are actually needed to
achieve a reasonable performance. Currently, many datasets with a large vocabulary
of pre-trained concepts [Deng et al. 2009; Karpathy et al. 2014; Zhou et al. 2014; Jiang
et al. 2015a] are available and we can therefore use actual pre-trained concepts in real
datasets instead of simulations. Not all concepts are, however, necessary or useful for a
certain test case. For example, the ImageNet dataset [Deng et al. 2009] contains many
classes of dog breeds. These concepts are not useful in test cases that only include
people and scenes. This implies that it is crucial to at least pre-train and apply those
concepts that are valuable for the unseen test case. Some recommendations on how to
build a good vocabulary are already available [Habibian et al. 2013].

In this paper, we show the importance of high-level concepts, defined as “complex
activities that involve people interacting with other people and/or objects under certain
scene” [Chen et al. 2014], because a combination of objects and actions often cannot
capture the full semantics of a high-level event. We do not claim that we are the first
to use high-level concepts, but we show the difference in performance for different
types of concepts.

The Concept Selection challenge embeds the problem that the system has no prior
knowledge about the events, so in many cases no precise visual concept detectors are
available. Commonly, this challenge is approached by mapping the event to a set of
classifiers by optimizing the match between the User Query (UQ) and the System
Query (SQ). Within the TRECVID community, this is also referred to as Semantic
Query Generation [Over et al. 2015]. Here the User Query is a textual description of
the event and the System Query is a combination of concepts present in our vocabulary.
In this paper, we will refer to the term concept as the label or name of the concept
itself and to concept detectors as pre-trained classifiers. In this challenge, we build
upon the existing word2vec models [Mikolov et al. 2013; Pennington et al. 2014] which
use semantic embeddings. The main novelty of our method is that it accurately selects
the proper concepts without the problem of query drift, in which the selected concepts
create a drift towards one facet of the query [Carpineto and Romano 2012].

The main contributions of this paper can be summarized as follows:
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— We show the importance of high-level concepts in defining a good vocabulary of pre-
trained concept classifiers in the case of search queries that contain high-level events.

— We introduce an incremental word2vec method (i-w2v) for concept selection that is
more robust to query drift and cut-off parameter tuning.

The next section contains related work. We focus on our two challenges. The third
section explains our Semantic Event Retrieval System that includes our novelties in
both challenges. The fourth section presents the experiments conducted on the inter-
national benchmark TRECVID Multimedia Event Detection [Over et al. 2015] and the
results are included in Section 5. The sixth section contains a discussion and the final
section provides the conclusion.

2. RELATED WORK
In this section we only focus on the Vocabulary challenge and the Concept Selection
challenge in zero example video event retrieval.

2.1. Vocabulary
Concept vocabularies are designed as a representation layer for a specific purpose,
such as indexing descriptors for video clips, shots or frames. Ideally, concept vocabu-
laries consist of unambiguous precise descriptors of entities, activities, scenes, objects
and ideas. Different vocabularies are developed for different purposes. Combining dif-
ferent vocabularies often results in vagueness and ambiguity, such as polysemy and
homonymy. We will focus on two properties of concepts: level of complexity and level
of granularity. In the level of complexity, three levels can be differentiated. First, low-
level concepts are the basic components in images or videos, such as objects. Second,
mid-level concepts are basic actions, activities or interactions. Actions or activities are
a “sequence of movements” [Chen et al. 2014] and can be performed by one entity, such
as people or objects. Interactions are actions between two or more entities. Third, high-
level concepts are “complex activities that involve people interacting with other people
and/or objects under certain scene” [Chen et al. 2014]. The key difference between mid-
level and high-level concepts is that a high-level concept contains multiple actions and
interactions evolving over time [Chen et al. 2014], such as the difference between the
action horse riding and the event horse riding competition. Furthermore, concepts can
have different levels of granularity, also referred to as specificity. Examples are animal
(general), dog and chihuhua (specific).

The importance of the level of granularity in a vocabulary was already indicated by
Hauptmann et al. [2007b] and Habibian et al. [2013]. Both argue that in video event
recognition a mixture of both general and specific concepts achieves higher perfor-
mance compared to using only general or specific concepts. Interestingly, both papers
state that the general concepts achieve in general higher performance compared to
the specific concepts, because specific concepts only occur in a few videos, and many
general concepts can be distinctive enough to recognize an event. The importance of
the level of complexity is not yet introduced, but Habibian et al. [2013] recommend
to use a vocabulary that contains concepts of the following categories: object, action,
scene, people, animal and attribute. Using our definitions an action is comparable to
a mid-level concept and the concepts from the other categories are low-level concepts.
Another work of these authors introduces primary concepts and bi-concepts [Habibian
et al. 2014a].

Other recommendations from Habibian et al. [2013] are 1) use a vocabulary with at
least 200 concepts; and 2) do not use too many concepts of one type, such as animals
or people. Additionally, they argue that it is better to include more concepts than to
improve the quality of the individual concepts, which is also concluded by Jiang et al.
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[2015b]. Previous research of Aly et al. [2012] indicated that few concepts (100) with
a simulated detector performance of only 60% is already sufficient to achieve reason-
able Mean Average Precision performance (20%). Hauptmann et al. [2007a] argue that
3000 concepts are needed for a Mean Average Precision of 65%. We follow this recom-
mendation and focus on extending the vocabulary instead of improving performance of
concept detectors.

In addition to the type of concepts, Jiang et al. [2015b] report the influence of train-
ing with different datasets on performance for the events in the TRECVID Multimedia
Event Detection task. The dataset with the highest performance is Sports [Karpathy
et al. 2014], followed in descending order by the 1000 concepts from ImageNet [Deng
et al. 2009], the Internet Archive Created Commons (IACC) dataset [Over et al. 2014],
the big Yahoo Flickr Creative Common dataset (YFCC) [Thomee et al. 2015] and the
Do It Yourself (DIY) dataset [Yu et al. 2014]. We use the concepts of their top two per-
forming datasets in our vocabulary. Furthermore, one of their recommendations is to
train concept detectors on large datasets, both in terms of training examples as well
as number of concepts. We take this recommendation into account and focus on large
datasets.

2.2. Concept Selection
Many different techniques are used in Concept Selection. Liu et al. [2007] present five
categories in which concepts can be selected, of which we use three as a guideline to
give an overview of the different methods used in the recent years. The first category
is making use of an ontology. These ontologies or knowledge bases can be created by
expert (expert knowledge base) or created by the public (common knowledge base). Ex-
pert knowledge bases provide good performance, but dedicated expert effort is needed
in the creation of such a knowledge base. Some early work on expert knowledge bases
and reasoning in the field of event recognition is explained in Ballan et al. [2011].
One current expert ontology for events is EventNet [Ye et al. 2015]. Common knowl-
edge bases, such as Wikipedia [Milne and Witten 2013] and WordNet [Miller 1995],
are freely available and often used in the video event retrieval community [Neo et al.
2006; Yan et al. 2015; Tzelepis et al. 2015], but might not contain the specific informa-
tion that is needed. A comparison of performance between an expert knowledge base
and two common knowledge bases, which are Wikipedia and ConceptNet, is given in
de Boer et al. [2015]. Concept selection in common knowledge bases is often done by
using the most similar or related concepts to events found in the knowledge base. An
overview of the type of methods to find similar or related concepts can be found in Nat-
sev et al. [2007]. The number of selected concepts and the similarity measures used
differ per paper and no conclusive result on which method works best is found.

The second category is making use of machine learning techniques. Machine learn-
ing techniques can be used to automatically select the proper concepts. These tech-
niques are used more often in tasks with example videos, because many models need
training examples. In the zero example video event retrieval, graphical models such
as hidden Markov models [Dalton et al. 2013], are used. More often statistical meth-
ods are used, such as co-occurrence statistics [Mensink et al. 2014] and a skip-gram
model [Chang et al. 2015]. One group of current state of the art models is word2vec,
which produce semantic embeddings. These models either use skip-grams or continu-
ous bag of words (CBOW) to create neural word embeddings using a shallow neural
network that is trained on a huge dataset, such as Wikipedia, Gigawords, Google News
or Twitter. Each word vector is trained to maximize the log probability of neighboring
words, resulting in a good performance in associations, such as king - man + woman =
queen. Two often used models are the skip-gram model with negative sampling (SGNS)
[Mikolov et al. 2013], which has relations to the pointwise mutual information [Levy
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and Goldberg 2014], and the Glove model [Pennington et al. 2014], which uses a fac-
torization of the log-count matrix. Although Pennington et al. [2014] claimed to have
performance superior to SGNS, this is highly debated by Levy et al. [2015] and Gold-
berg1. The advantage of word2vec over other semantic embedding methods is that the
latent variables are transparent, because the words are represented in vector space
with only a few hundred dimensions. Examples of other semantic embedding methods
are Wu et al. [2014] with their common lexicon layer and Habibian et al. [2014b] with
VideoStory and Jain et al. [2015] with the embedding of text, actions and objects to
classify actions.

The third category is making use of relevance feedback. User clicks or explicit rele-
vance judgements from users can be used to optimize the results. A review of relevance
feedback in content based image retrieval can be found in Patil and Kokare [2011]. In
concept selection using relevance feedback often an initial set of concepts is chosen
using the ontology, machine learning techniques or one of the other techniques and a
user is asked to remove the irrelevant concepts and/or to adjust the importance of con-
cepts [Jiang et al. 2015b; Chang et al. 2015]. A second option is to refine the text query
instead of removing concepts [Xu et al. 2015]. A third option is to use weakly labelled
data [Chang et al. 2016] to dynamically change the weights of the selected concepts.
Besides user interaction, pseudo-relevance feedback can be used. In pseudo-relevance
feedback we assume that the top videos are relevant for the query [Jiang et al. 2014a;
Jiang et al. 2014b]. Although this method by the CMU team has top performance in
TRECVID MED 2014, pseudo-relevance feedback is a high risk for rare events. In our
experiments, we focus on the first run of the video event retrieval system and, there-
fore, do not include pseudo-relevance feedback. We, however, compare our method with
a method that uses a user to create the System Query.

In addition to the different categories from Liu et al. [2007] and Jiang et al. [2015b]
found that a sensible strategy for concept selection might be to incorporate more rel-
evant concepts with a reasonable quality. They state that automatic query generation
or concept selection is still very challenging and combining different mapping algo-
rithms and applying manual examination might be the best strategy so far. Huurnink
et al. [2008] propose a method to asses the automatic concept selection methods and
compare that method to a human assessment. Mazloom et al. [2013] show that an in-
formative subset of the vocabulary can achieve higher performance than just using all
concepts of the vocabulary in a setting of video event retrieval with examples. This
strategy is also used in our previous work [Lu et al. 2016] that uses evidential pooling
of the concepts in the video.

3. SEMANTIC EVENT RETRIEVAL SYSTEM
In our Semantic Event Retrieval System we use five large external datasets to form
our vocabulary, which is explained in the following subsection. Our vocabulary is used
in our concept selection method to transform the user query (UQ) into a System Query
(SQ), as explained in the second subsection. UQ is a fixed textual description of an
event, for which we only use the name of the event. SQ is a list of concepts (c) and their
associated similarities (cs). The constraints on our SQ are: sparsity, non-negativity and
linear weighted sum. Regarding sparsity, we use an informative subset of concepts, as
recommended by Mazloom et al. [2013] and similar to our previous findings, resulting
in a sparse set of concepts in SQ. No negative similarities are used, because in our
findings this decreases performance. For example, in the event winning a race without
a vehicle using a negative similarity for the concept vehicle decreases performance,

1On the importance of comparing apples to apples: a case study using the GloVe model, Yoav Goldberg, 10
August 2014
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A:6 M.H.T. de Boer et al.

because in some videos of this event a parking lot with vehicles is present at the be-
ginning of the video. The linear weighted sum is used to combine the concepts in our
SQ to create the event score for a certain video (Se,v). The concept detector score per
video (cd,v) is the concept detector score (d) belonging to a video (v).

The formula to create the event score is shown in Equation 1.

Se,v =
∑
c∈SQ

cs · cd,v, (1)

, where c is the concept, V is the vocabulary, cs is the similarity of concept c, cd,v is the
concept detector score for concept c over video v. The event scores can be used to order
the videos and calculate performance.

3.1. Vocabulary
While creating the vocabulary, we follow the recommendations of Habibian et al.
[2013], which are to use a large and diverse vocabulary, and use the top two performing
datasets from Jiang et al. [2015b], i.e. Sport and ImageNet. Furthermore, we aim for a
set of datasets that not only contains low- and mid-level concepts, but also high-level
concepts. Figure 1 shows our interpretation of the different datasets on the level of
complexity.

Fig. 1. The level of complexity for the five datasets used in this paper.
The number under each dataset indicates the amount of concepts in the dataset.

The two low-level datasets are ImgNet [Deng et al. 2009] and Places [Zhou et al.
2014]. ImgNet, which is an abbreviation for ImageNet, contains low-level objects and
for our vocabulary the standard subset of 1000 objects is used. The Places dataset does
not contain objects, but scenes or places. We have one dataset that contains both low-
and mid-level concepts: SIN [Over et al. 2015]. These concepts have been developed
for the TRECVID Semantic Indexing Task of 2015. We also included one dataset that
contains both mid-level and high-level concepts: Sport [Karpathy et al. 2014]. This is
a dataset that contains one million sports videos, classified into 487 categories. Our
high-level dataset is the Fudan Columbia Video dataset [Jiang et al. 2015a], which
contains 239 classes within eleven high-level groups, such as art and cooking&health.
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Table I. Overview Datasets

Name #Concepts Structure Dataset
FCVID 239 DCNN+SVM Fudan-Columbia [Jiang et al. 2015a]
SIN 346 DCNN TRECVID SIN [Over et al. 2015]
Sport 487 3D-CNN [Tran et al. 2014] Sports-1M [Karpathy et al. 2014]
Places 205 DCNN MIT Places [Zhou et al. 2014]
ImgNet 1000 DCNN [Krizhevsky et al. 2012] ImageNet [Deng et al. 2009]

Table I shows additional information on the datasets, such as the amount of con-
cepts, the reference to the publication of the dataset and the structure used to train
the concept detectors. Training of the concepts is done by using one of the states of the
art DCNN architectures. The original DCNN architecture of Krizhevsky et al. [2012],
named AlexNet, is used for ImgNet. The output of the eighth layer of the DCNN net-
work trained on the ILSVRC-2012 [Deng et al. 2009] is used as concept detector score
per keyframe. This DCNN architecture is fine-tuned for both SIN and Places. The con-
cept detector scores per keyframe are max pooled to obtain the score per video. The
keyframes are extracted at the rate of one keyframe per two seconds.

The two high-level datasets are annotated on video level instead of keyframe level
and are, therefore, trained in a slightly different way. FCVID also uses the same DCNN
architecture, but the seventh layer of the network is used as an input for an SVM. This
SVM is trained on the videos within the dataset on video level instead of keyframe
level. The Sport dataset is trained with the 3D CNN network of Tran et al. [2014].

3.2. Concept Selection (i-w2v)
Our incremental word2vec method (i-w2v) starts with a vector containing the words
in the User Query (UQ). In our experiments, the UQ is the name of an event, such
as [parking, vehicle]. On the other hand, we have a vocabulary with concepts. These
concepts can also be represented as a vector, such as the concept [police, car]. In the
function sim(c,UQ), we use the Gensim code2, which is an implementation of the SGNS
model [Mikolov et al. 2013], to calculate the cosine similarity between UQ and each of
the concepts in the vocabulary. This similarity is stored in cs. We sort the concepts
in the vocabulary based on this similarity. We discard the concepts with a similarity
less than 80% of the highest similarity. This cut-off is used to decrease the possibility
of introducing noise. Subsequently, we try whether a combination of concepts will in-
crease the similarity to take care of the query drift. Where other methods might only
choose the top five as the selected concepts, we - only - include the concepts that in-
crease the similarity. In the multidimensional word2vec space, one facet might have a
vector into one direction towards UQ, whereas another facet might have a vector into
another direction. Using both concepts will move the vector more towards the vector
of UQ and increase the cosine similarity. We start with using the concept with the
highest similarity in a concept vector. We iteratively add concepts (in order of their
similarity) to this concept vector and each time compare the cosine similarity of the
new vector to UQ. If the similarity is higher with the concept than without, we retain
the concept in the concept vector. In the case of the event parking a vehicle, the first
concept is vehicle. All types of vehicle, such as police car or crane vehicle are not added
to the concept list as the concept list with the police car added, such as [vehicle, police,
car] does not increase the cosine similarity to UQ. The concept parking lot, which was
not in the top five concepts, is included, because the facet vehicle and the facet park-
ing (lot) together increase the similarity to the event parking a vehicle. Similarly, the
tenth concept parking meter is not included as it covers the same facet as parking lot.

2https://radimrehurek.com/gensim/models/word2vec.html
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The output of the Concept Selection method is the list of selected concepts and their
original cosine similarity cs to UQ. This concept selection method has a complexity of
O(n) in which n is the amount of concepts, because we have to calculate the similarity
between the query and each of the concepts. This method is faster than look-up time
of the video in the database, which makes it applicable for real-time systems.

Table II shows that our method is robust to a range of cut-offs, both percentages and
a fixed similarity threshold of 0.1, on the vocabulary using pre-trained concepts from
all datasets mentioned in the previous section (referred to as the All vocabulary). The
average amount of concepts remaining after applying our algorithm is also included
in Table II. The novelty in our method is to only add the concepts that improve the
similarity to the full event. To our knowledge, current word2vec models did not yet
look into solutions to a possible query drift in this way.

Table II. MAP performance for different cut-off points
in i-w2v algorithm (All vocabulary on MED14Test)
Cut-off means discard all concepts that have a similar-
ity lower than the cut-off value compared to the con-
cept with the highest similarity

Cut-off MAP Average Number of Concepts
none 0.136 9.4 ± 13.4
25% 0.136 9.3 ± 13.4
50% 0.137 7.2 ± 12.1
75% 0.141 3.8 ± 6.3
80% 0.142 3.0 ± 4.6
85% 0.142 2.3 ± 2.4
90% 0.142 1.9 ± 1.3
0.1 0.142 2.9 ± 5.3

4. EXPERIMENTS
In our experiments, we use the MED2014Test Set of the TRECVID Multimedia
Event Detection Pre-specified Zero-Example task of 2015 [Over et al. 2015]. The
MED2014Test contains more than 27,000 videos and has ground truth information
for twenty events. The evaluation metric is Mean Average Precision [Over et al. 2015].
All video scores are sorted in descending order and the rank of the positive videos is
used in the evaluation. The next sections explain our experiments on the Vocabulary
Challenge and Concept Selection challenge.

4.1. Vocabulary
In the experiments on the Vocabulary challenge, we compare performance of vocabu-
laries that consist of 1) only one dataset; 2) only low- and mid-level concepts (LowMid);
3) only high-level concepts (High); 4) low-, mid- and high-level concepts (All). The
datasets used in the LowMid, High and All vocabularies are visualized in Figure 1
on the previous page.

According to the literature, combining resources generally improves robustness and
performance and therefore we hypothesize that 1) All outperforms all other vocabular-
ies. Our intuition is that the high-level concepts play an important role in the detection
of high-level events and thus we hypothesize that 2) High outperforms LowMid and 3)
Sport and FCVID outperform the other single datasets.

The Concept Selection method used for the experiments on the Vocabulary Chal-
lenge is not our proposed Concept Selection method, but the best number of concepts
over all events (top-k) using the original word2vec method. This number is determined
by experiments on the MED2014 TEST with a varying number of selected concepts,
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from one to twenty. This number therefore displays the best possible k over all events
for these twenty events and is thus not influenced by the proposed Concept Selection
method, enabling an independent experiment on the vocabularies.

4.2. Concept Selection
In the experiments on the Concept Selection challenge, we compare performance of
our proposed Concept Selection method (i-w2v) to the original word2vec method (top-
k), a knowledge-based method (CN), a method using manually selected concepts and
weights (manual) and the currently known state of the art methods describing their
performance on MED14Test. Relating back to the related work, CN is selected as a
method from the first category (ontology). The i-w2v method falls within the second
category (machine learning), and the manual method falls within the third category
(relevance feedback). We hypothesize that 1) i-w2v outperforms CN and 2) manual
outperforms both CN and i-w2v. This second hypothesis is based on the finding of
Jiang et al. [2015b] that automatic Concept Selection is still a challenge.

In the CN method, UQ (event name) is first compared to the concepts in the vocab-
ulary. If a concept completely matches UQ, this concept is put in SQ. If no concept
completely matches UQ, ConceptNet is used to expand UQ. In this expansion, Con-
ceptNet 5.3 is automatically accessed through the REST API and all words with the
relation RelatedTo, IsA, partOf, MemberOf, HasA, UsedFor, CapableOf, AtLocation,
Causes, HasSubEvent, CreatedBy, Synonym or DefinedAs to UQ are selected, split into
words by removing the underscore and compared to the lemmatized set of concepts in
the vocabulary. The matching concepts are put in the SQ. The value for cw is deter-
mined by the following equation:

cw = (
scorerel

30
)3 (2)

This equation is based on the experiments in de Boer et al. [2015], where they ex-
plain that the scores are often between zero and thirty, which would create a value
between zero and one. The third power is based on previous experiments and has some
ground in Spagnola and Lagoze [2011], because they explain that ConceptNet uses the
third root of the score of the edges to calculate the final score.

If the query expansion directly to UQ still gives no related concepts, the separate
words in UQ are compared to the concepts. The words with a matching concept are put
in SQ and the other words are expanded through ConceptNet. In order to avoid query
drift, the sum of the weights of the expanded words should be the same as the weight
of a matched concept. If for example UQ contains of two words, each set of concepts
that represent one word should have a weight of 0.5.

In the manual method a human researcher had to select the relevant concepts and
weights for those concepts for each event. The researcher was presented the event de-
scription provided within the TRECVID MED [Over et al. 2015] benchmark, access
to the internet to search for examples for the event and knowledge sources such as
Wikipedia or the dictionary and the list of concepts. In order to help the human re-
searcher, the ranked list from our i-w2v method (without similarities) was provided to
show a list that is somewhat ordered in terms of relevance to the event. This human
researcher is a non-native fluent English speaker with a West-European background.
The human researcher was instructed to create a diverse and concise list of concepts, to
prevent query drift and adding too much noise. The human researcher had to provide
weights for the concepts that summed up to one.
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5. RESULTS
5.1. Vocabulary
The results of the Average Precision performance of the different vocabularies are
shown in Table III. The bold number indicates the highest performance per event per
vocabulary, both from the vocabularies that contain a single dataset and the vocabu-
laries with concepts from multiple datasets.

Comparing performance of All to the other datasets, we clearly see that on average
the combination of all resources is better than using a subselection of the resources,
which is consistent with our first hypothesis. Additionally, LowMid and High both have
a performance which is on average higher than any of the single dataset vocabularies
in that category.

Table III. Average Precision per Vocabulary using top-k word2vec concept selection (k is optimal determined on
MED2014TEST).
Bold is highest in row and group.

ImgNet (1) Places (1) SIN (1) Sport (1) FCVID (1) LowMid (2) High (1) All (1)
AttemptBikeTrick 0.061 0.002 0.050 0.003 0.062 0.078 0.062 0.062
CleanAppliance 0.011 0.011 0.009 0.006 0.062 0.009 0.062 0.062
DogShow 0.013 0.011 0.011 0.766 0.006 0.005 0.766 0.766
GiveDirection 0.006 0.001 0.002 0.002 0.001 0.006 0.002 0.006
MarriageProposal 0.002 0.002 0.003 0.002 0.010 0.003 0.010 0.010
RenovateHome 0.003 0.002 0.002 0.002 0.001 0.002 0.001 0.002
RockClimbing 0.003 0.004 0.005 0.128 0.065 0.003 0.128 0.128
TownHallMeeting 0.001 0.008 0.015 0.001 0.148 0.015 0.148 0.148
WinRace 0.006 0.005 0.006 0.010 0.011 0.005 0.010 0.005
WorkMetalCraftsProject 0.003 0.003 0.002 0.001 0.005 0.003 0.005 0.005
Beekeeping 0.620 0.013 0.007 0.011 0.262 0.620 0.262 0.620
WeddingShower 0.002 0.002 0.002 0.003 0.005 0.002 0.005 0.002
VehicleRepair 0.002 0.003 0.006 0.007 0.001 0.002 0.001 0.006
FixMusicalInstrument 0.021 0.024 0.001 0.002 0.147 0.004 0.147 0.147
HorseRidingCompetition 0.022 0.224 0.071 0.044 0.098 0.224 0.098 0.044
FellingTree 0.002 0.052 0.019 0.012 0.026 0.002 0.026 0.026
ParkingVehicle 0.003 0.023 0.022 0.002 0.217 0.023 0.217 0.217
PlayingFetch 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Tailgating 0.004 0.010 0.002 0.002 0.232 0.006 0.232 0.232
TuneMusicalInstrument 0.035 0.052 0.004 0.001 0.052 0.008 0.052 0.052
MAP 0.041 0.023 0.012 0.050 0.071 0.051 0.112 0.127

Furthermore, the high-level concepts are important in these experiments, because
High outperforms LowMid and the high-level datasets Sports and FCVID outperform
Places and SIN. Besides the complexity of the datasets, the amount of concepts could
also be a factor. A higher amount of concepts increases the possibility that the event
can be captured within these concepts. This factor can be further verified by the plot
in Figure 2.

In this plot, the correlation between the amount of concepts for each of the complex-
ities is shown. LowMid has a high correlation, whereas High has not (R2 LowMid =
0.867 and R2 High = 0.412) between amount of concepts and MAP. The plot clearly
shows that High performs better than LowMid with the same amount of concepts.

Please note that these results could also be explained by that the high level concepts
are trained in a domain more like TRECVID MED compared to the domain in which
the low level concepts are trained. This domain shift could decrease the performance
of the low level concepts compared to the high level concepts.
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Fig. 2. Correlation between Amount Concepts and MAP for different complexities

5.2. Concept Selection
The previous section shows the top-k performance for different vocabularies, whereas
in this section we compare the Concept Selection methods. The Average Precision per-
formance results for our Concept Selection experiments are shown in Table IV. The
bold number indicates the highest performance per event per vocabulary. The italic
numbers for the CN method indicate random performance, because no concepts are
selected. In the All vocabulary, for some events performance of all concept selection
methods is equal, indicating that a complete match between the event and a concept
in the vocabulary is found. In each of the methods a complete match will result in only
selecting that concept. These events are, therefore, displayed on top of the table and
separated from the ‘interesting’ events on the bottom of the table.

Additionally, we compare our best performance against state of the art performance
reported on the same dataset in Table V. Performance of CN, top-k and i-w2v on the
All vocabulary is shown. This performance is directly comparable to EventPool, be-
cause the same vocabularies are used. The vocabularies used by Chang et al. [2016]
and Jiang et al. [2015b] are comparable in size and type of concepts. In Bor, PCF and
DCC semantic concepts are discovered using weakly labelling the TRECVID MED re-
search set using word2vec vectors. Bor uses borda rank to aggregate the weights on the
concepts. PFC uses a pair-comparison framework. DCC uses a dynamic composition to
determine the appropriate weights. Fu is the AND-OR method proposed by Habibian
et al. [2014a] to create an AND-OR graph of the concepts, but applied to the vocabu-
lary of Chang et al. [2016]. The vocabulary of Habibian et al. [2014a] was composed of
138 concepts. These concepts were automatically extracted from the TRECVID MED
research set. Jiang et al. [2015b] uses an average fusion of the mapping algorithms
that use exact word matching, Wordnet, Pointwise Mutual Information and word em-
beddings. Table V shows a gain in MAP of 1% compared to state of the art methods.
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Table IV. Average Precision on MED2014TEST for proposed i-w2v, top-k, ontology-based CN and manual concept selection
Top part are events with direct matches to a concept. Bold is highest value in row and group.

LowMid High All
i-w2v top-k CN manual i-w2v top-k CN manual i-w2v top-k CN manual

AttemptBikeTrick 0.103 0.078 0.021 0.08 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
CleanAppliance 0.014 0.009 0.005 0.021 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062
DogShow 0.021 0.005 0.011 0.011 0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766
MarriageProposal 0.003 0.003 0.001 0.005 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
RockClimbing 0.006 0.003 0.002 0.025 0.309 0.128 0.309 0.309 0.309 0.128 0.309 0.309
TownHallMeeting 0.012 0.015 0.007 0.023 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148
FixMusicalInstrument 0.025 0.004 0.009 0.057 0.147 0.147 0.147 0.147 0.147 0.147 0.147 0.147
Tailgating 0.007 0.006 0.002 0.010 0.232 0.232 0.232 0.232 0.232 0.232 0.232 0.232
MAP (direct) 0.024 0.015 0.008 0.029 0.217 0.194 0.217 0.217 0.217 0.194 0.217 0.217
GiveDirection 0.006 0.006 0.002 0.004 0.002 0.002 0.001 0.004 0.006 0.006 0.002 0.008
RenovateHome 0.003 0.002 0.017 0.003 0.001 0.001 0.002 0.015 0.002 0.003 0.015 0.008
WinRace 0.006 0.005 0.007 0.035 0.043 0.01 0.007 0.093 0.021 0.005 0.011 0.093
WorkMetalCraftsProject 0.003 0.003 0.001 0.016 0.005 0.005 0.001 0.007 0.005 0.005 0.001 0.008
Beekeeping 0.62 0.62 0.65 0.694 0.262 0.262 0.262 0.262 0.62 0.62 0.666 0.714
WeddingShower 0.002 0.002 0.002 0.005 0.005 0.005 0.002 0.005 0.005 0.002 0.002 0.005
VehicleRepair 0.006 0.002 0.003 0.006 0.006 0.001 0.003 0.162 0.006 0.006 0.005 0.284
HorseRidingCompetition 0.182 0.224 0.015 0.183 0.098 0.098 0.096 0.261 0.119 0.044 0.096 0.288
FellingTree 0.031 0.002 0.006 0.015 0.024 0.026 0.001 0.033 0.042 0.026 0.008 0.015
ParkingVehicle 0.026 0.023 0.022 0.031 0.217 0.217 0.001 0.217 0.220 0.217 0.013 0.216
PlayingFetch 0.001 0.001 0.012 0.004 0.001 0.001 0.022 0.023 0.001 0.001 0.02 0.023
TuneMusicalInstrument 0.050 0.008 0.012 0.046 0.052 0.052 0.001 0.052 0.052 0.052 0.012 0.052
MAP (no direct matches) 0.078 0.075 0.062 0.087 0.06 0.057 0.033 0.095 0.092 0.082 0.071 0.143
MAP (all) 0.056 0.051 0.04 0.064 0.123 0.112 0.107 0.144 0.142 0.127 0.129 0.173

Table V. Comparison to State of the Art (MAP reported on
MED2014TEST)

Method MAP
AND-OR[Habibian et al. 2014a] 0.064
Bor[Chang et al. 2016] 0.102
Fu [Chang et al. 2016; Habibian et al. 2014a] 0.111
PCF [Chang et al. 2016] 0.114
AutoSQGSys [Jiang et al. 2015b] 0.115
top-k (All) 0.127
EventPool [Lu et al. 2016] 0.129
CN (All) 0.129
DCC [Chang et al. 2016] 0.134
i-w2v (All) 0.142

Comparing the Concept Selection methods, manual is the best overall Concept Se-
lection method, as expected by our hypothesis. The largest differences between manual
and i-w2v and CN are in VehicleRepair and HorseRidingCompetition in High and All.
Table VI shows the different concepts and similarities for VehicleRepair in All. The
concept assemble bike has high performance, because this is the only concept that dif-
fers between i-w2v / top-k and manual. In the High vocabulary, performance for this
event drops, because the concept vehicle is no longer within the vocabulary. This same
phenomenon happens in the event Beekeeping with the concept apairy. The main dif-
ference in performance in HorseRidingCompetition is that the human researcher was
able to select all types of horse riding competitions, whereas CN only selected dressage
and i-w2v only selected the concept horse racing in High and horse racing and horse
in All. The difference between High and All with manual in this event is due to the
concept horse race course.
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Table VI. Comparison for VehicleRepair in All

i-w2v / top-k CN manual
c cs c cs c cs
vehicle 0.760 vehicle 0.500 vehicle 0.5

band aid 0.095 assemble bike 0.5
highway 0.095
apartments 0.095
boating 0.095
shop 0.095
casting fishing 0.024

Following our hypothesis, i-w2v outperforms CN in all vocabularies. I-w2v even out-
performs manual in some events, of which FellingTree is the most interesting. Ta-
ble VII shows the concepts and similarities of the different methods for the event
FellingTree in All. In i-w2v, the concept tree farm provides for high performance,
whereas chain saw decreases performance compared to only using the concept fruit
tree pruning. In CN, the wrong expansion from felling to falling to all concepts, except
for trees, causes the low performance. Please note that the human researcher has the
highest performance in High. The selected concepts for manual in High are forest and
fruit tree pruning.

Table VII. Comparison for FellingTree in All

i-w2v CN manual top-k
c cs c cs c cs c cs
fruit tree pruning 0.720 trees 0.500 trees 0.5 fruit tree pruning 0.720
tree frog 0.686 cliff 0.186 chain saw 0.5
tree farm 0.678 painting 0.106

skateboarding 0.085
climbing 0.040
windows 0.040
head 0.002
running 0.001
building 7 ×10−6

Table VIII. Comparison for RenovateHome in LowMid

i-w2v CN manual top-k
c cs c cs c cs c cs
apartment building- 0.542 apartments 0.113 apartment building- 0.25 apartment building - 0.542
outdoor outdoor outdoor
building 0.526 city 0.102 apartments 0.25
home office 0.475 person 0.083 construction site 0.5
apartments 0.466 wardrobe 0.065
church building 0.465 sofa 0.065
building facade 0.452 tabby cat 0.065
mobile home 0.437 closet 0.065

bedroom 0.065
comfort 0.065
dogs 0.065
building 0.058
pillow 0.047
refrigerator 0.047
furniture 0.047
pantry 0.047

Comparing i-w2v to top-k, the i-w2v method outperforms the top-k in all vocabular-
ies. In the High vocabulary, performance of the event Rock Climbing in top-k is slightly
lower compared to the other direct matches, because in top-k the first occuring direct

ACM Transactions on Multimedia Computing, Communications, and Applications, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 M.H.T. de Boer et al.

match is used instead of all direct matches. Using all direct matches for this event
would improve MAP performance in All to 0.136.

Interestingly, CN outperforms both i-w2v and manual in the events RenovateHome
in LowMid and All and PlayingFetch in LowMid. Table VIII shows the concepts and
similarities of the different methods for the event RenovateHome in LowMid. In the
event PlayingFetch in LowMid the addition of concepts, such as throwing, ball and
stick (manual), decreases performance compared to only using the concept dog (CN).

6. DISCUSSION
Regarding the Vocabulary challenge, the results of the experiments show that a com-
bination of multiple datasets improves performance. Although state of the art already
tends to add as many datasets as possible to their vocabulary, we show that including
high level concepts is important in video event retrieval. The results on the Vocabulary
challenge show that using only the High vocabulary is better than using the LowMid
vocabulary. The All vocabulary with both LowMid and High is also better than the
LowMid. The correlation graph in Figure 2 shows that All is in the middle between
LowMid and High. This observation makes us wonder if a combination of a LowMid
and High vocabulary is indeed a good way to go, or if we should focus on a High vocab-
ulary with more concepts. On one hand, the LowMid concepts are useful when no close
matches of the High level concepts are present. On the other hand, the High level con-
cepts can capture more than the combination of the LowMid level concepts. A related
point is whether the high-level concepts can improve performance on lower level con-
cept queries, such as horse riding. Will the high-level concept horse riding competition,
possibly together with other events that include horse riding, improve performance
on this query? In our opinion a concept on the same level of complexity as the query
will provide the best performance, i.e. the query horse riding will achieve a higher re-
trieval performance with the matching concept horse riding compared to the concept
horse riding competition, assuming both concept detectors perform accurately. In this
example, the higher-level concept horse riding competition only includes a limited set
of the query, resulting in a high precision but low recall situation. A lower-level con-
cept, such as horse would include a set that is too broad, resulting in a high recall and
low precision situation.

Regarding i-w2v, performance is better than current state of the art zero shot meth-
ods without re-training or re-ranking. I-w2v can be combined to the event pooling
method from Lu et al. [2016] and the DCC method of Chang et al. [2016] to gain addi-
tional performance gain. The increase in performance compared to top-k does not seem
significant, but when increasing the amount of concepts, the possibility of query drift is
high. Current top-k strategy is to add only the most relevant concept. With a direct or
near direct match between the event and the concepts, this is a reasonable strategy. In
other tasks or with other events, this strategy is not optimal and a different number of
k should be taken. Instead of optimizing the number k for each task, our strategy does
not need this optimization. I-w2v is also able to combine concepts which cover different
facets of the event, whereas other methods might only use the raw cosine similarity.
Additionally, i-w2v does not seem that sensitive to the cutoff point, as shown in Table
II.

Our proposed i-w2v method approaches the manual method. An advantage of the
manual method is that human knowledge is richer than the knowledge in current
knowledge bases or in word2vec, but the disadvantage is that 1) it requires a human to
interpret all queries, which seems unfeasible in real-world applications; 2) it is hard for
a human to indicate the proper weight. CN and w2v can automatically assign weights,
but these weights are based on textual similarity. W2v learns from the context in which
words appear, but the context does not indicate if the words are similar because they
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have an antonym (cat vs. dog), hyponym (chihuhua vs. dog), hypernym (animal vs. dog)
or other type of relation. Knowledge bases such as ConceptNet have such relations,
but for events little or no information is present. Because word2vec works as a vector
model, the combination of multiple words in an user query gives better results than a
combination of the different words searched in one of the knowledge bases. The method
can, however, still be improved, because concepts with one directly matching word,
such as tree in the concept tree frog for the event FellingTree and home in home theater
for the event RenovateHome, sometimes retrieve a similarity that can be argued to be
too high. But our word2vec method does not suffer from query drift and it approaches
human performance, especially in a vocabulary that contains high-level concepts. In
future work, an option could be to combine our method with the manual method by use
of relevance feedback or use a hybrid method containing i-w2v and a knowledge base.

7. CONCLUSION
In this paper, we presented our Semantic Event Retrieval System that 1) includes
high-level concepts and 2) uses a novel method in Concept Selection (i-w2v) based
on semantic embeddings. Our experiments on the international TRECVID Multime-
dia Event Detection benchmark show that a vocabulary including high-level concepts
can improve performance on the retrieval of complex and generic high-level events in
videos, indicating the importance of high-level concepts in a vocabulary. Second, we
show that our proposed Concept Selection method outperforms state of the art.
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