
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

5-2018

k-means: A revisit k-means: A revisit

Wan-Lei ZHAO

Cheng-Hao DENG

Chong-wah NGO
Singapore Management University, cwngo@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Computer Engineering Commons

Citation Citation
1

This Journal Article is brought to you for free and open access by the School of Computing and Information
Systems at Institutional Knowledge at Singapore Management University. It has been accepted for inclusion in
Research Collection School Of Computing and Information Systems by an authorized administrator of Institutional
Knowledge at Singapore Management University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6304&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6304&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Neurocomputing 291 (2018) 195–206

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

k -means: A revisit

Wan-Lei Zhao

a , ∗, Cheng-Hao Deng

a , Chong-Wah Ngo

b

a Fujian Key Laboratory of Sensing and Computing for Smart City, and the School of Information Science and Engineering, Xiamen University, Xiamen

361005, PR China
b Department of Computer Science, City University of Hong Kong, Hong Kong

a r t i c l e i n f o

Article history:

Received 3 December 2016

Revised 12 February 2018

Accepted 21 February 2018

Available online 28 February 2018

Communicated by Deng Cai

Keywords:

Clustering

k -means

Incremental optimization

a b s t r a c t

Due to its simplicity and versatility, k -means remains popular since it was proposed three decades ago.

The performance of k -means has been enhanced from different perspectives over the years. Unfortunately,

a good trade-off between quality and efficiency is hardly reached. In this paper, a novel k -means variant

is presented. Different from most of k -means variants, the clustering procedure is driven by an explicit

objective function, which is feasible for the whole l 2 -space. The classic egg-chicken loop in k -means has

been simplified to a pure stochastic optimization procedure. The procedure of k -means becomes simpler

and converges to a considerably better local optima. The effectiveness of this new variant has been stud-

ied extensively in different contexts, such as document clustering, nearest neighbor search and image

clustering. Superior performance is observed across different scenarios.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Clustering problems arise from variety of applications, such as

documents/web pages clustering [1] , pattern recognition, image

linking [2] , image segmentation [3] , data compression via vector

quantization [4] and nearest neighbor search [5–7] . In the last

three decades, various clustering algorithms have been proposed.

Among these algorithms, k -means [8] remains a popular choice

for its simplicity, efficiency and moderate but stable performance

across different problems. It was known as one of top ten most

popular algorithms in data mining [9] . On one hand, k -means has

been widely adopted in different applications. On the other hand,

continuous effort s have been devoted to enhance the performance

k -means as well.

Despite its popularity, it actually suffers from several latent is-

sues. Although the time complexity is linear to data size, tradi-

tional k -means is still not sufficiently efficient to handle the web-

scale data. In some specific scenarios, the running time of k -means

could be even exponential in the worst case [10,11] . Moreover, k -

means usually only converges to local optima. As a consequence,

recent research has been working on either improving its cluster-

ing quality [12,13] or efficiency [2,13–19] . k -means has been also

tailored to perform web-scale image clustering [2,20] .

∗ Corresponding author.

E-mail addresses: wlzhao@xmu.edu.cn (W.-L. Zhao), chenghaodeng@stu.xmu

.edu.cn (C.-H. Deng), cscwngo@gapps.cityu.edu.hk (C.-W. Ngo).

There are in general three steps involved in the clustering

procedure. Namely, 1. initialize k cluster centroids; 2. assign each

sample to its closest centroid; 3. recompute cluster centroids

with assignments produced in Step 2 and go back to Step 2 until

convergence. This is known as Lloyd iteration procedure [8] . The it-

eration repeats Step 2 and Step 3 until the centroids do not change

between two consecutive rounds. Given C 1 ���k ∈ R d are cluster cen-

troids, { x i ∈ R d } i =1 ... n are samples to be clustered, above procedure

essentially minimizes the following objective function:

min

∑

q (x i)= r
‖ C r − x i ‖

2 . (1)

In Eq. (1) , function q (·) returns the closest centroid for sample

x i . Unfortunately, searching an optimal solution for the above

objective function is NP-hard. In general k -means only converges

to local minimum [21] . The reason that k -means maintains its

popularity is mainly due to its linear complexity in terms of the

number of samples to be clustered. The complexity is O (t · k · n · d),

given t as the number of iterations to converge. Compared with

other well-known clustering algorithms such as DBSCAN [22] ,

Mean shift [23] and clusterDP [24] , this complexity is considerably

low. However, the efficiency of traditional k -means cannot cope

with the massive growth of data in Internet. In particular, in the

case that the size of data (n), the number of clusters (k) and the di-

mension (d) are all very large, k -means becomes unbearably slow.

The existing effort s [16,18] in enhancing the scalability of k -means

for web-scale tasks often come with price of lower clustering

quality. On the other hand, k -means++ proposed in [12,17] focuses

on enhancing the clustering quality by a careful design of the

https://doi.org/10.1016/j.neucom.2018.02.072

0925-2312/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.neucom.2018.02.072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.02.072&domain=pdf
mailto:wlzhao@xmu.edu.cn
mailto:chenghaodeng@stu.xmu.edu.cn
mailto:cscwngo@gapps.cityu.edu.hk
https://doi.org/10.1016/j.neucom.2018.02.072

196 W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206

initialization procedure. However, k -means slows down as a few

rounds of scanning over the dataset is still necessary in the

initialization.

In this paper, a novel variant of k -means is proposed, which

aims to make a better trade-off between clustering quality and ef-

ficiency. Inspired by the work in [1] , a novel objective function is

derived from Eq. (1) . With the development of this objective func-

tion, the traditional k -means iteration procedure has been revised

to a simpler form, in which the costly initial assignment becomes

unnecessary. In addition, driven by the objective function, sam-

ple is moved from one cluster to another cluster when we find

this movement leads to higher objective function score, which is

known as incremental clustering [1,25] . These modifications lead

to several advantages.

• k -means clustering without initial assignment results in better

quality as well as higher speed efficiency.

• k -means iteration driven by an explicit objective function con-

verges to considerably lower clustering distortion in faster pace.

• Different from traditional k -means, it is not necessary to assign

a sample to its closest centroid in each iteration, which also

leads to higher speed.

In addition, when clustering undertaken in hierarchical bisect-

ing fashion, the proposed method achieves the highest scalability

among all top-down hierarchical clustering methods. Extensive ex-

periments are conducted to contrast the performance of proposed

method with k -means and its variants including tasks document

clustering [1] , nearest neighbor search (NNS) with product quanti-

zation [4] and image clustering.

The remainder of this paper is organized as follows. The re-

views about representative works on improving the performance

of traditional k -means are presented in Section 2 . In Section 3 ,

the clustering objective functions are derived based on Eq. (1) .

Based on the objective function, Section 4 presents the cluster-

ing method. Extensive experiment studies over proposed clustering

method are presented in Section 5 . Section 6 concludes the paper.

2. Related works

Clustering is a process of partitioning a set of samples into a

number of groups without any supervised training. Due to its ver-

satility in different contexts, it has been studied in the last three

decades [26] . As the introduction of Web 2.0, millions of data in In-

ternet has been generated on a daily basis. Clustering becomes one

of the basic tools to process such big volume of data. As a conse-

quence, traditional clustering methods have been shed with new

light. People are searching for clustering methods that are scalable

[16–18,27] to web-scale data. In general, boosting the performance

of traditional k -means becomes the major trend due to its simplic-

ity and relative higher efficiency over other clustering methods.

In general, there are two major ways to enhance the perfor-

mance of k -means. For the first kind, the aim is to improve the

clustering quality. One of the important work comes from Bah-

mani et al. [12,17] . The motivation is based on the observation that

k -means converges to a better local optima if the initial cluster

centroids are carefully selected. According to [12] , k -means itera-

tion also converges faster due to the careful selection on the initial

cluster centroids. However, in order to adapt the initial centroids to

the data distribution, k rounds of scanning over the data are nec-

essary. Although the number of scanning rounds has been reduced

to a few in [17] , the extra computational cost is still inevitable.

In each k -means iteration, the processing bottleneck is the op-

eration of assigning each sample to its closest centroid. The itera-

tion becomes unbearably slow when both the size and the dimen-

sion of the data are very large. Considering that this is a nearest

neighbor search problem, Kanungo et al. [14] proposed to index

dataset in a KD Tree [28] to speed-up the sample-to-centroid near-

est neighbor search. However, this is only feasible when the di-

mension of data is in few tens. Similar scheme has been adopted

by Pelleg and Moore [29] . Unfortunately, due to the curse of di-

mensionality, this method becomes ineffective when the dimen-

sion of data grows to a few hundreds. A recent work [18] takes

similar way to speed-up the nearest neighbor search by indexing

dataset with inverted file structure. During the iteration, each cen-

troid is queried against all the indexed data. Thanks to the effi-

ciency of inverted file structure, one to two orders of magnitude

speed-up is observed. However, inverted file indexing structure is

only effective for sparse vectors.

Alternatively, the scalability issue of k -means is addressed by

subsampling over the dataset during k -means iteration. Namely,

methods in [16,30] only pick a small portion of the whole dataset

to update the cluster centroids each time. For the sake of speed ef-

ficiency, the number of iterations is empirically set to small value.

It is therefore possible that the clustering terminates without a sin-

gle pass over the whole dataset, which leads to higher speed but

also higher clustering distortion. Even though, when coping with

high dimensional data in big size, the speed-up achieved by these

methods is still limited.

Apart from above methods, there is another easy way to re-

duce the number of comparisons between the samples and cen-

troids, namely performing clustering in a top-down hierarchical

manner [1,31,32] . Specifically, the clustering solution is obtained

via a sequence of repeated bisections. The clustering complexity

of k -means is reduced from O (t · k · n · d) to O (t · log (k) · n · d). This

is particularly significant when n, d and k are all very large. In

addition to that, another interesting idea from [1,32] is that clus-

ter centroids are updated incrementally [1,25] . Moreover, the up-

date process is explicitly driven by an objective function (called

as criterion function in [1,32]). Unfortunately, objective functions

proposed in [1,31,32] are based on the assumption that input data

are in unit length. The clustering method is solely based on Cosine

distance, which makes the clustering results unpredictable when

dealing with data in the general l 2 -space.

In this paper, a new objective function is derived directly from

Eq. (1) , which makes it suitable for the whole l 2 -space. In other

word, objective function proposed in [1] is the special case of our

proposed form. Based on the proposed objective function, conven-

tional egg-chicken k -means iteration is revised to a simpler form.

On one hand, when applying the revised iteration procedure in

direct k -way clustering, k -means is able to reach to considerably

lower clustering distortion within only a few rounds. On the other

hand, as the iteration procedure is undertaken in top-down hier-

archical clustering manner (specifically bisecting), it shows faster

speed while maintaining relatively lower clustering distortion in

comparison to traditional k -means and most of its variants.

3. Clustering objective functions

In this section, the clustering objective functions upon which

our k -means method is built are presented. Basically, two objective

functions that aim to optimize the clustering results from different

aspects are derived. Furthermore, we also show that these two ob-

jective functions can be reduced to a single form.

3.1. Preliminaries

In order to facilitate the discussions that are followed, several

variables are defined. Throughout the paper, the size of input data

is given as n , while the number of clusters to be produced is given

as k . The partition formed by a clustering method is represented

as { S 1 , . . . , S r . . . , S k } . Accordingly, the sizes of clusters are given as

n 1 , . . . , n r , . . . , n k . The composite vector of a cluster is defined as

W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206 197

D r =

∑

x i ∈ S r x i . The cluster centroid C r
1 is defined by its members,

C r =

∑ n r
i =1 x i

n r
=

D r

n r
(2)

The inner-product of C r is given by C ′ r C r =

(
∑ n r

i =1
x i)

′ (∑ n r
i =1

x i)

n 2 r
, which

is expanded as following form.

C ′ r C r =

1

n

2
r

[(x ′ 1 x 1 + · · · + x ′ 1 x i + · · · + x ′ 1 x n r)

+(x ′ 2 x 1 + · · · + x ′ 2 x i + · · · + x ′ 2 x n r)
+ · · ·
(x ′ i x 1 + · · · + x ′ i x i + · · · + x ′ i x n r)
+ · · ·
(x ′ n r x 1 + · · · + x ′ n x i + · · · + x ′ n r x n r)]

=

1

n

2
r

(

n r ∑

i =1

x 2 i + 2

n r ∑

i, j=1& i< j

< x i , x j >

)

Re-arrange the above equation, we have

n r ∑

i, j=1& i< j

< x i , x j > =

1

2

(

n r
2 ·C ′ r C r −

n r ∑

i =1

x 2 i

)

. (3)

The sum of pairwise l 2 -distance within one cluster is given as

S = (n r − 1)
n r ∑

i =1

x 2 i − 2 ·
n r ∑

i, j=1& i< j

< x i , x j >. (4)

Plug Eq. (3) into Eq. (4) , we have

S = (n r − 1)
n r ∑

i =1

x 2 i −
(

n r
2 ·C ′ r C r −

n r ∑

i =1

x 2 i

)

= (n r − 1)
n r ∑

i =1

x 2 i − n r
2 ·C ′ r C r +

n r ∑

i =1

x 2 i

= n r

n r ∑

i =1

x 2 i − n r
2 ·C ′ r C r . (5)

Eq. (5) is rewritten as

S = n r

n r ∑

i =1

x 2 i − D

′
r D r . (6)

3.2. Objective functions

In this section, two objective functions (also known as criterion

functions [1]) are developed. In addition, with the support of the

results obtained in Section 3.1 , these objective functions will be

reduced to simple forms, which enable them to be carried out ef-

ficiently in the incremental optimization procedure.

According to [1] , objective functions are categorized into two

groups. One group of the functions consider the tightness of clus-

ters, while another focuses on alienating different clusters. In this

paper, the focus is on producing a clustering solution defined over

the elements within each cluster. It therefore does not consider the

relationship between the elements assigned to different clusters.

The first objective function we consider is to minimize the dis-

tance of each element to its cluster centroid, which is nothing

1 We refer to as column vector across the paper.

more than the objective function of k -means.

Min. I 1 =

∑

q (x i)= r
‖ C r − x i ‖

2

=

k ∑

r=1

∑

x i ∈ S r
d(x i , C r) .

(7)

The above equation is simplified as

Min. I 1 =

k ∑

r=1

(

n r ∑

i =1

x ′ i x i + n r C
′
r C r − 2

n r ∑

i =1

x ′ i C r

)

=

k ∑

r=1

(

n r ∑

i =1

x ′ i x i +

D

′
r D r

n r
− 2

D

′
r D r

n r

)

=

k ∑

r=1

(

n r ∑

i =1

x ′ i x i −
D

′
r D r

n r

)

=

k ∑

r=1

n r ∑

i =1

x ′ i x i −
k ∑

r=1

D

′
r D r

n r

= E −
k ∑

r=1

D

′
r D r

n r
(8)

Since the input data are fixed, E is a constant. As a result, minimiz-

ing Eq. (8) is equivalent to maximizing following function

Max. I ∗1 =

k ∑

r=1

D

′
r D r

n r
. (9)

Although objective function in Eq. (9) is in the same form as the

first objective function in [1] , they are derived from different ini-

tial objectives. More importantly, in our case, there is no constraint

that input data should be in unit length.

The second internal objective function that we will study min-

imizes the sum of the average pairwise distance between the ele-

ments assigned to each cluster, weighted according to the size of

each cluster.

Min. I 2 =

k ∑

r=1

n r

(

2

n r ·(n r − 1)

∑

d i ,d j ∈ S r & i> j

d(x i , x j)

)

(10)

Plug Eq. (6) in, we have

Min. I 2 =

k ∑

r=1

n r

(

2

n r ·(n r − 1)

(

n r

n r ∑

i =1

x ′ i x i − D

′
r D r

))

=

k ∑

r=1

2 n r

n r − 1

n r ∑

i =1

x ′ i x i − 2

k ∑

r=1

D

′
r D r

n r − 1

(11)

In Eq. (11) , n r
n r −1 is close to 1 , the above objective function is

approximated as

Min. I 2 ≈ 2 E − 2

k ∑

r=1

D

′
r D r

n r
. (12)

Similar as Eq. (8) , since the input data are fixed, E is a constant. As

as result, minimizing Eq. (12) is equivalent to maximizing function

Max. I ∗2 ≈
k ∑

r=1

D

′
r D r

n r
. (13)

Noticed that similar optimization objectives have been dis-

cussed under Cosine similarity measure in [1] . In the paper, two

objective functions are reduced into different forms. This is dif-

ferent from the result obtained in our case (general l 2 -space). As

198 W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206

shown above, in l 2 -space, the objective functions for I ∗1 and I ∗2 are

approximately the same. The advantage that two objective func-

tions are reduced to the same form is that, when we try to op-

timize one objective function, we optimize another in the mean

time. Specifically, when we minimize the distances from elements

to their cluster centroid, the average intra-cluster distance is mini-

mized in the meantime. Since these two objective functions can be

simplified to the same form, only objective function I ∗1 is discussed

in the rest of paper.

Although objective function in Eq. (9) is derived from Eq. (1) ,

the former is much easier to operate in the incremental k -means

procedure. As it will be shown in the next section, it is quite con-

venient to evaluate whether Eq. (9) attains a higher score (implies

lower distortion in terms of Eq. (1)) when a sample x i is moved

from one cluster to another.

4. k -means driven by objective function

In this section, with the objective function developed in

Section 3 , two iterative clustering procedures are presented.

Namely, one produces k clusters directly (called as direct k -way k -

means), while another produces k clusters by bisecting input data

sequentially k-1 times (called as bisecting k -means). Both clus-

tering strategies are built upon incremental clustering [1,25] and

driven by objective function I ∗1 (Eq. (9)).

4.1. Clustering algorithm

The basic idea of incremental clustering is that one sample x i
is moved from cluster S u to S v as soon as this movement leads to

higher score of objective function I ∗
1

. To facilitate our discussion,

the new function value as sample x i is moved from S u to S v is for-

mulated as following.

� I ∗1 (x i)

=

(D v + x i)
′ (D v + x i)

n v + 1

+

(D u − x i)
′ (D u − x i)

n u − 1

− D

′
v D v

n v
− D

′
u D u

n u

=

D

′
v D v + 2 x ′

i
D v + x ′

i
x i

n v + 1

+

D

′
u D u − 2 x ′

i
D u + x ′

i
x i

n u − 1

− D

′
v D v

n v
− D

′
u D u

n u

= 2 x ′ i
D v

n v + 1

− 2 x ′ i
D u

n u − 1

+

D

′
v D v

n v + 1

+

D

′
u D u

n u − 1

+

x ′
i
x i

n v + 1

+

x ′
i
x i

n u − 1

− D

′
v D v

n v
− D

′
u D u

n u
(14)

In each iteration of the clustering, sample x i is randomly selected.

The algorithm checks whether moving x i from its current cluster

to any other cluster will lead to higher I ∗
1

(i.e., �I ∗
1

> 0). If it is

the case, x i is moved to another cluster. The clustering procedure

is detailed in Algorithm 1 .

As seen from Step 3 of Algorithm 1 , the initialization of our

method is different from most of the current practice of k -means,

there is no assignment of each sample to its closest initial cen-

troid. On the contrary, each sample x i is assigned with a random

cluster label (ranges from 1 to k). This allows to calculate an initial

score of I ∗1 and the composite vector D of each cluster. It is pos-

sible to do the initial assignment following the way of k -means or

k -means++ [12] . However, as will be revealed in Section 5 , initial-

ization under either k -means manner or k -means++ manner im-

proves the clustering quality slightly. However, extra computation

is required in such kind of initial assignment.

During each iteration, each sample x i ∈ X is checked in random

order. The optimization in Step 8 –10 seeks the movement of x i
that leads to the highest increase of function score. From the op-

timization view, the algorithm reduces the clustering distortion

greedily. While from another view, the seeking process is compa-

Algorithm 1 Direct k -way k -means # .

1: Input : matrix X n ×d

2: Output : S 1 , · · ·, S r , · · ·S k
3: Assign x i ∈ X with a random cluster label;

4: Calculate D 1 , · · ·, D r , · · ·D k and I ∗
1

;

5: while not convergence do

6: for each x i ∈ X (in random order) do

7: Seek S v that maximizes �I ∗
1
(x i) ;

8: if �I ∗1 (x i) > 0 then

9: Move x i from current cluster to S v ;

10: end if

11: end for

12: end while

rable to the sample-to-centroid assignment in traditional k -means.

They are actually on the same computational complexity level.

Whereas it is not necessary that we must seek the best move-

ment for x i . As we discover by experiment, it is feasible that mov-

ing x i to another cluster as long as we find �I ∗
1
(x i) is greater than

0 . On one hand, this will speed-up the iteration. On the other hand

such kind of scheme usually takes more rounds to reach to the

same level of distortion. However, we discover that such kind of

less greedy scheme results in lower clustering distortion if the it-

eration loops for sufficient number of times.

Moving x i from one cluster to another (Step 9) is very conve-

nient to take. It includes the operation that updates the cluster la-

bel of x i and the operation that updates the composite vector for

cluster S v and S u , viz., D v = D v + x i , D u = D u − x i .

Note that this incremental updating scheme is essentially differ-

ent from online learning vector quantization (LVQ) [33] , in which

the cluster centroids are updated incrementally. In the above it-

eration procedure, no cluster centroids are explicitly produced. As

a result, it is no need to update cluster centroid. The clustering

iteration is explicitly driven by an objective function rather than

by the discrepancy between cluster centroids and their cluster

members. As revealed later in the experiment, compared to LVQ,

Algorithm 1 is more efficient and leads to considerably lower dis-

tortion.

Fig. 1 illustrates three iterations of Algorithm 1 in 2D case. As

shown in the figure, the initial clustering result is random and

messy. Samples belonging to different clusters are totally mixed

up. However, only after one round of iteration, the clustering re-

sult becomes much more compact. The clustering terminates at the

10 th round, where Lloyd ’s condition is reached. The optimum of

this procedure is analyzed in Appendix A and its convergence is

proved in Appendix B .

Overall, method presented in Algorithm 1 is different from tra-

ditional k -means in three major aspects. Firstly, no initial assign-

ment is required. Moreover, the egg-chicken loop in the traditional

k -means has been replaced by a simpler stochastic optimization

procedure. Furthermore, unlike traditional k -means, it is not nec-

essary to seek the best movement for each sample in the iteration.

Due to the essential upgrade of our method makes over traditional

k -means, it is named as k -means # .

The method presented in Algorithm 1 is on the same complex-

ity level as traditional k -means (i.e., O (t · n · d · k)), which is unbear-

ably slow when dealing with large-scale data. In order to adapt

it to large-scale task, the method is revised into a top-down hi-

erarchical clustering. Specifically, at each time, one intermediate

cluster is selected and bisected into two smaller clusters by calling

Algorithm 1 . The details of this method are given in Algorithm 2 .

As shown in Algorithm 2 , priority queue Q pops out one clus-

ter for bisecting each time. As discussed in [32] , there are ba-

sically two ways to organize the priority queue. One can priori-

W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206 199

Fig. 1. Illustration of direct k -way k -means clustering with Algorithm 1 . The clustering process starts from the state that samples are all assigned with random label. The

final cluster centroids in (c) form a convex partition over the 2D space, which are called as Voronoi diagram. According to Lloyd ’s condition, all the samples belonging to one

cluster fall into the same Voronoi cell.

Algorithm 2 Bisecting k -means # .

1: Input : matrix X n ×d

2: Output : S 1 , . . . , S r , . . . S k
3: Treat X as one cluster S 1 ;

4: Push S 1 into a priority queue Q;

5: i = 1;

6: while i < k do

7: Pop cluster S i from queue Q

8: Call Alg. 1 to bisect S i into { S i , S i +1 } ;
9: Push S i , S i +1 into queue Q;

10: i = i + 1;

11: end while

tize the cluster with biggest size or the one with highest average

intra-cluster distance to split. Similar as [32] , we find splitting the

biggest cluster usually demonstrates more stable performance. As a

result, the queue is sorted in descending order by the cluster sizes

in our practice.

It is possible to partition the intermediate cluster into more

than two clusters each time. In the following, we are going to show

that this bisecting scheme achieves highest scalability among all

alternative top-down secting schemes.

4.2. Scalability analysis

In this section, the computation complexity of Algorithm 2 is

studied by considering the total number of comparisons required

in the series of bisecting clustering. The number of iterations in

each bisecting is assumed to be a constant by taking the average

number of iterations.

In order to facilitate the analysis while without loss of gener-

ality, we assume that each intermediate cluster in Algorithm 2 is

partitioned evenly. In addition, we generalize Algorithm 2 to an s-

secting algorithm. Namely, an intermediate cluster is partitioned to

s (s ≥ 2) clusters. Now we consider the size of series of intermedi-

ate clusters that are produced when performing sequential secting.

Given q is the depth of splitting, it is easy to see 	 log s k
 = q + 1 .

The sizes of all intermediate clusters are given as following.

n,
n

s
,

n

s
, . . . ︸ ︷︷ ︸

s

,
n

s 2
,

n

s 2
, . . . ︸ ︷︷ ︸

s 2

, . . . ,
n

s q
,

n

s q
, . . . ︸ ︷︷ ︸

s q

As a result, the number of samples to be visited during the clus-

tering procedure is

n +

n

s
∗ s 1 +

n

s 2
∗ s 2 +

n

s 3
∗ s 3 · · · +

n

s q
∗ s q

= n + n + n + n + · · · + n ︸ ︷︷ ︸
q

= n ∗ (1 + q)

≈ n ∗ log s k. (15)

Considering that one sample has to compare with s − 1 centroids

each time, the total number of comparisons is

n ∗ (s − 1) ∗ log s k. (16)

Given n and k are fixed, Eq. (16) increases monotonically with re-

spect to s . As a result, the number of comparisons reaches to the

minimum when s = 2 i.e., n log 2 k . To this end, it is clear that bisec-

tion is the most efficient secting scheme.

Compared with Algorithm 1 , the complexity of Algorithm 2 is

reduced to O (̄t ·n ·d ·log(k)) , where t̄ is the average number of iter-

ations in each bisecting. Compared with t in traditional k -means,

t̄ is much smaller given the scale of clustering problem is much

smaller in terms of both the size of input data and the num-

ber of clusters to be produced. As a result, the complexity of

Algorithm 1 has been largely reduced since term n · d has been

multiplied by a much smaller factor t̄ ·log(k) .

Although Algorithm 2 is efficient, the clustering result produced

by Algorithm 2 unfortunately does not satisfy with Lloyd ’s condi-

tion. This problem is illustrated in Fig. 2 . As one of the clusters

is further partitioned into two (from Fig. 2 (a) to Fig. 2 (b)), the

partition over 2D space is formed by centroids changes. Cluster C

claims bordering points from cluster B. However, points from clus-

ter B cannot be reassigned to cluster C if no further intervention is

involved. This is actually an underfitting issue and exists for any

hierarchical clustering method. Fortunately, this issue can be al-

leviated by adopting Algorithm 1 as a refinement procedure after

Algorithm 2 outputs k clusters. To do so, extra time is required. It

therefore becomes a problem of balancing between efficiency and

quality.

According to our observation, it is possible to further speed-up

the proposed k -means # . After a few iterations, both k -means and

k -means # will be trapped in a local minima. Only samples that

bordering between different clusters are shuffled from one clus-

ter to another. As a result, given a sample, it is no need to search

for the best movement among k clusters. Instead, the sample only

needs to compare to the closest k 0 (k 0 � k) centroids (or clusters)

to search for the suitable movement. We find that, this simple

modification leads to typically 7 ∼ 8 times speed-up while without

significant performance degradation.

5. Experiments

In this section, the effectiveness of proposed clustering method,

namely k -means # is studied under different scenarios. In the first

experiment, dataset SIFT1M [5] is adopted to evaluate the clus-

tering quality. In the second experiment, k -means # is tested on

200 W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206

Fig. 2. Illustration of two consecutive bisections in the bisecting clustering where Lloyd ’s condition breaks.

Table 1

Configurations of k -means and its variants and their corresponding abbreviations.

k -means k -means #

Initial assignment k -way bisecting k -way bisecting

Random k -means [8] BsKM k -means # (rnd) BsKM

(rnd)

Probability based [12] k -means + [12] BsKM ++ k -means # (kpp) BsKM

(kpp)

Non − − k -means # (non) BsKM

(non)

the nearest neighbor search task based on product quantizer (PQ)

[5] in which this method is adopted for quantizer training. In the

third experiment, k -means # has been applied to traditional doc-

ument clustering. Following the practice of [1,32] , 15 document

datasets 2 have been adopted. In the last experiment, the scalability

of k -means # has been tested on large-scale image clustering task,

for which the number of images we use is as large as 10 million.

In our study, the performance from traditional k -means is

treated as comparison baseline. In addition, representative k -means

variants, such as Mini-Batch [16] , Repeated Bisecting k -means

(RBK) [32] , online Learning Vector Quantization (LVQ) [33] and k -

means++ [12] are considered in the comparison. For Mini-Batch,

our configuration makes sure that the iteration covers 10% of the

input data. The configuration is fixed across all the experiments.

For RBK, we select the objective function that maximizes the aver-

age Cosine similarity between samples within one cluster, which is

the special case of ours given the input data is l 2 -normalized. LVQ

is similar to k -means except that in each round, a cluster centroid

is updated as soon as a sample is assigned. The updating rate starts

from 0.01 and decreases at a pace of 4 × 10 −4 in one iteration.

As shown in Table 1 , there are several variants of k -means and

k -means # due to the differences in initial assignment schemes and

variations in partitioning strategies (i.e., direct k -way or bisecting).

In the table, ‘initial assignment’ refers to the operation of select-

ing samples as initial centroids and assigning each sample to its

closest initial centroid. When the initial assignment is operated by

selecting seeds randomly as traditional k -means, it is denoted as

‘rnd’. When the initial centroids are selected based on probability

as k -means++, it is denoted as ‘kpp’. While for the initialization

without initial assignment (proposed by us) is denoted as ‘non’. In

this initialization, a random label is assigned to each sample. In

the experiments, all the variants out of these different configura-

tions on k -means as well as k -means # are considered. Their con-

figurations and corresponding abbreviations are shown in Table 1 .

Noted that BsKM

(rnd) is the same as RBK [32] if the input data

is l 2 -normalized. The experiment in this section is conducted on

1 million SIFT features [34] . The features are clustered into 10,0 0 0

partitions.

In addition, we also study the performance trend of k -means #

when Steps 7 - 10 in Algorithm 1 are modified to moving the sam-

2 Available at http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz

ple as soon as �I 1 (x i) > 0. The variants under this modification are

denoted as k -means # (·)+Fast 3 . All the methods considered in the

paper are implemented in C++ and the simulations are conducted

on a PC with 2.4 GHz Xeon CPU and 32 G memory setup.

5.1. Evaluation of clustering distortion

Since k -means and most of its variants share the same objective

function (Eq. (1)), it is straightforward to evaluate the clustering

performance by checking to what degree the objective is reached.

The average distortion (given in Eq. (17)) is adopted for evaluation

[2] , which takes average over Eq. (1) ,

E =

∑

q (x i)= r ‖ C r − x i ‖

2

n

. (17)

For above equation, the lower the distortion value, the better is the

clustering quality.

The first experiment mainly studies the behavior of the pro-

posed k -means # under different initializations. The average dis-

tortion curves produced by variants direct k -way k -means # are

given in Fig. 3 (a) as a function of numbers of iteration. Tradi-

tional k -means is treated as baseline for performance compari-

son. The result shows that clustering distortion of k -means # drops

faster than traditional k -means. The average distortion from tradi-

tional k -means is around 40,450 after 130 iterations. In contrast,

k -means # without initial assignment (k -means # (non)) is able to

reach to the same distortion level after only 7 iterations. More-

over, we find that initializing k -means # as traditional k -means way

(k -means # (rnd)) or as k -means++ (k -means # (kpp)) allows the iter-

ation to start from a low distortion level. Nevertheless the advan-

tage over k -means # (non) fades away after 15 iterations. In compar-

ison to k -means # (non), the extra cost is required for clustering that

adopts initial assignment, which is close to (‘rnd’ case) or higher

than (‘kpp’ case) the cost of one round iteration.

The second experiment studies the performance trend of

Algorithm 1 when Step s 7 - 10 do not seek the best movement (k -

means # (·)+Fast). As shown in Fig. 3 (b), the distortion drops slower

than k -means # (non) which seeks the best movement. However,

lower distortion is achievable by k -means # (rnd)+Fast as the num-

ber of iterations is sufficiently large e.g., 20 . This indicates that

3 Note that this is not applicable for bisecting k -means # .

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz

W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206 201

Fig. 3. The experiments are conducted on SIFT1M for figures (a)–(c) and on SIFT100K for figure (d). The results show different performance: (a) impact of initialization in

different ways; (b) fast version of k -means # by not seeking optimal movement in the steps 7–10 of Algorithm 1 ; (c) Comparison of k -means # to variants of k -means; (d)

significance of improvement over other k -means variants achieved by k -means # by repeating the experiments by 128 runs.

when the optimization scheme is less greedy, it is less likely to

be trapped in a worse local optima. This observation applies to

k -means # under different types of initialization. Noted that the

time cost for k -means # (·)+Fast is lower than that of k -means #

that seeks the best movement in each iteration. Whereas, k -

means # (·)+Fast usually needs a few more number of iterations

to reach to the similar distortion level. Overall, as investigated in

Section 5.4 , k -means # (·)+Fast is 5% faster than k -means # (·).

Fig. 3 (c) studies the trend of average distortion among the pro-

posed k -means # (specifically k -means # (non)), traditional k -means,

k -means++, Mini-Batch and LVQ. For all the methods presented,

their distortion decreases steadily as the iteration continues. A big

performance gap is observed between Mini-Batch and other k -

means variants. In addition k -means and k -means++ share simi-

lar distortion curve. k -means # (non) outperforms k -means and k -

means++ after only 7 iterations. Most of the methods including

k -means and k -means++ take more than 120 iterations to finally

converge. On the other hand, little distortion is observed after 20

iterations, which implies the validity of early termination at i.e., 20 .

Although similar as k -means # , LVQ updates the intermediate clus-

ters incrementally, updating cluster centroid directly turns out to

be inefficient, which leads to considerably poor performance.

Since k -means and its variants are all sensitive to initialization,

the performance fluctuates from one run to another. The candle-

stick chart shown in Fig. 3 (d) further confirms the significance of

the improvement achieved by k -means # . This chart is plotted with

128 clustering runs (k = 1 , 024) on SIFT100K [5] for each method.

As shown in the figure, although the performance fluctuates for

all the methods, the variations are minor. Similar as previous ob-

servation, there is no significant difference between traditional k -

means and k -means++. In contrast, the performance gap between

k -means # and traditional k -means is much more significant than

the performance variations across different runs.

Table 2 shows the average distortion of different k -means vari-

ants under bisecting strategy. The result from k -means (after 130

iterations) is presented for the comparison. As shown from the ta-

ble, the average distortion from all bisecting methods are on the

level of 4.5 × 10 4 . Methods built upon Algorithm 1 always perform

202 W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206

Table 2

Average distortion from k -means variants under bisecting strategy.

Method k -means RBK BsKM BsKM ++ BsKM

(non) BsKM

(rnd) BsKM

(kpp)

E 40450.0 45713.5 45835.2 45823.8 45650.7 45661.2 45658.4

E after Rfn. − 43364.4 43323.9 43366.2 43293.3 43285.5 43285.4

better. The average distortion from all bisecting clustering methods

are much higher than that of k -means. They are actually only close

to the distortion level of k -means after one iteration. However, the

merit of clustering with bisecting strategy is that it is more than 20

times faster than k -means of a single iteration. The relatively poor

clustering quality produced by bisecting strategy is mainly due to

the issue of underfitting (as discussed in Section 4.2). The cluster-

ing results can be further refined by Algorithm 1 as shown on the

3rd row of Table 2 .

As learned from above experiments, on one hand initial assign-

ment under k -means manner or under k -means++ manner is able

to improve the performance of k -means # slightly. On the other

hand, the initial assignment slows down the method considerably.

A trade-off has to be made. In the following experiments, only

the results from two representative configurations of k -means # ,

namely k -means # (non) and k -means # (rnd)+Fast are presented. k -

means # (rnd)+Fast is written as k -means # +Fast for succinctness in

the rest of the paper. We leave other possible configurations to the

readers.

5.2. Nearest neighbor search by product quantizer (PQ)

In this section, k -means # is applied for visual vocabulary train-

ing using product quantization [5] . Following the practice of [5] ,

100 K SIFT features are used for product quantizer training, while

SIFT1M set [5] is encoded with the trained product quantizers as

the reference set for nearest neighbor search (NNS). The obtained

recall@top-k is averaged over 10 0 0 queries for each method. In the

experiment, two different settings are tested for product quantizer.

Namely, the 128 -dimensional SIFT vector is encoded with 8 and

16 product quantizers, respectively. For clarity, the evaluations are

separately conducted for direct k -way and bisecting k -means.

Recall@top-100 for direct k -way are presented in Fig. 4 (a)–

(d) under two different settings (m = 8 and m = 16), where m is

the number of divisions that PQ applies on a vector [5] . As seen

from the figures, the performances from k -means, k -means++ and

k -means # (non) are all very close to each other under different

settings. The product quantizer trained with bisecting clustering

methods shows only 0.1–1.3 % lower performance than that of di-

rect k -way methods. This basically indicates that product quantizer

itself is insensitive to the clustering quality. The performance of

Mini-Batch and RBK is around 2 –6% lower than the other methods.

The poor performance of RBK basically indicates the optimization

objective function defined under Cosine similarity is not directly

feasible for general l 2 -space.

5.3. Document clustering

In this section, the performance of proposed method is eval-

uated under the context of document clustering. Following in [1] ,

15 document datasets are used for evaluation. The documents have

been represented with TF/IDF model and normalized to unit length.

Similar to [1] , entropy as follows is adopted for the evaluation

Entropy =

k ∑

r=1

n r

n

1

log c
∗

c ∑

i =1

n

i
r

n r
∗ log

n

i
r

n r
, (18)

where c is the number of classes. Eq. (18) evaluates to what de-

gree that elements from the same class are put in one cluster. The

Table 3

Clustering performance (average entropy) on 15 datasets.

k = 5 k = 10 k = 15 k = 20

k -means 0.539 0.443 0.402 0.387

k -means ++ 0.550 0.441 0.403 0.389

Mini-Batch 0.585 0.488 0.469 0.475

LVQ 0.800 0.761 0.681 0.674

k -means # (non) 0.552 0.442 0.388 0.368

k -means # +Fast 0.506 0.419 0.380 0.353

BsKM 0.532 0.438 0.410 0.373

BsKM ++ 0.507 0.422 0.400 0.379

BsKM

(non) 0.514 0.388 0.353 0.329

RBK 0.486 0.402 0.366 0.339

lower of the value, the better is the performance. In the experi-

ment, each method performs clustering for 10 runs, and the run

with the lowest entropy is presented in Table 3 . The presented en-

tropy are averaged over 15 datasets.

In general, k -means # under different configurations performs

considerably better. Furthermore, methods with bisecting strat-

egy demonstrate slightly better performance than that of direct k -

way in the document clustering task. Similar observation is shared

in [32] . As observed in [32] , the tightness of different document

classes are different. Moreover, there is a discrepancy between

TF/IDF model and human perception about document classes. 4

Lower distortion does not necessarily mean better cluster quality

(i.e., lower entropy). Compared to direct k-way clustering, bisect-

ing strategy partitions the documents in a top-down manner. From

the top view, it is easier for bisecting to partition tight cluster from

loose one in its early stage. Due to the nature of bisecting strategy,

the bisecting in later stages is restricted from moving documents

from tight to loose. Because of that, the integrity of document

classes with different tightness are largely preserved. In contrast,

in direct k-way, documents in different classes are free to move to

achieve lower distortion since the proposed k -means iteration is a

greedy process. As k increases, documents have more wrong can-

didate clusters to move in to attain lower distortion. Therefore per-

formance gap between bisecting and k-way grows as k increases in

Table 3 . Overall, BsKM

(non) shows the best performance. The per-

formance of RBK (the same as BsKM

(rnd)) is close to BsKM

(non).

The marginal performance gap between these two methods is due

to the difference in their initialization.

5.4. Scalability test on image clustering

In this section, the scalability of the proposed k -means is tested

on image clustering. The experiment is conducted on 10 million

Flickr images (Flickr10M), which are a subset of YFCC100M [35] .

Hessian-Affine [36] keypoints are extracted from each image and

are described by RootSIFT feature [37] . Finally, the RootSIFT fea-

tures from each image are pooled by VLAD [38] with a small vi-

sual vocabulary of size 64 . The resulting 8192 -dimensional feature

is further mapped to 512 dimensions by PCA. Following [38] , the

final VLAD vector is normalized to unit length. In the direct k -way

clustering case, we set the number of maximum iterations for all

methods to 20 . While for the bisecting case, there is no threshold

4 The class label of each document in the ground-truth is given by human being.

W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206 203

Fig. 4. Performance of nearest neighbor search by PQ on SIFT1M when adopting different clustering methods for quantizer training. The size of each product quantizer is

fixed to 256 across all the experiments. The asymmetric distance calculation (ADC) [5] is adopted for nearest neighbor search.

on the number of iterations. The results reported in this section

have been averaged over 10 runs for each method.

In the first experiment, clustering methods are tested in the

way that the scale of input images varies from 10K to 10M. While

the number of clusters to be produced is fixed to 1024 regardless

of the size of dataset. The time costs for direct k -way and bisecting

methods are presented in Fig. 5 (a) and (b). Accordingly, the average

distortion of all the methods are presented in Fig. 6 (a).

As shown in the figures, k -means # exhibits slightly faster speed

over k -means and its variants across different scales of input data

under both direct k -way and bisecting cases. The speed-up be-

comes more significant as the scale of input data increases. The

higher efficiency of these methods is mainly attributed to the no

involvement of initial assignment. Compared to k -means # (non), k -

means # +Fast takes extra time. However, the cost of initial assign-

ment is compensated later by no seeking of the best movement.

Compared with direct k -way clustering, methods with bisecting

strategy achieve much higher scalability. In particular, BsKM

(non)

shows the highest scalability. It only takes less than 94 minutes to

cluster 10 million vectors (in 512 dimensions) into 1024 clusters.

The efficiency of Mini-Batch is close to BsKM

(non). However, as

shown in Fig. 6 (a), its quality is poor in most of the cases. Over-

all, k -means # +Fast achieves the highest speed efficiency and low-

est distortion among all direct k -way clustering methods. While

in the bisecting case, BsKM

(non) shows the best performance in

terms of both speed efficiency and clustering quality. Similar to the

experiments in Section 5.1 , the average distortion introduced by

bisecting clustering is much higher than direct k -way due to the

problem of under-fitting.

In addition, the scalability of clustering methods is tested in the

way that the number of clusters by varying from 1024 to 8192 ,

while the scale of input data is fixed to 1 million. Fig. 5 (c) and

(d) show the time cost of all 9 methods. Accordingly, the average

distortion from all these 9 methods are presented in Fig. 6 (b). As

shown in the figures, for all direct k -way clustering methods, the

time cost increases linearly as the number of clusters increases.

204 W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206

Fig. 5. Scalability test by varying the scale of input data: (a) and (b) and by varying the number of clusters: (c) and (d).

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

104 105 106 107

A
ve

ra
ge

 d
is

to
rt

io
n

n

k-means++
k-means
k-means#(non)

k-means#+Fast
BsKM++
BsKM

BsKM#(non)
RBK
Mini-Batch

(a) k=1024, vary n

 0.7

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

1024 2048 4096 8192

A
ve

ra
ge

 d
is

to
rt

io
n

k

k-means++
k-means
k-means#(non)

k-means#+Fast
BsKM++
BsKM

BsKM#(non)
RBK
Mini-Batch

(b) n=106, vary k

Fig. 6. Average distortion from all 9 methods under two different scalability testings on Flickr10M (best viewed in color).

W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206 205

Mini-Batch is no longer efficient as k increases. In contrast, the

time cost of all bisecting methods remains steady across differ-

ent cluster numbers. In terms of clustering quality, as seen from

Fig. 6 (b), in both direct k -way and bisecting cases, clustering driven

by the proposed optimization procedure (Algorithm 1) performs

considerably better. A clear trend is observed from Fig. 6 (b), meth-

ods based on Algorithm 1 shows increasingly higher performance

than the rest as k grows. Overall, clustering driven by the proposed

optimization process shows higher speed and better quality. The

highest speed is achieved by BsKM

(non), for which only 8 min-

utes are required to cluster 1 million high dimensional data into

8192 clusters. Due to extra cost in initial assignment, bisecting with

traditional k -means and k -means++ still shows around 35% slower

speed than BsKM

(non).

As a summary, clustering based on Algorithm 1 shows superior

performance in terms of both speed efficiency and quality under

different scenarios. This is mainly due to the nature of incremental

updating scheme, which allows the cluster structures to be fine-

tuned in a more efficient way. When the proposed Algorithm 1 is

performed under bisecting manner (i.e., BsKM

(non)), it shows two

orders of magnitude faster than traditional k -means.

6. Conclusion

We have presented a novel k -means variant. Firstly, a cluster-

ing objective function that is feasible for the whole l 2 -space is

developed. Supported by the objective function, the traditional k -

means clustering has been modified to simpler form. In this novel

k -means variant, we interestingly find that neither the costly ini-

tial assignment nor the seeking of closest centroid for each sample

in the iteration are necessary. This leads to higher speed and con-

siderably lower clustering distortion. Furthermore when the pro-

posed clustering method is undertaken in the ways of top-down

bisecting, it achieves the highest scalability and best quality among

all hierarchical k -means variants. Extensive experiments have been

conducted in different contexts and on various datasets. Superior

performance over most of the k -means variants is observed across

different scenarios.

Acknowledgment

This work is supported by National Natural Science Foundation

of China under grant no. 61572408 . The authors would like to ex-

press their sincere thanks to Prof. George Karypis from University

of Minnesota, USA for his detailed explanation about the imple-

mentation of repeated bisecting k -means.

Appendix A. Optimum of k -means #

As shown in Eqs. 13 and 9 , two optimal objectives are quite

similar. In this section, we show that optimal solution with respect

to objective function (Eq. (9)) can be reached with incremental up-

dating scheme presented in Algorithm 1 .

Proof. For contradiction, let A

o = { S 1 , S 2 , . . . , S k } be an optimal so-

lution and assume that there exists one element d and clusters

S i and S j such that d ∈ S i . Now consider the clustering solution

A

∗ = { S 1 , S 2 , . . . , { S i − d} , . . . , { S j + d} , . . . , S k } . Let D i , C i , and D j , C j
be the composite and centroid vectors of cluster S i − d and S j , re-

spectively. Let e = I 1 (A

o) − I 1 (A

∗) , then

e =

(D i + d) ′ (D i + d)

n i + 1

+

D

′
j
D j

n j

−
(

D

′
i
D i

n i

+

(D j + d) ′ (D j + d)

n j + 1

)

=

(
(D i + d) ′ (D i + d)

n i + 1

− D

′
i
D i

n i

)
−

(
(D j + d) ′ (D j + d)

n j + 1

−
D

′
j
D j

n j

)

=

2 n i d
′ D i + n i d

′ d − D

′
i
D i

n i (n i + 1)
−

2 n j d
′ D j + n j d

′ d − D

′
j
D j

n j (n j + 1)

Let’s define μi =

D ′
i
D i

n i (n i +1)
, μ j =

D ′
j
D j

n j (n j +1)
are the average pairwise

inner product in cluster S i and S j , respectively. In addition, δi and

δj are given as the average inner-products between d and elements

in S i and S j , respectively, viz δi =

d ′ D i
n i

, and δ j =

d ′ D j
n j

. Above Equa-

tion is rewritten as

e =

(
2 n i δi

n i + 1

+

d ′ d
n i + 1

− n i μi

n i + 1

)
−

(
2 n j δ j

n j + 1

+

d ′ d
n j + 1

− n j μ j

n j + 1

)

≈
(

2 δi − 2 δ j +

d ′ d
n i + 1

)
−

(
μi − μ j +

d ′ d
n j + 1

)
(19)

Given the fact that (2 δi − 2 δ j +

d ′ d
n i +1) < (μi − μ j +

d ′ d
n j +1) , we have

I 1 (A

o) < I 1 (A

∗) , which is contradicting. �

Appendix B. Convergence of k -means #

S i and S j are two clusters. d is initially part of S i , and D i is the

composite of S i exclude d, C i is the centroid of S i exclude d, D j , C j
is the composite and centroid of cluster S j , the move condition of

d from S i to S j should satisfied

(D i + d) ′ (D i + d)

n i + 1

+

D

′
j
D j

n j

<

D

′
i
D i

n i

+

(D j + d) ′ (D j + d)

n j + 1

(B.1)

This equation can be rewritten as:

(D i + d) ′ (D i + d)

n i + 1

− D

′
i
D i

n i

<

(D j + d) ′ (D j + d)

n j + 1

−
D

′
j
D j

n j

D

′
i
D i + 2 d ′ D i + d 2

n i + 1

− D

′
i
D i

n i

<

D

′
j
D j + 2 d ′ D j + d 2

n j + 1

−
D

′
j
D j

n j

2 n i d
′ D i + n i d

2 − D

′
i
D i

n i (n i + 1)
<

2 n j d
′ D j + n j d

2 − D

′
j
D j

n j (n j + 1)

2

n i

n i + 1

d ′ D i

n i

− D

′
i
D i

n i (n i + 1)
+

d 2

n i + 1

< 2

n j

n j + 1

d ′ D j

n j

−
D

′
j
D j

n j (n j + 1)
+

d 2

n j + 1

Now if we assume that both n i and n j are sufficiently large, then

n i
n i +1 and

n j
n j +1 will be close to 1 . Under these assumptions, we can

get

2

d ′ D i

n i

− D

′
i
D i

n i (n i + 1)
+

d 2

n i + 1

< 2

d ′ D j

n j

−
D

′
j
D j

n j (n j + 1)
+

d 2

n j + 1

.

Now μi =

D ′
i
D i

n i (n i +1)
, μ j =

D ′
j
D j

n j (n j +1)
are defined as the average pair-

wise inner product in cluster S i and S j respectively. δi and δj are

given as the average inner-products between d and elements in S i

and S j respectively, viz δi =

d ′ D i
n i

, and δ j =

d ′ D j
n j

, the following in-

equation holds.

2 δi − 2 δ j +

d ′ d
n i + 1

< μi − μ j +

d ′ d
n j + 1

. (B.2)

https://doi.org/10.13039/501100001809

206 W.-L. Zhao et al. / Neurocomputing 291 (2018) 195–206

References

[1] Y. Zhao, G. Karypis, Empirical and theoretical comparisons of selected cri-

terion functions for document clustering, Mach. Learn. 55 (2004) 311–331,

doi: 10.1023/B:MACH.0 0 0 0 027785.44527.d6 .
[2] Y. Avrithis , Y. Kalantidis , E. Anagnostopoulos , I.Z. Emiris , Web-scale image clus-

tering revisited, in: Proceedings of the ICCV, 2015, pp. 1502–1510 .
[3] J. Shi, J. Malik, Normalized cuts and image segmentation, Trans. PAMI 22 (8)

(20 0 0) 888–905, doi: 10.1109/34.86 86 88 .
[4] J. Sivic, A. Zisserman, Video Google: a text retrieval approach to object match-

ing in videos, in: Proceedings of the ICCV, 2003, pp. 1470–1477, doi: 10.1109/

ICCV.2003.1238663 .
[5] H. Jégou, M. Douze, C. Schmid, Product quantization for nearest neighbor

search, Trans. PAMI 33 (1) (2011) 117–128, doi: 10.1109/TPAMI.2010.57 .
[6] M. Muja, D.G. Lowe, Scalable nearest neighbor algorithms for high dimensional

data, IEEE Trans. Pattern Anal. Mach. Intell. 36 (2014) 2227–2240, doi: 10.1109/
TPAMI.2014.2321376 .

[7] A. Babenko, V. Lempitsky, Additive quantization for extreme vector compres-
sion, in: Proceedings of the CVPR, 2014, pp. 931–938, doi: 10.1109/CVPR.2014.

124 .

[8] S.P. Lloyd, Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (1982)
129–137, doi: 10.1109/TIT.1982.1056489 .

[9] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan,
A. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, D. Steinberg, Top 10

algorithms in data mining, Knowl. Inf. Syst. 14 (1) (2007) 1–37, doi: 10.1007/
s10115- 007- 0114- 2 .

[10] N. Ailon , R. Jaiswal , C. Monteleoni , Streaming k -means approximation, in: Pro-

ceedings of the NIPS, 2009, pp. 10–18 .
[11] A. Vattani, k -means requires exponentially many iterations even in

the plane, Discret. Comput. Geom. 45 (4) (2011) 596–616, doi: 10.1007/
s00454- 011- 9340- 1 .

[12] D. Arthur , S. Vassilvitskii , k -means++: the advantages of careful seeding, in:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Al-

gorithms, 2007, pp. 1027–1035 .

[13] M. Shindler , A. Wong , A.W. Meyerson , Fast and accurate k -means for large
datasets, in: Proceedings of the NIPS, 2011, pp. 2375–2383 .

[14] T. Kanungo, D.M. Mount, N.S. Neanyahu, C.D. Piatko, R. Silverman, A.Y. Wu,
An efficient k -means clustering algorithm: analysis and implementation, Trans.

PAMI 24 (7) (2002) 881–892, doi: 10.1109/TPAMI.2002.1017616 .
[15] C. Elkan , Using the triangle inequality to accelerate, in: Proceedings of the

ICML, 2003 .

[16] D. Sculley, Web-scale k -means clustering, in: Proceedings of the Nineteenth In-
ternational Conference on World Wide Web, 2010, pp. 1177–1178, doi: 10.1145/

1772690.1772862 .
[17] B. Bahmani, B. Moseley, A. Vattani, R. Kumar, S. Vassilvitskii, Scalable k -

means++, in: Proceedings of the VLDB Endowment, 5, 2012, pp. 622–633,
doi: 10.14778/2180912.2180915 .

[18] A. Broder, L. Garcia-Pueyo, V. Josifovski, S. Vassilvitskii, S. Venkatesan, Scalable

k -means by ranked retrieval, in: Proceedings of the Seventh ACM International
Conference on Web Search and Data Mining, 2014, pp. 233–242, doi: 10.1145/

2556195.2556260 .
[19] J. Wang, J. Wang, Q. Ke, G. Zeng, S. Li, Fast approximate k -means via

cluster closures, Multimed. Data Min. Anal. (2015) 373–395, doi: 10.1007/
978- 3- 319- 14998- 1 _ 17 .

[20] Y. Gong, M. Pawlowski, F. Yang, L. Brandy, L. Boundev, R. Fergus, Web scale

photo hash clustering on a single machine, in: Proceedings of the CVPR, 2015,
pp. 19–27, doi: 10.1109/CVPR.2015.7298596 .

[21] L. Bottou , Y. Bengio , Convergence properties of the k -means algorithm, Adv.
Neural Inf. Process. Syst. (1995) 585–592 .

[22] M. Ester , H. peter Kriegel , J. Sander , X. Xu , A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Proceedings of

Knowledge Discovery and Data Mining, 1996, pp. 226–231 .
[23] D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space

analysis, Trans. PAMI 24 (5) (2002) 603–619, doi: 10.1109/34.1000236 .

[24] A . Rodriguez , A . Laio , Clustering by fast search and find of density peaks, Sci-
ence 344 (6191) (2014) 14 92–14 96 .

[25] R.O. Duda , P.E. Hart , D.G. Stork , Pattern Classification, s, Wiley-Interscience,
2001 .

[26] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Comput. Surv.
31 (3) (1999) 264–323, doi: 10.1145/331499.331504 .

[27] X. Cui , P. Zhu , X. Yang , K. Li , C. Ji , Optimized big data k -means clustering using
MapReduce, J. Supercomput. 70 (2014) 1249–1259 .

[28] J.L. Bentley, Multidimensional binary search trees used for associative search-
ing, Commun. ACM 18 (9) (1975) 509–517, doi: 10.1145/361002.361007 .

[29] D. Pelleg, A. Moore, Accelerating exact k -means algorithms with geomet-
ric reasoning, in: Proceedings of the Fifth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, ACM, 1999, pp. 277–281,
doi: 10.1145/312129.312248 .

[30] A. Goswami, R. Jin, G. Agrawal, Fast and exact out-of-core k -means clustering,

in: Proceedings of the Fourth IEEE International Conference on Data Mining,
2004, pp. 83–90, doi: 10.1109/ICDM.2004.10102 .

[31] A.K. Jain , R.C. Dubes , Algorithms for Clustering Data, Prentice-Hall, Inc., 1988 .
[32] Y. Zhao, G. Karypis, Hierarchical clustering algorithms for document

datasets, Data Min. Knowl. Discov. 10 (2) (2005) 141–168, doi: 10.1007/
s10618- 005- 0361- 3 .

[33] T. Kohonen, M.R. Schroeder, T.S. Huang (Eds.), Self-Organizing Maps,

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001 .
[34] D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60 (2)

(2004) 91–110, doi: 10.1023/B:VISI.0 0 0 0 029664.99615.94 .
[35] B. Thomee, D.A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth,

L.-J. Li, YFCC100M: the new data in multimedia research, Commun. ACM 59
(2) (2016) 64–73, doi: 10.1145/2812802 .

[36] K. Mikolajczyk, C. Schmid, Scale and affine invariant interest point detectors,

IJCV 60 (1) (2004) 63–86, doi: 10.1023/B:VISI.0000027790.02288.f2 .
[37] R. Arandjelovic , A. Zisserman , Three things everyone should know to improve

object retrieval, in: Proceedings of the CVPR, 2012, pp. 2911–2918 .
[38] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, C. Schmid, Aggregating

local descriptors into compact codes, Trans. PAMI 34 (9) (2012) 1704–1716,
doi: 10.1109/TPAMI.2011.235 .

Wan-Lei Zhao received his Ph.D degree from City Uni-

versity of Hong Kong in 2010. He received M.Eng. and
B.Eng. degrees in Department of Computer Science and

Engineering from Yunnan University in 2006 and 2002,
respectively. He currently works with Xiamen University

as an associate professor, China. Before joining Xiamen
University, he was a Postdoctoral Scholar in INRIA, France.

His research interests include multimedia information re-

trieval and video processing.

Cheng-Hao Deng received his Bachelor degree of Science
from Nanchang University, China in 2014. He is currently

a graduate student at Department of Computer Science,

Xiamen University. His research interest is large-scale im-
age clustering and linking.

Chong-Wah Ngo received the B.Sc. and M.Sc. degrees in
computer engineering from Nanyang Technological Uni-

versity, Singapore, and the Ph.D. in computer science
from the Hong Kong University of Science and Technol-

ogy (HKUST), Hong Kong. He is currently a Professor with
the Department of Computer Science, City University of

Hong Kong. Before joining the City University, he was a
Postdoctoral Scholar with the Beckman Institute, Univer-

sity of Illinois at Urbana Champaign (UIUC), Urbana, IL,

USA. He was also a Visiting Researcher with Microsoft Re-
search Asia, Beijing, China. His research interests include

large-scale multimedia information retrieval, video com-
puting, multimedia mining and visualization.

https://doi.org/10.1023/B:MACH.0000027785.44527.d6
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0002
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/ICCV.2003.1238663
https://doi.org/10.1109/TPAMI.2010.57
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1109/CVPR.2014.124
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/s10115-007-0114-2
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0010
https://doi.org/10.1007/s00454-011-9340-1
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0013
https://doi.org/10.1109/TPAMI.2002.1017616
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0015
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.14778/2180912.2180915
https://doi.org/10.1145/2556195.2556260
https://doi.org/10.1007/978-3-319-14998-1_17
https://doi.org/10.1109/CVPR.2015.7298596
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0022
https://doi.org/10.1109/34.1000236
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0025
https://doi.org/10.1145/331499.331504
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0027
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0027
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/312129.312248
https://doi.org/10.1109/ICDM.2004.10102
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0031
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0031
https://doi.org/10.1007/s10618-005-0361-3
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0033
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1145/2812802
https://doi.org/10.1023/B:VISI.0000027790.02288.f2
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0037
http://refhub.elsevier.com/S0925-2312(18)30239-X/sbref0037
https://doi.org/10.1109/TPAMI.2011.235

	k-means: A revisit
	Citation

	k-means: A revisit
	1 Introduction
	2 Related works
	3 Clustering objective functions
	3.1 Preliminaries
	3.2 Objective functions

	4 k-means driven by objective function
	4.1 Clustering algorithm
	4.2 Scalability analysis

	5 Experiments
	5.1 Evaluation of clustering distortion
	5.2 Nearest neighbor search by product quantizer (PQ)
	5.3 Document clustering
	5.4 Scalability test on image clustering

	6 Conclusion
	 Acknowledgment
	Appendix A Optimum of k-means
	Appendix B Convergence of k-means
	 References

