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Abstract Taking a picture of delicious food and sharing it in social media has been a pop-
ular trend. The ability to recommend recipes along will benefit users who want to cook a
particular dish, and the feature is yet to be available. The challenge of recipe retrieval, never-
theless, comes from two aspects. First, the current technology in food recognition can only
scale up to few hundreds of categories, which are yet to be practical for recognizing tens of
thousands of food categories. Second, even one food category can have variants of recipes
that differ in ingredient composition. Finding the best-match recipe requires knowledge of
ingredients, which is a fine-grained recognition problem. In this paper, we consider the
problem from the viewpoint of cross-modality analysis. Given a large number of image and
recipe pairs acquired from the Internet, a joint space is learnt to locally capture the ingredi-
ent correspondence between images and recipes. As learning happens at the regional level
for image and ingredient level for recipe, the model has the ability to generalize recognition
to unseen food categories. Furthermore, the embedded multi-modal ingredient feature sheds
light on the retrieval of best-match recipes. On an in-house dataset, our model can double
the retrieval performance of DeViSE, a popular cross-modality model but not considering
region information during learning.
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1 Introduction

Food recognition is an important research topic since it serves as the key technology for
automatic dietary assessment services. Generally, this task is considered as a challenging
problem due to diverse appearances of food as a result of non-rigid deformation and compo-
sition of ingredients. In recent years, food recognition has started to capture more attention
[3, 4, 16, 18] partly due to the success of deep learning technologies. With deep learning
technologies, the accuracy of food recognition can be as high as 80% on the benchmark
datasets such as Food101 [4], FoodCam-256 [13] and VIREO Food-172 [5]. The success
gives light to the development of techniques for automatic dietary food tracking [1, 14, 18]
and nutrition estimation [32], which has long been recognized as a challenge not only in
multimedia [1, 28] but also in health and nutritional science [20].

Nevertheless, the existing efforts are mostly devoted to recognizing a pre-defined set
of food categories, ranging from 100 to 256 categories [4, 5, 13, 16]. Extending to
large-scale recognition, for example tens of thousands food categories, remains an area
yet to be researched. In this paper, we pose food recognition as a problem of recipe
retrieval. Specifically, given a food picture, of whether the category has been seen dur-
ing the training process, the aim is to retrieve a recipe for the food. The advantages
of having recipe, rather than the name of food category, as output are numerous. Shar-
ing food pictures in social media has been a trend. The ability to recommend recipes
along will benefit users who want to cook a particular dish, and the feature is yet to
be available. In addition, recipe provides rich information, such as cooking methods,
ingredients and their quantities, which can facilitate the estimation of food balance and
nutrition facts. The challenge of recipe retrieval, nevertheless, comes from the fact that
there could be many recipes named under the same categories, each of which differs in
the composition of ingredients. Figure 1 shows an example, where recommending the
right recipe for “Yuba Salad” indeed requires also fine-grained recognition of ingredient
composition.

This paper explores the recent advances in cross-modality learning for addressing the
aforementioned problems. Specifically, given food pictures and their associated recipes,
our aim is to learn a model that captures their correspondence by learning a joint
embedding space for visual-and-text translation. We exploit and revise a deep model,
stacked attention network (SAN) [31], originally proposed for visual question-answering
for our purpose. The model learns the correspondence through assigning heavier weights
to the attended regions relevant to the ingredients extracted from recipes. Notice that

Fig. 1 Although recipe (a), (b) and (c) are all about “Yuba salad”, only recipe (a) uses the exactly same
ingredients as the dish picture. Retrieving best-match recipe requires fine-grained analysis of ingredient
composition



Multimed Tools Appl (2018) 77:29457–29473 29459

ingredient-irrelevant but context-relevant regions may also be useful for recipe retrieval, for
example, the “casserole” regions would be effective in identifying dishes like “casserole
rice noodles” or “casserole tofu”. Similar case also happens for ingredients (e.g., water)
appear in dish but are not written in recipe. Therefore, directly ignoring these regions
would decrease retrieval performance. Thanks to attention mechanism, our model will not
completely ignore context-relevant regions but assign weights that are usually lower than
ingredient regions, so long as the contextual information is useful in reducing training error.
For the task of recipe retrieval, fortunately the learning does not require much effort in
labeling training examples. There are already millions of food-recipe pairs uploaded by pro-
fessional and amateur chefs on various cooking websites, which can be freely leveraged for
training. We demonstrate that using these online resources, a fairly decent model can be
trained for recipe retrieval with minimal labeling effort. As input to SAN includes ingre-
dients, the model has higher generalization ability in recognizing food categories unseen
during training, as long as all or most ingredients are known. Furthermore, as ingredient
composition is considered in SAN, the chance of retrieving the best-match recipes is also
enhanced. To this end, the contribution of this paper lies in addressing of food recognition
as a recipe retrieval problem. Under this umbrella, the problem is turned into cross-modality
feature learning, which can integrally model three inter-related problems: scalable food
recognition, fine-grained ingredient recognition and best-match recipe retrieval. The prelim-
inary version of this paper is published in [6]. This paper provides more empirical insights
and discussion of the proposed network, as followings:

• Empirical comparison to a recently published work [5].
• Visualization of attention maps in comparison to Pool5 feature maps.
• Generalization of the network to unseen food categories.
• Analysis of success and failure examples in best-match recipe retrieval.

The remaining of this paper is organized as follows. Section 2 describes the related
works. Section 3 elaborates our architecture for region selection and joint embedding fea-
ture learning. Section 4 presents experimental results and finally Section 5 concludes this
paper.

2 Related work

Analysis of recipes has been studied from different perspectives, including retrieval [5,
23, 26, 27], classification [17, 25] and recommendation [15]. Most of the approaches
employ text-based analysis based upon information extracted from recipes. Examples
include extraction of ingredients as features for cuisine classification [25] and taste estima-
tion [17]. More sophisticated approaches model recipes as cooking graphs [27, 29] such
that graph-based matching can be employed for similarity ranking of recipes. The graph,
either manually or semi-automatically constructed from a recipe, represents the workflow
for cooking and cutting procedures of ingredients. In [27], multi-modality information is
explored, by late fusion of cooking graphs and low-level features extracted from food
pictures, for example-based recipe retrieval. Few works have also studied cross-modality
retrieval [5, 15, 26]. In [15], recognition of raw ingredients is studied for cooking recipe
recommendation. Compared to prepared food where ingredients are mixed or even occlude
each other, raw ingredients are easier to recognize. In [26], classifier-based approach is
adopted for visual-to-text retrieval. Specifically, the category of food picture is first rec-
ognized, followed by retrieval of recipes under a category. As classifiers are trained from
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UPMC Food-101 dataset [4], retrieval is only limited to 101 food categories. The issues in
scalability and finding best-match recipes are not addressed. The recent work in [5] explores
ingredient recognition for recipe retrieval. Using ingredient network as external knowledge,
the approach is able to retrieve recipes even for unseen food categories. Different from [5],
[23] aims to find a joint embedding of recipes and images for image-recipe retrieval task.
More specifically, the joint space is learnt upon recipe and whole image which ignores
regional features critical for fine-grained recognition. Different from [23], this paper aims
to learn a joint space on regional level rather than image-level.

Cross-modality analysis has been actively researched for multimedia retrieval [8, 12,
21]. Frequently employed algorithms include canonical correlation analysis (CCA) [11]
and partial least squares (PLS) [22], which find a pair of linear transformation to max-
imize the correlation between data from two modalities. CCA, in particular, has been
extended to three-view CCA [10], semantic correlation matching (SCM) [21], deep CCA
[2] and end-to-end deep CCA [30] for cross-modality analysis. Among variants of model,
deep visual semantic embedding (DeViSE) [8] is generally used and usually exhibits sat-
isfactory performance. These models, nevertheless, consider image-level features, such as
fc7 extracted from deep convolutional network (DCNN), and usually ignore regional fea-
tures critical for fine-grained recognition. One of the exceptions is the deep fragment
embedding (DFE) proposed in [12], which aligns image objects and sentence fragments
while learning the visual-text joint feature. However, the model is not applicable here for
requiring of R-CNN [9] for object region detection. In the food domain, there is yet to
have an algorithm for robust segmentation of ingredients, which can be fed into DFE for
learning.

3 Stacked Attention Network (SAN)

Figure 2 illustrates the SANmodel, with visual and text features respectively extracted from
image and recipe as input. The model learns a joint space that boosts the similarity between
images and their corresponding recipes. Different from [31], where the output layer is for
classification, we modify SAN so as to maximize the similarity for image-recipe pairs.

Pool 5 
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ax 

+ 

softm
ax 

tanh 

Similarity score 
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Fig. 2 SAN model inspired from [31] for joint visual-text space learning and attention localization
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3.1 Image embedding feature

The input visual feature is the last pooling layer of DCNN – Pool5 – that retains the spatial
information of the original image. The dimension of Pool5 feature is 512×14×14, corre-
sponding to 14×14 or 196 spatial grids of an image. Each grid is represented as a vector of
512 dimensions. Denote F I as the Pool5 feature and is composed of regions fi , i ∈ [0,195].
Each region fi is transformed to a new vector or embedding feature as follows:

V I = tanh(W IF I + bI ), (1)

where V I ∈ R
d×m is the transformed feature matrix, with d as the dimension of new vector

and m = 196 is the number of grids or regions. The embedding feature of fi is indexed by i-
th column ofV I , denoted as vi . The transformation is performed region-wise,W I ∈ R

d×512

is the transformation matrix and bI ∈ R
d is the bias term.

3.2 Recipe embedding feature

A recipe is represented as a binary vector of ingredients, denoted as r ∈ R
t . The dimension

of the vector is t corresponding to the size of ingredient vocabulary. Each entry in r indicates
the presence (1) or absence (0) of a particular ingredient in a recipe. As Pool5 feature, the
vector is embedded into a new space as follows:

vR = tanh(WRr + bR), (2)

where WR ∈ R
d×t is the embedding matrix and bR ∈ R

d is the bias vector. Note that, for
joint learning, the embedding features of recipe (vR ∈ R

d ) and Pool5 region (i-th column
of V I ) have the same dimension.

3.3 Joint embedding feature

The attention layer is to learn the joint feature by trying to locate the visual food regions
that correspond to ingredients. There are two transformation matrices, W I,A ∈ R

k×d for
image I and WR,A ∈ R

k×d for recipe R, mimicking the attention localization, formulated
as follows:

HA = tanh(W I,AV I ⊕ (WR,AvR + bA)), (3)

pI = softmax(WP HA + bP ), (4)

where HA ∈ R
k×m, pI ∈ R

m, WP ∈ R
1×k . We denote by ⊕ the addition of a matrix

and a vector that performed by adding each column of matrix by the vector. Note that pI

aims to capture the attention, or more precisely relevance, of image regions to a recipe. The
significance of a region fi is indicated by the value in the corresponding element pi ∈ pI .

The joint visual-text feature is basically generated by adding the embedding features
V I and vR . To incorporate attention value, regions vi are linearly weighted and summed
(equation-5) before the addition operation with vR (equation-6), as follows:

ṽI =
m∑

i=1

pivi , (5)

u = ṽI + vR, (6)

where ṽI ∈ R
d , and u ∈ R

d represents the joint embedding feature.
As suggested in [31], progressive learning by stacking multiple attention layers can boost

the performance, but will heavily increase the training cost. We consider two-layer SAN, by
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feeding the output of first attention layer, u(1), into the second layer to generate new joint
embedding feature u(2) as follows:

H
(2)
A = tanh

(
W

(2)
I,AV I ⊕

(
W

(2)
R,Au + b

(2)
A

))
, (7)

p
(2)
I = softmax

(
W

(2)
P H

(2)
A + b

(2)
P

)
, (8)

˜
v

(2)
I =

∑

i

p
(2)
i vi , (9)

u(2) = ˜
v

(2)
I + u. (10)

As p
(2)
I indicates the region relevancy, the attention map can be visualized by back pro-

jecting the attention value pi to its corresponding region fi , followed by upsampling to the
original image size with bicubic interpolation.

3.4 Objective function

To this end, the similarity between food image and recipe is generated as follows:

S〈V I , vR〉 = tanh(Wu,su
(2) + bs), (11)

where Wu,s ∈ R
1×d and bs ∈ R is the bias. S〈V I , vR〉 outputs a score indicating the

association between the embedding features of image and recipe. The learning is based on
the following rank-based loss function with a large margin form as the objective function:

L(W ,Dtrn) =
∑

(V I ,v+
R,v−

R)∈Dtrn

max(0,� + S〈V I , v
−
R 〉 − S〈V I , v

+
R 〉). (12)

The training set, Dtrn, consists of triples in the form of (V I , v
+
R, v−

R), where v+
R (v−

R ) is true
(false) recipe for food VI . The matrix W represents the network parameters, and � ∈ (0, 1)
controls the margin in training and is cross-validated.

4 Experiments

4.1 Settings and evaluation

Here we detail the parameter setting of SAN. The dimension of the embedding feature is
set to d = 500 for both Pool5 regional and recipe features, while the dimension of hA is
k = 1, 024 for equations 3 and 7. Through cross-validation, the hyperparameter � for the
loss function is set as 0.2. SAN is trained using stochastic gradient descent with momentum
set as 0.9 and the initial learning rate as 1. The size of mini-batch is 50 and the training
stops after 10 epochs. To prevent overfitting, dropout [24] is used. The Pool5 feature can be
extracted from any DCNN models. We employ the multi-task VGG released by [5], which
reported the best performances on two large food datasets, VIREO Food-172 [5] and UEC
Food-100 [16]. The model, as shown in Fig. 3, has two pathways, one for classifying 172
food categories while another for labeling 353 ingredients. For a fair comparison, all the
compared approaches in the experiment are using multi-task VGG features, either Pool5 or
deep ingredient feature (fc7), as shown in Fig. 3.



Multimed Tools Appl (2018) 77:29457–29473 29463

...
...

... ...
...

...

FC6
Food 

categoriza�on

Ingredient 
recogni�on

FC7 FC8

...

Input image Pool5 
features

Deep ingredient 
features

Fig. 3 Multi-task VGG model in [5] offering Pool5 and deep ingredient features for cross-modal joint space
learning

As the task is to find the best possible recipe given a food picture, the following two
measures are employed for performance evaluation:

• Mean reciprocal rank (MRR): MRR measures the reciprocal of rank position where the
ground truth recipe is returned, averaged over all the queries. This measure assesses the
ability of the system to return the correct recipe at the top of the ranking. The value of
MRR is within the range of [0, 1]. A higher score indicates a better performance.

• Recall at Top-K (R@K): R@K computes the fraction of times that a correct recipe is
found within the top-K retrieved candidates. R@K provides an intuitive sense of how
quickly the best recipe can be located by investigating a subset of the retrieved items.
As MRR, a higher score also indicates a better performance.

4.2 Dataset

The dataset is composed of 61,139 image-recipe pairs crawled from the “Go Cooking”1

websites. Each pair consists of a recipe and a picture of resolution 448 × 448. The dataset
covers different kinds of food, like Chinese dishes, snacks, dessert, cookies and Chinese-
style western food, as shown in Fig. 4. Each recipe includes the list of ingredients and
cooking procedure. As the recipes were uploaded by amateurs, the naming of ingredients is
not always consistent. For example, “carrot” is sometimes called as “carotte”. We manually
rectified the inconsistency and compiled a list of 5,990 ingredients, both visible and non-
visible (e.g., “honey”), from these recipes. The list, represented as a binary vector indicating
the presence or absence of particular ingredients in a recipe, serves as input to the SAN
model. Note that in some cases the cooking and cutting methods are directly embedded into
the name of ingredient, for example, “tofu” and “tofu piece”, “egg” and “steamed egg”.

The dataset is split into three sets: 54,139 pairs for training, 2,000 pairs for cross-
validation, and 5,000 pairs for testing. Furthermore, we selected 1,000 images from the
testing set as queries to search against the 5,000 recipes. The queries are sampled in such a
way that there are around 45% of them (446 queries) belonging to food categories unknown
to SAN and multi-task VGG models. In addition, around 85% of the queries have more than
one relevant recipe. We recruite a homemaker, who has cooking experience, to manually
pick the relevant recipes for each of the 1,000 queries. The homemaker is instructed to label
relevant recipes based on title similarity in recipes, titles that are named differently because

1https://www.xiachufang.com

https://www.xiachufang.com
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Regular dish Snacks CookiesDessert Chinese-style 
western food

Fig. 4 Examples of dishes in the dataset

of geography regions or sharing almost the same cooking procedure with similar key ingre-
dients. For example, the dish “sauteed tofu in hot and spicy sauce” is sometimes called as
“mapo tofu” in the restaurant menu. In the extreme case, some queries have more than 60
relevant recipes. On average each query has 9 number of relevant recipes. Note that the test-
ing queries are designed in these ways so as to verify the two major claims in this paper,
i.e., the degree in which the learnt model can generalize to unseen food categories (Section
4.4) and the capability in finding the best-matched recipe (Section 4.5).

4.3 Performance comparison

We compared SAN to both shallow and deep models for cross-modal retrieval as following.
The inputs to these models are the deep ingredient feature (fc7) of the multi-task VGG
model and the ingredient vector of 5,990 dimensions. The Pool5 feature is not used due to
its high dimensionality (14×14×512). As reported in [7], simply concatenating the features
from 14×14 grids performs worse than fc7 in visual recognition.

• Canonical Correlation Analysis (CCA) [11]: CCA is a classic way of learning latent
subspace between two views or features by maximizing the correlation between them.
Two linear mapping functions are learnt for projecting features into subspace.

• Partial Least Squares (PLS) [22]: Similar to CCA, PLS learns two linear mapping func-
tions between two views. Instead of using cosine similarity as in CCA, PLS uses dot
product as the function for measuring correlation.

• DeViSE [8]: DeViSE is a deep model with two pathways which respectively learn
the embedded features of recipe-image pairs to maximize their similarities. Note that,
instead of directly using word2vec as in [8], the embedded feature of ingredients is
learnt from the training set of our dataset. This is simply because word2vec is learnt
from documents such as news corpus [19] and lacks specificity in capturing informa-
tion peculiar to ingredients. Different from SAN, DeViSE is not designed for attention
region localization.

• DeViSE++: We purposely includ a variant of DeViSE, which takes the hand-cropped
regions of food as input to the deep model. The cropping highlights the target food
region and basically removes the background or irrelevant part of food pictures. The aim
of using DeViSE++ is to gate the potential improvement over DeViSE when only food
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Table 1 MRR and R@K for recipe retrieval

Method MRR R@1 R@5 R@10 R@20 R@40 R@60 R@80 R@100

CCA 0.055 0.023 0.079 0.123 0.182 0.262 0.329 0.371 0.413

PLS 0.032 0.009 0.039 0.073 0.129 0.219 0.284 0.338 0.398

DeViSE 0.049 0.016 0.060 0.108 0.182 0.300 0.391 0.456 0.524

DeViSE++ 0.050 0.016 0.059 0.105 0.174 0.307 0.404 0.471 0.531

Multi task [5] 0.097 0.051 0.128 0.184 0.251 0.324 0.372 0.408 0.438

SAN 0.115 0.048 0.161 0.249 0.364 0.508 0.601 0.671 0.730

The best performance is highlighted in bold font

region is considered, and more importantly, to justify the merit of SAN in identifying
appropriate attention region in comparison to the hand-cropped region.

• Multi task [5]: In Multi task [5] model, ingredient recognition is formulated as a
problem of multi-task learning and the learnt semantic labels as well as the external
knowledge of the contextual relations among ingredients are utilized for recipe retrieval.

Table 1 lists the results of different approaches. Deep models basically outperform shal-
low models in terms of recall at the depth of 20 and beyond. In contrast to PLS, which does
not perform score normalization, CCA manages to outperform DeViSE in terms of MRR
and R@K for K < 20. Among all these approaches, the proposed model SAN consistently
exhibits the best performance in terms of MRR. Compared to DeViSE and Multi task, SAN
achieves a relative improvement of 130% and 18% in MRR, respectively. In terms of R@K,
SAN performs significantly better than DeViSE and doubles its performance at R@20,
which is fairly impressive. Compared with Multi task model, SAN also performs much
better when K > 5, and the performance gap becomes larger when the depth increases.

To further provide insights, Fig. 5 visualizes the attention maps learnt from SAN while
comparing to Pool5 feature maps. From the figure, it is obvious that the learnt attention
model can locate the ingredient regions more accurately than Pool5 feature maps.

Input image Pool5 Attention map

Fig. 5 Visualizing attention maps, the learnt attention regions are highlighted in white
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Fig. 6 Visualization of two attention layers

To observe the difference between the two learnt attention layers, we visualize the atten-
tion maps pI and p

(2)
I . Four examples are shown in Fig. 6. From the figure, we can observe

that the second attention layer reduces the noises in the first layer and hence is more accurate
in localizing ingredient regions.

Despite the encouraging performance by SAN, the value of R@1 is only around 0.05.
Figure 7 shows some successful and near-miss examples. The first two pictures show query
images where all visible ingredients are clearly seen. SAN manages to retrieve the ground-
truth recipe at top-1 rank in such cases. In the third example, SAN ranks “grilled salmon”
higher than “fried salmon” as the current model does not consider cooking attributes. In
addition, SAN overlooks the beef and peanuts which are mixed and partially occluded by
salmon, while confused by the ingredients of similar appearance, i.e., caviar and red pepper,
bean sprout and basil. The last query image shows an example of how non-visible ingredi-
ents, flour in this example, affect the ranking. The flour is used to make the dish into round
shape, and this knowledge does not seem to be learnt by SAN.

Another result worth noticing is that there is no performance difference between DeViSE
and DeViSE++. While DeViSE is not designed for attention localization, the model seems
to have the ability to exclude irrelevant background regions from recognition. To provide
further insights, Fig. 8 shows some examples visualizing the attention regions highlighted
by SAN and in contrast to hand-crafted regions. In the first example, the region attended
by SAN is about the same as the region manually cropped. In this case, DeViSE+ and SAN
use to have similar performance. The next two examples highlight the superiority of SAN
in excluding soup and foil as attention regions, which cannot be not easily done by simple
region cropping. SAN significantly outperforms DeViSE in such examples. Finally, the last
example shows a typical case that SAN only highlights part of dishes as attention. While
there is no direct explanation of why certain food regions are ignored by SAN for joint space
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Query
image

Top
Retrieved

recipes

Recipe name: Lotus seeds & white
fungus soup.
Ingredients:
Lotus seeds; White fungus; Red date;
Papaya; Rock candy;

Recipe name: White fungus soup.
Ingredients:
White fungus; Lotus seeds; Red date;
Lily bulbs; Chinese wolfberry; Rock
candy;

Recipe name: Lotus seeds & white
fungus soup.
Ingredients:
White fungus; Lotus seeds; Rock
candy;

Recipe name: Sweet and sour spare
ribs.
Ingredients:
Spare ribs (500g); Sesame; Soy sauce;
vinegar; Rock candy;

Recipe name: Fried Eggs with
Chopped Chinese Toon Leaves
Ingredients:
Egg (2); Chinese toon leaves (a few);
Flour (a few)

Recipe name: Fried Eggs with
Chopped Chinese Toon Leaves
Ingredients:
Egg (2); Chinese toon leaves (a few);

Recipe name: Fried Eggs with
Chopped Chinese Toon Leaves
Ingredients:
Egg; Pickled Chinese toon leaves;

Recipe name: Grilled salmon.

Ingredients:
Salmon; onion; black pepper; Red
pepper; Basil;

Recipe name: Sweet and sour spare
ribs.
Ingredients:
Spare ribs; Tomatoes; Soy sauce;
Pineapple; vinegar; Rock candy;

Recipe name: Sweet and sour spare
ribs.
Ingredients:
Spare ribs (400g); Black fungus; Soy
sauce; Daylily; vinegar; Rock candy;

Recipe name: Fried salmon with
seasoned beef.
Ingredients:
Salmon; Beef; Peanut; Caviar; Bean
sprout; butter; onion; Black pepper;
Lemon;

Recipe name: Shredded chicken with
basil
Ingredients:
Chicken breast; Basil; butter; lemon;
Black pepper;

Fig. 7 Examples of top-3 retrieved recipes (ranked from top to bottom). Ground-truth recipe is marked in
green. The ingredients in different colors have different meanings: green – true positive, purple – true positive
but non-visible in dish, red – false positive

learning, it seems that SAN has the ability to exclude regions that are vague and hard to be
recognized even by human.

4.4 Finding the best matches recipes

Recalled that around 85% of query images have more than one relevant recipe. This section
examines the ability of SAN in identifying the best (or ground-truth) recipe from the test-
ing set composed of 5,000 recipes. Figure 9 shows the performance of best match recipe
retrieval compares with relevant recipe retrieval. For recall@top5, the performance of rele-
vant recipe retrieval improves when the number of relevant recipe increases while the trend
is opposite for best-match recipe retrieval.

To provide insights, we select the queries that retrieve at least one relevant recipe (exclud-
ing ground-truth recipe) within the top-5 position for analysis. The purpose is to show

Fig. 8 a Examples contrasting the manually cropped region (green bounding box), b the learnt attention
region (masked in white) by SAN



29468 Multimed Tools Appl (2018) 77:29457–29473

R
@

5

0

0.125

0.25

0.375

0.5

# of relevant recipes

1 3 5 7 9 11 13 15 17 19 21

Relevant recipe retrieval
Best-match recipe retrieval

Fig. 9 Performance of best match recipe retrieval and relevant recipe retrieval

how the performance of best-match recipe retrieval is impacted by the increasing num-
ber of relevant recipes. We divide the selected queries into seven groups with the intention
to make the number of queries in each group as even as possible. Note that, as the num-
bers of recipes distribute in a long-tail like manner, the recipe numbers in each group are
uneven. Table 2 lists the performance for each group. As can be seen from the table, the
difficulty of finding best-match is proportional to the number of relevant recipes. Com-
pared to DeViSE, SAN generally shows better performance for R@1. As the number of
recipes increases, they tie in performance. Nevertheless, while looking deeper into the list,
SAN consistently outperforms DeViSE in terms of R@5 and R@10. Two main reasons that
ground truth recipes are not ranked higher are due to occluded ingredients and the use of
different non-visible ingredients. Two such examples are shown in the last two pictures of
Fig. 7.

4.5 Generalization to unknown categories

Figure 10 further shows the performance of SAN to unseen categories. As expected, the
performance is not as good as that for the food categories known to SAN and multi-task
VGG. Figure 11 shows both success and failure examples of recipe retrieval. Basically,
when the ingredients of unknown food categories are previously seen and can be correctly
identified, SAN performs satisfactorily. In contrast, when some ingredients, especially key
ingredients, are unknown, the model will likely fail in retrieving relevant recipes. In the first
example, the ingredients are correctly recognized despite that the dish belongs to unseen

Table 2 Performance comparison between SAN and DeViSE in retrieving best-match recipes

R@1 R@5 R@10

Recipe # Query # SAN DeViSE SAN DeViSE SAN DeViSE

2-3 33 0.21 0.15 0.67 0.48 0.82 0.76

4-7 66 0.18 0.17 0.56 0.53 0.70 0.67

8-11 54 0.17 0.15 0.54 0.30 0.60 0.50

11-15 38 0.13 0.08 0.47 0.39 0.63 0.55

16-30 48 0.06 0.06 0.46 0.39 0.62 0.52

31-61 25 0.08 0.08 0.28 0.26 0.44 0.44
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Fig. 10 Generalization of SAN to unseen food categories

food categories. As results, our model is able to rank the best match recipe at the top-1
place. However, when the ingredient is covered by flour (second example), the model is
unlikely to recognize the ingredients and hence fails to retrieve the correct recipes at top
ranks. Finally, when the dish contains unseen key ingredients, for example, “fishwort” in
the third example, our model will fail.

We further compare the generalization ability of our model with DeViSE and Multi task
[5]. The retrieval performances are evaluated on 446 queries that come from unknown food
categories. As can be seen from the Fig. 12, our model enjoys higher generalization ability
and the performance gap becomes larger when the depth of recall increase. The better gener-
alization ability of our model verifies the advantages of cross-modal learning on region-level
with stacked attention networks.

Recipe name: Fried black 
fungus with yam & celery

Ingredients:
Yam, black fungus, celery, 
garlic

Recipe name: Fried black 
fungus with green pepper

Ingredients:
Black fungus, green pepper,
garlic

Recipe name: Black 
fungus salad

Ingredients:
Black fungus, celery, carrot
green pepper, garlic

Recipe name: 
Okonomiyaki

Ingredients:
Flour, egg, cabbage, shrimp, 
carrot, peas, corn, salt, 
salad dressing, seaweed, 

Recipe name: Fried rice

Ingredients:
Rice, egg, carrot, peas, 
corn,green onion, ham, 
salt, oil

Recipe name: Curry crabs

Ingredients:
Flour, crab, onion, curry, 
potato, egg 

Recipe name: Chicken 
breast salad

Ingredients:
Chicken breast, cucumber,
carrot, garlic, sesame, 
chili oil, soy sauce, vinegar

Recipe name: Bean 
sprouts salad

Ingredients:
Chili powder, bean sprouts
chili oil, soy sauce, garlic, 
green pepper, sugar, vinegar 

Recipe name: Cucumber  
& bean sprouts salad

Ingredients:
Bean sprouts, cucumber,
salt,  chili oil

Query image Top retrieved recipes

celery

black fungus

yam

chili oil

Fig. 11 Examples of top-3 retrieved recipes for unknown food categories. Ground-truth recipe is marked in
green. The ingredients in different colors have different meanings: green – true positive, purple – true positive
but non-visible in dish, red – false positive
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Fig. 12 Comparison of generalization ability among different methods

5 Conclusion

We have presented a deep model for learning the commonality between image and text at the
fine-grained ingredient level. The power of model comes from the ability to infer attended
regions relevant to the ingredients extracted from recipes. This peculiarity enables retrieval
of best-match recipes even for unseen food category. The merit of our approach is that it
requires much less labeling efforts compared to learning individual ingredient classifiers.
The experimental results basically verify our claims that the model can deal with unknown
food categories to the extent that at least key ingredients are seen during training. In addition,
SAN exhibits consistently better performance than DeViSE, showing the advantage of fine-
grained ingredient analysis at the regional level for best-match recipe retrieval.

While the current model does not consider food category information, it is expected
that such information will boost performance especially when there are errors in ingredient
localization and attention modeling. How to incorporate food category information into the
current model is worth further investigation. Finally, our current model can be extended to
explicitly model cutting and cooking attributes in cross-modal learning, which could address
some limitations identified in the experiments. In addition, as the attention layers couple
both visual and text features, the embedding features cannot be offline indexed and have to
be generated on-the-fly when the query image is given. This poses limitation on retrieval
speed for online application, which is an issue needs to be further researched.
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