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Neighbourhood Structure Preserving Cross-Modal
Embedding for Video Hyperlinking

Yanbin Hao , Member, IEEE, Chong-Wah Ngo, Member, IEEE, and Benoit Huet , Member, IEEE

Abstract—Video hyperlinking is a task aiming to enhance
the accessibility of large archives, by establishing links between
fragments of videos. The links model the aboutness between
fragments for efficient traversal of video content. This paper
addresses the problem of link construction from the perspective
of cross-modal embedding. To this end, a generalized multi-modal
auto-encoder is proposed. The encoder learns two embeddings from
visual and speech modalities, respectively, whereas each of the
embeddings performs self-modal and cross-modal translation of
modalities. Furthermore, to preserve the neighbourhood structure
of fragments, which is important for video hyperlinking, the auto-
encoder is devised to model data distribution of fragments in a
dataset. Experiments are conducted on Blip10000 dataset using
the anchor fragments provided by TRECVid Video Hyperlinking
(LNK) task over the years of 2016 and 2017. This paper shares
the empirical insights on a number of issues in cross-modal
learning, including the preservation of neighbourhood structure
in embedding, model fine-tuning and issue of missing modality, for
video hyperlinking.

Index Terms—Video hyperlinking, cross-modal translation,
structure-preserving learning.

I. INTRODUCTION

THE ability to access and navigate within videos as effi-
ciently as web pages by link traversal has been envisioned

to improve user experience. Video hyperlinking [1], aiming to
create links across video fragments, is one example of efforts
towards enhancing accessibility of video archive. This research
subject has recently been benchmarked in MediaEval [2] and
TRECVid [1]–[4] during years 2014 to 2017. Figure 1 shows
an example to motivate video hyperlinking task. This paper re-
visits video hyperlinking from the perspective of learning cross-
modal features. We generalize the cross-modal neural networks
popularly used for this problem [5]–[8]. More importantly, new
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Fig. 1. Examples of video hyperlinking. The first anchor (left) showing the
making of blended drinks is hyperlinked to two target fragments, where one is
about blended drink recipes and the other is the trials and travails in preparing
blended drinks for a Halloween party. The second anchor (right) about golf
coaching is hyperlinked to a target fragment introducing fairway wood. The
texts underneath the filmstrips are speech transcripts extracted from the audio
stream of the video using ASR (Automatic Speech Recognition).

insights are provided on the essential of learning structure-
preserving cross-modal embedding for hyperlinking.

The two major issues of video hyperlinking are the selection of
fragments as anchors (i.e., sources) and linking of anchors to tar-
get fragments (i.e., destinations) [9], [10]. This paper addresses
the latter issue. Specifically, given an anchor as query, candidate
targets for hyperlinking are ranked based on their “aboutness”
in anchoring the multi-modal content of a query. The definition
of “aboutness” is multi-perspective, such as zoom-into-details,
contextually relevant, and provision of second opinion [11], [12].
This paper treats “aboutness” as anchoring of contextually rel-
evant content from different modalities. For example, creating
a hyperlink from an anchor showing pictures of London Par-
liament with verbal reference to the British Royal family to a
target fragment with the Queen of England as main subject. In
this case, despite that the delivered content by anchor and target
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can be visually and orally different, both fragments are linked
for being related by a context that may trigger user interest. As
such, video hyperlinking is fundamentally different from near-
duplicate video retrieval [13]–[15] which focuses on detecting
similar versions of fragments due to different video capturing
viewpoints or audio-visual editing effects.

Video hyperlinking is generally treated as a two-stage pro-
cess: query formulation and video search. The former is to mine
topics of interest from an anchor as queries, and the latter is
to search for targets of each topic [16]. Examples include [17]
which performs hierarchical topic modeling of video archive
and then represents each anchor as a vector of topics; and [18]
which forms query by extracting multi-modal name entities from
anchors for searching targets. Similar to conventional video re-
trieval algorithms, the search of targets relies mostly on early
[5] or late fusion [19], [20] of multi-modal features. Along this
direction, various approaches have been benchmarked in Me-
diaEval [2] and TRECVid 2015 [1], and attained satisfactory
performances. Since TRECVid 2016 [3], to further encourage
the exploitation of multi-modal features, anchors are selected
to contain a combination of verbal-visual information. Specifi-
cally, the selected anchors for benchmarking are accompanied
either with verbal phrases like “seeing here” and “looks like” but
the actual targets are not visually seen in videos, or vice versa
where the objects and scenes crucial for a video are seen but not
mentioned in speech track.

The strategic change in anchor selection has indeed pushed
the investigation of cross-modal translation for video hyper-
linking. Representative studies include variants of multi-modal
deep auto-encoder networks (MmDAE) [7], [21], [22], which
learns cross-modal embedding representation to translate from
one modality feature to another. Video hyperlinking can thus be
performed by transforming anchors to an embedding that en-
ables cross-modal search of targets. There are two major ways
of learning embedding, either learning a single embedding that
projects different forms of modalities into a common space, or
multiple embeddings each for a modality. Different from other
cross-modal translation tasks, such as video/image captioning
[23] or creation [24], metric learning [25], [26], retrieval [27]–
[30] or content presentation [31], where visual and text cues are
assumed fully correlated, the multi-modal features in general
videos are more often complementary to each other rather than
correlated. Hence, learning multiple embeddings is regarded as
a more viable way of representation learning for video hyper-
linking.

The main research issues studied in this paper are twofold:
learning multiple embeddings to characterize the complemen-
tary nature of multiple modalities, and encapsulating local
neighbourhood structure in the embeddings for robust hyper-
linking. The first issue is addressed by unifying two variants
of MmDAE [7], [8], [21] that learns embedding individually
per modality while performing feature translation within and
across modalities. The learning strategy can tolerate weakly cor-
related modalities, by ensuring that different modalities will not
be blindly embedded into a common space. The second issue
is inspired by the recent study in [32] where the preservation
of local neighbourhood structure is taken into account for the

learning of embedding. As studied in [10], the local data char-
acteristics of an archive plays a critical role in hyperlinking, for
example, to reduce the risk of false linking and to prevent linking
to redundant targets. Therefore, a robust way of hyperlinking is
by preserving local data structure while learning embeddings
to bridge modality gap. In this way, the neighbourhood statis-
tics among anchor-target pairs are less likely to be arbitrarily
changed during the course of learning. Both issues are seldom
investigated in the literature of video hyperlinking [8], [18], [20].

The novelty of this paper is on the proposal of a new neigh-
bourhood preserving MmDAE, which jointly addresses the is-
sues of feature learning and local structure preservation. The
main contributions are summarized as follows:
� A generalized MmDAE (G-MmDAE), which unifies two

previous versions of MmDAE [7], [8], is proposed.
� Variants of structure-preserving embedding based on G-

MmDAE are explored for video hyperlinking. Along this
direction, issues such as model training and missing modal-
ity are addressed.

The remaining of this paper is organized as follows.
Section II reviews the existing cross-modal embedding neural
networks being developed for video hyperlinking. Section III
describes issues in video fragmentation and feature preparation.
Section IV outlines formulas for generalization of cross-modal
embedding, and extension of it to structure-preserving embed-
ding for video hyperlinking. Section V presents results and
empirical insights on Blip10000 dataset. Finally, Section VI con-
cludes this paper.

II. RELATED WORKS

Auto-encoder (AE) is one of the most commonly used tech-
niques for representation learning, aiming to minimize the re-
construction error between the input and its reconstructed es-
timation from the hidden layer representation. In this section,
we review two variants of AEs which have been used success-
fully in video hyperlinking. These AEs are designed for multi-
modal embedding and cross-modal translation. More concretely,
a modality (e.g., keyframes) is embedded and then translated to
a new modality (e.g., speech). The reconstruction loss between
the decoded and original modalities is then leveraged as the yard-
stick to optimize the parameters of AEs. In video hyperlinking,
only two modalities are generally considered: speech and visual
tracks. With the fact that speech transcript can be noisy, direct
translation from visual track to speech sequence is not likely
to yield satisfactory performance. As a consequence, instead of
adopting recurrent neural networks to decode a learnt represen-
tation into sentences, speech is decoded as a feature vector rather
than a word sequence in these AEs.

The first AE, named as MmDAE-O [7], projects two differ-
ent modalities into a common representation, as shown in Fig-
ure 2(a). The input layer for each modality is followed by one
or multiple fully-connected layers, before being collapsed into a
common representation layer. This layer is fully connected, and
interacts two modalities by non-linear transformation to create
a joint multi-modal embedding. The learnt embedding is then
decoded to its original forms of modalities by passing through
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Fig. 2. Two variants of multi-modal auto-encoders used in the literature of
video hyperlinking: (a) MmDAE-O learns one embedding, (b) MmDAE-T learns
two embeddings for cross-modal translation.

two separate paths, each having equal number of fully-connected
layers as the encoder. Reconstruction loss, which measures the
distance between input and output modalities, is backpropagated
end-to-end for network learning. The learnt embedding is ex-
pected to capture the latent representations of both modalities.
With MmDAE, the embeddings of video fragments are extracted
and indexed for video hyperlinking.

Instead of creating a common embedding, the second AE,
named MmDAE-T [8], is composed of two subnetworks to
generate two different embeddings, one for each modality.
MmDAE-T, as shown in Figure 2(b), is formed by two encoder-
decoder pairs for cross-modal translation. The two subnetworks
share the same parameter weights for the layers adjacent to the
representation layer (as marked in the green and red dotted lines).
Rather than collapsing two modalities into a joint representa-
tion, MmDAE-T makes two different embeddings compatible
through reconstructing the modalities of counterparts. In [5],
the embeddings extracted from a video fragment are posteri-
orly concatenated as feature for hyperlinking. Note that both
MmDAE-O and MmDAE-T can deal with the problem of miss-
ing modalities. MmDAE-O performs this by zeroing the input
of missing modalities. MmDAE-T either duplicates embedding
from another modality or treats the decoded modality as the
input of missing modality [8].

In addition to MmDAE, other forms of embeddings that have
been attempted for hyperlinking include generative adversar-
ial networks (GAN) [33] and semantic representation network
(SRN) [20]. In [33], the generator of GAN is applied to generate
keyframe from speech. The speech embedding of the genera-
tor together with the convolution feature of a keyframe form a
visual-speech pair, which is further predicted by discriminator
as either true, false or synthetic pair. The embedding of the dis-
criminator is ultimately treated as the representation of a video
fragment. While being technically novel, the training of GAN is
computationally more demanding than MmDAE. Furthermore,
video context cannot be captured by GAN as the learning in-
volves only speech-image pairs, rather than speech-video pairs
as in MmDAE. SRN [20] treats hyperlinking as a classifica-
tion task, by predicting probability of hyperlinking between two
input video fragments. Compared with MmDAE [33], SRN suf-
fers from the requirement to label anchor-target pairs for net-
work learning. As demonstrated in this paper (Section V), Mm-
DAE is feasible to be trained by using video-caption pairs which
are more easily obtained than manually labelling anchor-target
pairs.

While the idea of structure-preserving embedding is new for
video hyperlinking, it has been recently studied in near-duplicate
video search [15], [32], [34] and image retrieval [35]–[38] in
the context of social media. In [36], for example, the learnt
embeddings is trained to keep the local structure of the orig-
inal visual and tag similarities. These local information are
essential for applications such as hashing and retrieval. The
structure-preserving embedding in this paper, although similar in
spirit as [32], [39], [40], is formulated on the basis of encoder-
decoder framework for self- and cross-modal embedding. As
such, the formulation of the proposed deep network is fairly dif-
ferent from the structure-preserving formulation used in other
context.

III. CONTENT PREPROCESSING

This section starts by presenting the segmentation of videos
into fragments (or clips), where each fragment is regarded as a
target candidate (III-A). The extraction of multi-modal features
from video fragments is also detailed (III-B).

A. Video Fragmentation

Video is treated as a sequence of visual and audio streams.
Among various audio content, we consider only speech track,
which is not only rich of textual information but also provides
vivid cues for fragmentation through speech pause and speaker
transition. The speech track is converted into transcripts, along
with speech segment boundaries, by using LIMSI speech recog-
nition system (ASR) [41]. In hyperlinking, as discussed in [42], a
viewer expects that a target starts from the beginning rather than
middle of a speech. Hence, this paper considers a video frag-
ment as an uninterrupted speech sentence. Using speech bound-
aries, however, can result in excessive number of very short
fragments, especially in conversation where utterances involves
only a few spoken words. On the other hand, speech boundary
is undefined for silent video segments, and thus the duration of
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Fig. 3. An example illustrating the process of video fragmentation. A video is initially partitioned based on speech boundaries (black dash lines). Adjacent
short fragments (e.g., seg6) are merged resulting in new boundaries (blue solid lines). Finally, fragments with only visual streams are either split or merged with
fragments depending on length, ending up the final fragmentation (red solid lines).

a speechless fragment can be lengthy. To strike the balance, a
heuristic speech-driven fragmentation algorithm is proposed as
following.

The proposed algorithm starts by decomposing a video into
fragments based on speech boundaries. The fragments with
speech length less than a threshold τ will then be merged. Specif-
ically, the algorithm scans a video from beginning to end, and
progressively groups the adjacent fragments until the minimum
target length τ reaches. Next, silent segments are split into frag-
ments of fixed length τ . A fragment with length less than τ , as
a result of splitting, is absorbed by its previous fragment along
the time order. Figure 3 shows an example that illustrates the
process of the proposed video fragmentation.

B. Fragment Descriptors

A fragment is represented by both visual and textual descrip-
tors. Visual descriptor is characterized by a high dimensional
vector, corresponding to either the features extracted from the
convolutional layer of neural network [43] or the histogram of
concept appearance [44]. Instead of employing content-based
keyframe selection such as based on shot boundary detection
[45], uniform sampling of keyframes at the rate of one frame
per three seconds from a fragment is adopted for efficiency rea-
son. As reported by [32], [34] in the context of near-duplicate
video retrieval, the performance difference between uniform and
content-based keyframe selection is insignificant. The features
extracted from keyframes are averagely pooled to form a visual
descriptor.

By treating the transcript as a document, textual descriptor is
represented either as a bag-of-words vector using TF-IDF [46]
or an encoded vector using word2vec trained based on Google
news dataset [47]. For the latter, words in a transcript are first
encoded by word2vec and then weighted averaged to form a de-
scriptor. Specifically, let vi = [vi1, . . . , vidW

]T denote the dW -
dimensional vector of the ith word in a vocabulary composed
of U words. Furthermore, let x = [x1, . . . , xU ]

T be the bag-of-
words vector of a transcript that captures the TF-IDF scores of
every word, i.e., xi. A textual descriptor, z, is thus computed as
following

z =

∑U
i=1 xivi

∑U
l=1 xl

. (1)

Fig. 4. Network architecture of G-MmDAE. The red and green arrows point
to two groups of shared network parameters.

IV. GENERALIZED MMDAE

This section generalizes MmDAE by integrating its variants
(Figure 2) into a single network, named G-MmDAE. Similar
to MmDAE-T, two embeddings (or representation layers) are
learnt in G-MmDAE, one for each modality (i.e., visual and tex-
tual descriptors). Meanwhile, as MmDAE-O, each embedding
of G-MmDAE is trained to reconstruct two different modali-
ties. Referring to Figure 4, the network is formed by two sub-
networks with four different encoder-decoder paths, performing
either cross-modal translation or self-modal reconstruction. The
network parameters before and after representation layers are
shared (except biases) depending on the modality to be encoded
or decoded. Specifically, the path to encode the representation
of a modality shares the same parameter weights as the path to
decode the representation of that modality. The weight sharing
strategy enforces the mapping in the middle layers to be as close
as possible to each other’s inverses, which further enhances the
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learnt representation to be more attainable from either one of the
modalities [5]. In terms of learning effectiveness, this strategy
enables simultaneous learning of the two sub-networks. Fur-
thermore, the number of network parameters is reduced, which
potentially avoids the problem of overfitting in learning.

A. Network Architecture

Denote an encoder branch asΦE(x,θE) and a decoder branch
as eitherΦSD(x,ϑSD) orΦCD(x,ϑCD). The subscriptSD in-
dicates decoding of the original modality (i.e., self-decoding),
and CD indicates cross-modal decoding from visual to text or
vice versa. The notationx refers to input, whileθ andϑ represent
network parameters. Given a batch of visual-textual descriptor
pairs, denoted as {(z(1)

t , z
(2)
t )}Bt=1, as training samples, the pa-

rameters of G-MmDAE are optimized using the mean squared
error (MSE), as follows

LMSE = α
(
L
(1)
S + L

(2)
S

)
+ (1− α)

(
L
(1)
C + L

(2)
C

)
, (2)

which performs weighted sum of losses accumulated from four
different paths. For ease of reading, we use superscripts (1) and
(2) to denote two different modalities, and subscripts S and C
to indicate self- or cross-modal decoding respectively. The pa-
rameter 0 ≤ α ≤ 1 controls the weights of different losses. The
loss at each path is quantified as

L
(1)
S =

1

B

B∑

t=1

∥
∥
∥ΦSD

(
ΦE

(
z
(1)
t ,θ

(1)
E

)
,ϑ

(1)
SD

)
− z

(1)
t

∥
∥
∥
2

2
,

(3)

L
(2)
S =

1

B

B∑

t=1

∥
∥
∥ΦSD

(
ΦE

(
z
(2)
t ,θ

(2)
E

)
,ϑ

(2)
SD

)
− z

(2)
t

∥
∥
∥
2

2
,

(4)

L
(1)
C =

1

B

B∑

t=1

∥
∥
∥ΦSD

(
ΦE

(
z
(1)
t ,θ

(1)
E

)
,ϑ

(2)
CD

)
− z

(2)
t

∥
∥
∥
2

2
,

(5)

L
(2)
C =

1

B

B∑

t=1

∥
∥
∥ΦSD

(
ΦE

(
z
(2)
t ,θ

(2)
E

)
,ϑ

(1)
CD

)
− z

(1)
t

∥
∥
∥
2

2
,

(6)

where there are two sets of mapping parameters {θ(g)
E }2g=1 for

encoding, two sets {ϑ(g)
SD}2g=1 for self-modal decoding and two

sets {ϑ(g)
CD}2g=1 for cross-modal decoding. Here, ‖ · ‖2 denotes

the l2-norm. Note that G-MmDAE degenerates to MmDAE-T by
settingα = 0, and to a simplified version of MmDAE-O without
cross-modal decoding by setting α = 1.

B. Training With Stochastic Structure Retaining

The network parameters of G-MmDAE are optimized by
minimizing the reconstruction errors between paired inputs. As
training samples are treated independently during optimization,
the neighborhood structure of samples is not considered. As re-
vealed in [10], local data structure characterizes the popularity
and risk of hyperlinking, which provides cues for establishment

of hyperlinks. Therefore, in principle, embedding should change
data distribution under the guidance of the original neighbor-
hood structure and not merely based on individual sample. With
this motivation, we devise the training of G-MmDAE such that
the learnt representation can preserve as much as possible the
original data statistics and structure. This is achieved through
stochastic structure retaining, where the key idea is to enforce
the training samples in a mini-batch to exhibit similar neighbour-
hood structure in both the embedding and original spaces. In the
following, we first present the construction of neighbourhood
structure, followed by learning of structure-preserving cross-
modal embedding.

Probabilistic encoding of neighbourhood structure. Given
a video fragment i, the likelihood of picking another fragment j
as its neighbour is represented by conditional probability. Denote
dij as the distance between fragments i and j, the conditional
probability is described as

ϕ(dij , σi) =
exp

(
− d2

ij

2σ2
i

)

∑
t∈I,t �=i exp

(
− d2

it

2σ2
i

) , (7)

where I is the set of training samples in a mini-batch. The
Gaussian parameter σi is centered on fragment i, and character-
izes how fast the similarity between fragments j and iwill vanish
when their distance increases. Any particular value ofσi induces
a probability distribution, {ϕ(dij , σi)}j∈I , over I . The Shannon
entropy of this distribution increases in proportion to the value
of σi [48]. Given a batch of visual-textual descriptor pairs, de-
noted as {(z(1)

t , z
(2)
t )}Bt=1, as training samples, we can compute

two pairedB ×B matrices (P1 = [p
(1)
j|i ],P2 = [p

(2)
j|i ]) based on

Eq. (7). The matrices represent the pairwise probabilities
of visual and textual modalities respectively, where p

(g)
j|i =

ϕ(d
(g)
ij , σ

(g)
i ), g ∈ {1, 2}. The measure dgij is computed using

cosine distance metric as following

d
(g)
ij = 1− cos

(
z
(g)
i , z

(g)
j

)
. (8)

The parameter σi is estimated based on [49], which per-
forms binary search of σi such that the Shannon entropy, i.e.,
−∑

j �=i ϕ(dij , σi) log2 ϕ(dij , σi), approaches to log2 K. Here,
K is an integer perplexity parameter assumed to be specified by
user. As analysis in [32], [48], [50], K can be interpreted as a
smooth measure of the effective number of neighbours. Perform-
ing binary search for each mini-batch, however, can be compu-
tational expensive. We approximate the value of σi by perform-
ing the binary search on several example sets of B (mini-batch
size) fragments. In the implementation, each estimation of σi in-
volves B − 1 fragments uniformly sampled from a mini-batch.
The process is repeated for five times, and the resulting values
of σi are averaged as the final value. The estimation of σi us-
ing small samples still works satisfactorily, although structural
properties (e.g., effective number of neighbours) can be more
perfectly estimated with the whole training data at the expense
of computational time. As studied in [49], the performance of
stochastic neighbour embedding is fairly robust as long as the
value of K is in a reasonable range (e.g., 5 to 50). To this end,
two probability matrices are constructed similarly for the visual
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and textual embeddings of training samples. Denote (e(1)t , e
(2)
t )

as a pair of learnt embeddings, their B ×B probability matri-
ces, (Q1 = [q

(1)
j|i ],Q2 = [q

(2)
j|i ]), are computed via Eq. (7), where

q
(g)
j|i = ϕ(1− cos(e

(g)
i , e

(g)
j ), 1√

2
), g ∈ {1, 2}. Here, we fix the

Gaussian parameter σ to a constant of 1√
2

. As argued in [32], it is
not necessary to scale the distances in both spaces, since similar
effects can be achieved by scaling one and fixing the other.

Structure-preserving embedding. Following [15], [39],
[50], Kullback-Leibler (KL) divergence is employed to measure
the degree of matching between two distributions. Specifically,
given two probability matrices, P and Q, the KL divergence of
sample distributions between the original and embedding spaces
is

SKL(Q,P) =
∑

i�=j

pj|i log
pj|i
qj|i

. (9)

As KL divergence is not symmetric, different types of pairwise
distance errors in the embedded space are not weighted equally.
In particular, there is a large score when representing nearby
datapoints with widely separated embedded points, but there
is only a small score when representing widely separated dat-
apoints with nearby embedded datapoints. In other words, this
structure matching function is asymmetric and focuses on retain-
ing the local structure of training data in the embedded space.
Considering the architecture of G-MmDAE, we employ asym-
metric KL divergence and the loss function is

LKL(θ
(1)
E ,θ

(2)
E ) = SKL(Q1, αP1 + (1− α)P2)

+ SKL(Q2, αP2 + (1− α)P1). (10)

The parameter 0 ≤ α ≤ 1 plays the same role as in Eq. (2) to
weight the importance between the probability matrices con-
structed from visual and textual descriptors. Finally, this loss
function is combined with Eq. (2) as a multi-objective loss

LMO = λLMSE + LKL, (11)

where λ ≥ 0 is a balancing parameter to control the relative
importance of LMSE to LKL.

C. A Simplified G-MmDAE

G-MmDAE can also be learnt by directly minimizing the loss
between the stochastic structure of embeddings and the origi-
nal data samples without decoder. In other words, the balancing
parameter is set to λ = 0 in Eq. (11). Due to the absence of
decoder, nevertheless, the compatibility between visual and tex-
tual embeddings is not enforced. Therefore, correlation loss is
introduced as following

LCR =
1
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)
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(13)

where Ccos(·) is the cosine similarity cost function and γ is
the margin. The notation yij = 1 indicates that the ith and jth

embeddings, e(1)i and e
(2)
j , are a positive modality pair origi-

nated from the same fragment, and otherwise yij = −1 indi-
cates a negative pair. Combining the two losses LKL and LCR,
we can get the final objective as

LKC = LKL + βLCR, (14)

where β ≥ 0 is a balancing parameter. Figure 5 depicts the ar-
chitecture of this simplified G-MmDAE.

D. Convergence Analysis

The network training is mainly governed by the optimiza-
tion of objective function, i.e., Eq. (2) for G-MmDAE, Eq. (11)
for structure-preserving G-MmDAE and Eq. (14) for simplified
G-MmDAE. As their underlying loss functions are smooth and
differentiable, local optimum solution can be guaranteed by ap-
plying gradient descent algorithm [50]. As an example, the gra-
dient formulation of SKL in Eq. (9) with respect to the learned
embedding ei is given as follows

∂SKL

∂ei
= 2

∑

j

(
pj|i − qj|i + pi|j − qi|j

)
(ei − ej) . (15)

With this formulation, back propagation is used by gradient de-
scent algorithm to update network parameters. Similar proce-
dure is applied to the loss functions of mean square error (MSE),
i.e., Eqs. (3), (4), (5) and (6), and cosine similarity, i.e., Eq. (13).

The time complexity of network training depends on the num-
bers of layers, nodes in each layer, number of training examples
and epochs. As an example, structure-preserving G-MmDAE,
which has a total of 8 hidden layers and 14,336 nodes, takes
about 20 minutes to converge using 20,000 training examples
after 50 epochs. It is worth noting that the time complexity of
MSE and cosine similarity is linear to the mini-batch sizeB. For
KL divergence, i.e., Eq. (9), pairwise comparison between two
groups of probabilities, Q and P, is required. The time com-
plexity is hence O(n2), where n is the number of examples in a
mini-batch.

V. EXPERIMENTS AND RESULTS

A. Dataset and Evaluation Metrics

The experiments are conducted on Blip10000 dataset col-
lected from blit.tv [51]. The dataset contains 3,288 hours of
videos with an average video length of 13 minutes. These videos
cover a broad range of topics such as news, art and sport. There
are 147 anchors provided by TRECVid LNK on this dataset.
These anchors come along with a ground-truth which is com-
posed of 9,602 anchor-target pairs, with 48.6% of positive pairs
and 51.4% of negative pairs. These pairs were manually as-
sessed, either as positive or negative pairs, by Mechanical Turk
(MT) workers recruited by TRECVid LNK. On average, each
anchor links to 65 targets. Note that some of videos are removed
from Bip10000 by LNK, resulting in totally 11,482 videos for
hyperlinking.

Following the evaluation mechanism used by TRECvid, the
performance is measured by precision (P) up to a depth (i.e.,
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Fig. 5. Network architecture of the simplified G-MmDAE and its training mechanism. The distributions of training samples in the original and embedded spaces
are captured by matrices Pi and Qi respectively, where i = {1, 2} corresponds to either text or visual modality. The learning aims to minimize the divergences
between these two sets of distributions, while making the embedded features learnt from different modalities as similar as possible.

TABLE I
STATISTICS ON THE NUMBER OF FRAGMENTS FOR THREE DIFFERENT POOLS

USED IN THE EXPERIMENTS. THE FRAGMENTS IN POOL-A ARE GENERATED BY

THE PROPOSED ALGORITHM (SECTION III-A), AND POOL-B BY FIXED LENGTH

SEGMENTATION. POOL-GT CONTAINS THE FRAGMENTS MANUALLY LABELED

BY MT WORKERS

P@5, P@10 and P@20), mean average precision (MAP) at the
depth of 1,000, and mean average interpolated segment preci-
sion (MAiSP) [52]. Precision and MAP do not consider the level
of overlap in frames between the ground-truth and detected frag-
ments. MAiSP, in contrast, takes into account the degree of over-
lap and averages segment precisions at different recall levels.

B. Experiment Setup

Table I shows the number of fragments on Blip10000 dataset
using the proposed approach (Section III-A) and fixed-length
segmentation. We name the resulting pools of fragments as Pool-
A (proposed approach) and Pool-B (fixed-length) respectively.
For the proposed approach, the minimum fragment length is set
to τ = 50 seconds. The average length of fragments is 70 sec-
onds. While for fixed-length segmentation, the fragment length
is set as 120 seconds following [18]. Additionally, the set of frag-
ments being labeled by MT workers are also collected to form
Pool-GT. These fragments are the results pooled from different
runs submitted by TRECVid participants, and hence the length

1As the used word embedding vectors are pre-trained based on the English
corpus and all anchors are English video clips, in this work, we only use the
visual contents of the non-English videos.

of fragments varies. All the three pools will be experimented for
hyperlinking. Note that in the experiments, we assume that the
fragments which are not labeled by MT workers are all nega-
tive samples. Therefore, the performance attained in this paper
should not be compared directly to the official results reported
by TRECVid.

Two kinds of visual descriptors are extracted: concept his-
togram (CH) and pool5 (CP5) feature from convolutional neu-
ral networks (CNN). Five CNNs are trained separately on dif-
ferent datasets that cover 15,036 concepts mostly about objects
and scenes: ImageNet (1,000 concepts) [44], ImageNet-Shuffle
(12,988) [53], Places (205) [54], TRECVid MED research col-
lection (497) [55] and SIN (346) [55]. CH visual descriptor is
formed by concatenating the outputs of all five CNNs. CP5 de-
scriptor, on the other hand, is set as the pool5 layer (2,048 di-
mensions) of the CNN trained using ImageNet. There are also
two kinds of textual descriptors: bag-of-words (BoW) using
TF-IDF, and word2vec representation using the improved Skip-
gram word2vec model [47] trained on Google news dataset. The
dimension of word2vec is set as dW = 300.

C. Compared Methods

We group the compared methods into (I) baselines:
CH, CP5, BoW, word2vec; (II) basic MmDAE vari-
ants: MmDAE-O, MmDAE-T and G-MmDAE; (III)
the proposed MmDAE that preserves neighborhood struc-
ture: G-MmDAE* (Section IV-B) and G-MmDAE*-mini
(Section IV-C); and (IV) fusion: CP5+word2vec by early
fusion, CH+BoW +MmDAE-T, CH+BoW+G-MmDAE,
CH+BoW+G-MmDAE* and CH+BoW+G-MmDAE*-mini
by late fusion with average weights.

The two input modalities to the neural networks in
groups II and III are CP5 and word2vec. All the networks
are initially trained using MSR-VTT dataset [57], which is a
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TABLE II
DETAILS OF MODEL TRAINING

TABLE III
PERFORMANCE COMPARISONS ON POOL-GT. THE TWO BEST PERFORMANCES ARE BOLDED AND UNDERLINED RESPECTIVELY

benchmark dataset used for video captioning. MSR-VTT con-
tains 10,000 web video clips and 200,000 clip-sentence pairs.
The pre-trained models are then fine-tuned by using fragments
randomly picked from Blip10000 dataset. The total number of
fragments used for fine-tuning is restricted to be about 20% of
the total fragments. As Pool-GT has relatively small number of
fragments than other pools, the neural networks experimented
on Pool-GT are fine-tuned using fragments picked from Pool-A.
Note that, for each compared method, we train the corresponding
neural network for three times. The performances of the three
networks are then averaged and reported in this paper.

The networks are implemented using PyTorch.2 All the layers
are fully connected and activated by Tanh function. For fair com-
parison, all the networks (except G-MmDAE*-mini) are set to
have the same numbers of layers and neurons in each layer. The
number of hidden neurons is 4,096 for visual descriptor CP5, and
2,048 for textual descriptor word2vec. The embedding size at
representation layer is set as 1,024 for all the networks. Further-
more, the balancing factor α is set to an equal weight, i.e., α =
0.5 (Eqs. (2) and (10)). The other balancing factor is set as λ =
1.0 (Eq. (11)) for G-MmDAE* such that the loss functions for
modality encoding and structure preserving share equal weights.
Following the work [58], the margin γ used in Ccos(·) (Eq. (13))
is fixed to 0.1 empirically. Moreover, to optimize the correlation
loss (β > 0) employed in G-MmDAE*-mini, we pick a posi-
tive modality pair with 20% probability and a random negative
modality pair with 80% probability from the training data. Fi-
nally, similar as λ, we set β = 1.0 to equally weight cross-modal
consistency and structure preserving to report the performance.

2https://pytorch.org/

The performance of G-MmDAE* and G-MmDAE*-mini are not
sensitive to the setting of the perplexity parameter K, we follow
the suggestion in [32] and set K = 20. The detailed parameter
setting for model training is listed in Table II.

D. Results

We report performances on three different Pools of dataset.
Table III shows the result of hyperlinking for 147 anchors on
Pool-GT. Single modality, either by visual or textual descriptor
alone, already achieves greater than 25% in P@5. BoW appears
to be a strong baseline outperforming all the deep neural
networks. Among the compared methods in Group-II, using
two embeddings (MmDAE-T and G-MmDAE) shows consis-
tently better performances than network with only one layer
(MmDAE-O). The result gives clues that having embeddings
peculiar to each modality is a better strategy than collapsing
both modalities into a common embedding. We speculate that
this is because different modalities are complementary, and
projecting them to a common representation layer may end up
losing information specific to a modality. G-MmDAE, which
learns two embeddings while enabling cross and self-modal de-
coding, exhibits the best performance among the three methods
in Group-II in terms of precision and MAP. By further consid-
ering neighborhood structure, G-MmDAE* in Group-III shows
higher performances in all the measures. The results verify our
claim that the learnt embeddings should preserve as much as the
original structure information for the task of hyperlinking. Inter-
estingly, the simplified version, i.e., G-MmDAE*-mini, exhibits
even better performance than G-MmDAE*. We believe that this
is because visual-textual modalities in the training samples of
Blip10000 are not as correlated as the samples of MSR-VTT.

https://pytorch.org/
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TABLE IV
PERFORMANCE COMPARISONS ON POOL-A AND POOL-B. THE TWO BEST PERFORMANCES ARE BOLDED AND UNDERLINED RESPECTIVELY

TABLE V
SPEED EFFICIENCY OF DIFFERENT APPROACHES ON POOL-A. THE AVERAGE

TIMES OF FEATURE EMBEDDING AND SEARCHING PER

ANCHOR ARE REPORTED

Further performing cross-modal decoding during fine-tuning
stage may actually hurt the feature learning of G-MmDAE*.
In other words, preserving neighborhood structure plays a
more important role than cross-modal decoding in learning
embedding. We believe that the network of G-MmDAE* can be
further optimized with more training examples for performance
boosting, as more data can generally enhance the construction
of data structure. Similar as other reported results [5], [18], [20],
fusion of different modalities or methods leads to improvement
than that of single modality or method. Particularly, as the inputs
of G-MmDAE variants are CP5 and word2vec, further late
fusing the results with CH and BoW leads to significantly larger
improvement. The results show that the learnt embeddings are
complementary to low-level hand-crafted features.

Table V shows the running time required for an anchor from
feature embedding to target hyperlinking. Excluding the time
spent on extracting anchor descriptors, variants of MmDAE take
less than 0.1 s to complete the search of targets. The time is com-
patible to baselines such as CH and CP5, and varies depending
on feature dimension.

Effect of fragmentation. Table IV shows the performances
of various methods on Pool-A and Pool-B. As these pools in-
clude significantly more fragments than Pool-GT, it is not sur-
prising to notice performance degradation. Different from the
performances observed on Pool-GT, all deep models consis-
tently outperform BoW. Except this, the performance trend is

TABLE VI
IMPACT OF SELF-MODAL VERSUS CROSS-MODAL DECODING. NOTE:

α = 0, 0.5, 1 REFER TO CROSS, SELF+CROSS, AND SELF-MODAL DECODING

RESPECTIVELY (SEE EQS. (2) AND (10)). THE EXPERIMENT IS

CONDUCTED ON POOL-A

similar. Structure-preserving embedding exhibits better perfor-
mance, and further fusion with CH and BoW leads to the overall
best performances in P@K, where K={5, 10, 20}. Fusion, how-
ever, either does not improve or degrade the MAP performance.
In other words, although fusion boosts the ranking of some true
positives to K ≤ 20 position, overall it does not promote or re-
call more true positives within the depth of K = 1, 000. Fusion
basically help in pushing the ranking position if different meth-
ods equally rank a true positive high. Otherwise, the rank of
a true positive is likely to degrade after taking average fusion.
Comparing two different fragmentation methods, most methods
show higher performance in P@5 on Pool-B and in MAP on
Pool-A. which may due to the fact that fragments with longer
length are more likely to overlap with ground-truth. The re-
sult can be interpreted as that more sophisticated fragmentation
scheme as presented in Section III-A can help recalling more
number of relevant targets, but pushing them to higher rank po-
sition for hyperlinking remains difficult. On the other, the result
may also imply that aligning the start and end times of a frag-
ment with speech is possibly not critical. Users can still forward
or backward a video as long as the desired content is captured
by the fragment.

Effect of fine-tuning. We also study the effect of fine-tuning
on the performance. By using the model trained based on MSR-
VTT dataset only, the methods in Group-II show similar per-
formance as with the version with model fine-tuning. The result
can verify that the embeddings learnt by these methods indeed
properly capture the cross-modal signals. As a consequence, the
network parameters are not overwhelmingly overridden when
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TABLE VII
EFFECT OF REPLACING MISSING MODALITY WITH QUERY EXPANSION

TABLE VIII
PERFORMANCE BREAKDOWN FOR THREE SETS OF ANCHORS. RESULTS ON POOL-A ARE REPORTED. THE TWO BEST PERFORMANCES ARE BOLDED AND

UNDERLINED RESPECTIVELY

being fine-tuned on a dataset of very different content. On the
other hand, as the methods in Group-III aim to preserve neigh-
borhood statistics of the original dataset, model fine-tuning is a
necessary step for learning data distribution. As experimented,
fine-tuning boosts the performance of G-MmDAE* by 5%–
10% (P@5, Pool-A and Pool-B) compared to pre-trained model.
Nevertheless, as discussed in the previous paragraph, detaching
decoder of G-MmDAE* from fine-tuning, i.e., G-MmDAE*-
mini, can achieve higher performance boost. We speculate that
the fine-tuning of G-MmDAE* decoder could be effective if
applying methods such as [59] to filter the fragments with
weak correlation between visual and textual modalities from
training.

Self vs. cross-modal decoding. We further investigate the
fundamental difference in performances between self and cross-
modal decoding, by tuning the parameter α for G-MmDAE and
G-MmDAE*. Table VI lists the results of comparison. Cross-
modal translation attains higher precision (P@5 and P@10),
but shows either competitive or lower performances than self-
modality decoding in other measures. In other words, cross-
modal embedding is helpful in pushing relevant targets, which is
important for video hyperlinking. However, the embedding also
introduces noise resulting in performance fluctuation. Decod-
ing both self and cross modalities compromises their respective
performances and attains the overall best P@5.

We also experiment the effect of G-MmDAE variants in deal-
ing with missing modalities. For example, for a fragment with-
out speech track, text embedding is obtained by treating the
decoded modality of visual descriptor as input. Similarly to
[5], we refer to this method as “query expansion”. The ex-
periment is conducted on Pool-A by randomly removing one

modality of a fragment with a probability of 0.3. Through this
process, we make sure that, in the resulting dataset, there are
15% of fragments with missing speech and 15% with miss-
ing visual modality. Table VII shows the experimental result.
As shown, better performances are consistently observed in
both versions of G-MmDAE when query expansion strategy is
adopted.

Performance variations among anchors. The 147 anchors
are created across different years and with different emphasis
for hyperlinking. For example, the first 28 anchors are picked to
convey speech-to-speech hyperlinking and included as the de-
velopment set of TRECVid LNK 2016 (Dev’16). Hence, visual
descriptor plays a minor role. On the other hand, the remain-
ing anchors are selected to convey speech-to-visual information,
and thus cross-modal features are expected to be more effective.
Table VIII shows the performances across the three set of an-
chors on Pool-A. For the first 28 anchors in Dev’16, the result
shows that performance using textual descriptor is significantly
better than visual descriptor. Although these anchors emphasize
more on speech-to-speech hyperlinking, combining both visual
and speech manages to boost the performance. Performances
on the remaining anchors in Test’16 and Test’17, nevertheless,
show different trends. In Test’16, which has 94 anchors, the
performance gap between visual and textual descriptors is rel-
atively smaller. Hence, cross-modal embedding leads to larger
improvement than single modality compared to the performance
observed in Dev’16. In Test’17, in contrast, BoW appears to be
a strong baseline significantly better than all the methods in
groups I to III. We speculate that this is due to bias in ground-
truth annotation because there are relatively few teams partic-
ipating in TRECVid LNK 2017 benchmarking. In summary,
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Fig. 6. Performance changes in P@5 for (a) G-MmDAE* and (b) G-
MmDAE*-mini when varying the values of λ and β respectively. The exper-
iments are conducted on Pool-A and the value of α is fixed to 0.5.

despite different observations made on different subsets of an-
chors, late fusion of groups I and III yields either very compet-
itive or best overall performances.

Parameter sensitivity. Here, we investigate the impacts of
two hyper parameters, λ and β in Eq. (11) and Eq. (14) respec-
tively, which balance different loss functions in G-MmDAE* and
G-MmDAE*-mini. When their values are set to 0, only structure
preservation is enforced while cross-modal embedding compat-
ibility is not considered. On the other hand, when larger val-
ues are set, the importance of structure preservation w.r.t cross-
modal translation decreases. Figure 6 shows the performance
trends by varying the values of λ and β in the ranges of [0, 10],
respectively. Either ignoring (λ, β = 0) or over-emphasizing
(λ, β > 1) cross-modal decoding leads to suboptimal perfor-
mance. Indeed, the proposed settings of λ, β = 1, which are
intuitively to balance both factors, successfully leverage them
to boost performance.

VI. CONCLUSION

We have presented a generalized version of multi-modal auto-
encoder popularly used in the literature of video hyperlinking.
The proposed encoder (G-MmDAE) learns two feature embed-
dings, while performing both self and cross-modal decoding.
Empirical results on Blip10000 dataset show that G-MmDAE
manages to compromise the performances between MmDAE-O
and MmDAE-T, which either learns one embedding or performs
only cross-modal decoding. Furthermore, the paper contributes
by introducing structure-preserving embedding learning on top
of G-MmDAE. A simplified version without explicit decoding of
modalities is also proposed. The new proposals (G-MmDAE*
and G-MmDAE*-mini) show performance improvement over
G-MmDAE.

Comprehensive experimental verification has been conducted
using 147 anchors provided by TRECVid on Blip10000 dataset.
One key conclusion is the feasibility of learning G-MmDAE
and its variants (without structure preserving) using video cap-
tioning datasets. Our results verify that the parameters learnt
by these models properly capture cross-modal signals for video
hyperlinking. G-MmDAE*, on the other hand, requires model
fine-tuning for learning data distribution. As in reality visual
and speech modalities are not necessarily strongly correlated
as in video captioning datasets, learning through self and cross-
modal decoding sometimes will hurt the performance. As a con-
sequence, learning correlation between embedding features (i.e.,
G-MmDAE*-mini) appears to be a safer strategy than perform-
ing modality decoding (G-MmDAE*). Nevertheless, in the case
when a dataset consists of fragments with missing modalities, G-
MmDAE* is more applicable for effectiveness in “filling in” for
missing modalities with query expansion. Finally, throughout
the experiments, there is no obvious difference between using
fixed length video fragmentation and the algorithm proposed
in this paper (i.e., sentence level segmentation). Aligning frag-
ments with start and end times of speech may not be critical
although helpful in finding more relevant targets of an anchor.
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