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A Study of Multi-Task and Region-Wise Deep
Learning for Food Ingredient Recognition

Jingjing Chen , Member, IEEE, Bin Zhu, Graduate Student Member, IEEE, Chong-Wah Ngo, Tat-Seng Chua,

and Yu-Gang Jiang , Member, IEEE

Abstract— Food recognition has captured numerous research
attention for its importance for health-related applications. The
existing approaches mostly focus on the categorization of food
according to dish names, while ignoring the underlying ingredient
composition. In reality, two dishes with the same name do
not necessarily share the exact list of ingredients. Therefore,
the dishes under the same food category are not mandatorily
equal in nutrition content. Nevertheless, due to limited datasets
available with ingredient labels, the problem of ingredient
recognition is often overlooked. Furthermore, as the number
of ingredients is expected to be much less than the number of
food categories, ingredient recognition is more tractable in the
real-world scenario. This paper provides an insightful analysis
of three compelling issues in ingredient recognition. These issues
involve recognition in either image-level or region level, pooling
in either single or multiple image scales, learning in either single
or multi-task manner. The analysis is conducted on a large food
dataset, Vireo Food-251, contributed by this paper. The dataset
is composed of 169,673 images with 251 popular Chinese food
and 406 ingredients. The dataset includes adequate challenges in
scale and complexity to reveal the limit of the current approaches
in ingredient recognition.

Index Terms— Food images, Chinese food, ingredient recogni-
tion, deep learning.

I. INTRODUCTION

FOOD log management aims to quantify food consumption
and provides services such as advice on weight-loss

strategies. The current practice of logging still relies on manual
food intake, which is cumbersome. For example, manually
inputting the ingredients of a home-cooked dish is required
for nutrition estimation. Furthermore, as reported in [1],
self-reporting data obtained from unfriendly logging processes
often tends to underestimate the actual food intake. With the
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Fig. 1. Variations in visual appearance and composition of ingredients
highlight the challenges of food recognition. The first row shows three
examples of dishes for the category “scrambled egg & cucumber”, followed
by “sour & spicy diced lotus root” and “shredded oyster mushrooms salad”
in the second and third rows respectively.

prevalence use of mobile devices, a more convenient way is
by taking a picture of a meal for food recognition and logging.

The automatic dietary recognition and assessment have been
an active area of research [2]–[7]. These works basically
perform dish recognition, and then search for calories and
nutrition information of a dish from the food composition
table (FCT). For dishes with standardized cooking methods
such as fast food, such work-flow is simple and effective.
Nevertheless, there remain many categories of dishes without
standard cooking methods, food presentation, and composition
of ingredients. Figure 1 shows some examples of dishes, where
the composition of ingredients within a food category could
be diverse. Take the category “shredded oyster mushrooms
salad” (last row of Figure 1) for example, there are very few
overlaps in ingredients among these dishes except shredded
oyster mushrooms. This intuition motivates the studies of
ingredient recognition in this paper - a problem deserved more
research attention particularly for the large-scale recognition
of ingredients from images in the wild.

As observed in Figure 1, the challenges of food recognition
come from the large visual variations within the same food cat-
egory. The variations introduced as a result of different cook-
ing and cutting methods are hard to be tackled by hand-crafted
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features such as SIFT [8], HOG [9] and color [10]. Thanks to
deep learning [11]–[15], there have been several recent studies
[16], [17] that report high accuracy of food recognition of up
to 80% on medium scale benchmark datasets, such as Vireo
Food-172 [16] and Food-101 [18]. The success of food classi-
fication with deep learning techniques has inspired researchers
to explore a more challenging problem, i.e., understanding
ingredient composition of a dish [16], [19]–[21].

Ingredient recognition is generally a harder problem than
food categorization. The size, shape, and color of an ingredient
can exhibit large visual differences due to diverse ways of
cooking and cutting, in addition to changes in viewpoints
and lighting conditions. This paper studies the recognition of
ingredients in the domain of Chinese dishes. This domain is
particularly challenging because dishes are often composed
of a variety of ingredients being fuzzily mixed, rather than
separated into different food containers or as non-overlapping
food items as frequently seen in Japanese and Western dishes.

This paper describes two methods for ingredient recog-
nition. The methods are not completely new in the litera-
ture of food recognition [16], [20]. This paper presents a
throughout analysis of both methods, including their strength
and limitation in ingredient recognition. The first method
is based on multi-task learning that relies on global image
features for simultaneous food and ingredient classifications.
The motivation is to exploit the mutual relationship between
the food category and ingredients for better performance.
The key ingredients of a category remain similar despite
composing with different auxiliary ingredients. Knowing the
food category basically eases the recognition of ingredients.
For example, the ingredient “cherry tomatoes” has a higher
chance than “pork” to appear in the food “shredded oyster
mushroom salad”. Hence, learning ingredients with the food
category in mind in principle shall lead to better performance.
The second method does not leverage food category informa-
tion. Ingredient recognition is performed at the image region
level. Instead of globally pooling features for recognition,
ingredients are first predicted for each local image patch and
then pooled across regions as the final recognition result.

This paper also contributes a large dataset, Vireo Food-
251, composed of 169,673 images with 251 Chinese food
categories and 406 ingredient labels. In terms of the number
of food categories, this new dataset is on par with UEC
Food-256 [22] and ChineseFoodNet [23] with 208 categories.
Note that ingredient labels are not available on both datasets.
In the literature, Food-101 [18] also includes ingredient labels.
Nevertheless, it is assumed that all dishes under a food
category share the same list of ingredients, which makes the
dataset inappropriate for ingredient recognition.

We extend the paper by comparing the originally proposed
multi-task learning framework in [16] to region-wise ingre-
dient recognition. More in-depth studies, including the issues
of image-level versus region-level recognition, single versus
multi-scale feature pooling and single versus multi-task learn-
ing, are presented with new empirical insights. Furthermore,
we extend the original Vireo Food-172 dataset from 172 to
251 food categories and 353 to 406 ingredient labels. The main
contributions are the sharing of a large food dataset, and the

comparative studies of various compelling issues in ingredient
recognition through the methods of multi-task learning and
region-wise recognition. The rest of the paper is organized as
follows. Section II reviews related works while Section III
introduces the extended dataset. Section IV presents two
baselines, i.e., multi-task learning and region-wise multi-label
classification, for ingredient recognition. Section V details the
performances of two baselines on Vireo Food-251. Finally,
Section VI concludes this paper.

II. RELATED WORK

Food recognition has become a popular research topic in
recent years and variants of recognition-centric approaches
have been investigated for different food-related applications.
These efforts include food quantity estimation based on depth
images [3], image segmentation for volume estimation [24],
[25], context-based recognition by GPS and restaurant menus
[2], [26], [27], taste estimation [28], multi-food recognition
[29]–[32], personalized recognition [33], multi-modal fusion
[34] and real-time recognition [5]–[7], [35], [36]. This section
mainly reviews previous works on food and ingredient
recognition.

A. Food Recognition

The challenge of food recognition comes from visual vari-
ations in shape, color and texture layout. These variations
are hard to be tackled by hand-crafted features such as SIFT
[8], HOG [9] and color [10]. Instead, the features extracted
from deep convolutional neural network (DCNN) [11], which
is trained on ImageNet [37] and fine-tuned on food images,
often exhibit impressive recognition performance [22], [25],
[38]–[42]. Combination of multi-modal features sometimes
also leads to better recognition performance, as reported
in [38], [43]. Recent works mostly focus on researching
new architectures for food recognition, such as Wide-slice
residual networks [44] and bin-linear CNN models [45].
As reported in [44], the best performances on both UEC
Food-100 and Food 101 are achieved by wide-slice residual
networks that contain two branches: a residual network branch
and a slice branch network with slice convolutional layers.
Apart from deep architectures, different learning strategies are
also investigated [16], [19], [46]. For example, in [19] and
[16], food recognition is formulated as a multi-task learning
problem by leveraging ingredient labels or taste labels as
supplementary supervised information. By treating ingredi-
ents as priviledge information, Meng et al.,meng2019learning
propose a cross-modal alignment and transfer network for
food recognition. In addition to using static dataset for model
training, zero and few shots learning has also started capturing
research attention [47], [48].

B. Ingredient Recognition

Compared to food categories, ingredients exhibit larger
visual appearance variations due to different cooking and
cutting methods. Labeling of ingredients also poses a higher
challenge and only very few datasets [16] are constructed
for ingredient recognition. An early work is PFD [49],
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Fig. 2. Examples of food categories in VIREO Food-251.

which leverages the result of ingredient recognition for
food categorization. In PFD, based upon the appearance
of image patches, pixels are softly labeled with ingredient
categories. The spatial relationship between pixels is then
modeled as a multi-dimensional histogram, characterized by
label co-occurrence and their geometric properties such as
distance and orientation. With this histogram representation,
PFD shows impressive food recognition performance. PFD,
nevertheless, is hardly scalable to the number of ingredients.
Using only eight categories of ingredients as demonstrated in
[49], the histogram already grows up to tens of thousands
of dimensions. Other earlier works explore spatial layout
[50], feature mining [18] and image segmentation [25] for
ingredient or food item recognition. In [50], ingredient regions
are detected by shape and texture models, where the shape
is based on DPM (deformable part-based model) while the
texture is based on STF (semantic texton forest). Similar to
PFD [49], the regions are encoded into a histogram modeling
spatial relationship between them for food recognition. The
spatial relationship is not statistically encoded as in [49], but
rather explicit relationships such as “above”, “below”, and
“overlapping” are modeled. Such relationships are helpful for
recognizing food such as dessert and fast food, but diffi-
cult to be generalized such as for Chinese dishes. In [18],
an interesting work that mines the composition of ingredients
as discriminative patterns is proposed for food classification.
A drawback of this approach is the requirement of image
segmentation, which is sensitive to parameter settings and
can impact recognition performance. As reported in [18],
the performance is not better than of DCNN without image
segmentation on the Food-101 dataset. Similar to [24], image
segmentation is employed in [25], but using a more advanced
technique based on conditional random field (CRF) with unary
potentials provided by DCNN [51]. The promising perfor-
mance in segmentation for western food, nevertheless, comes
from the price for requiring training labels that need manual
segmentation of food items for model learning. For Chinese
food, collecting such training labels is extremely difficult,
given the fuzzy composition and placement of ingredients as
shown in Figure 1.

Ingredient recognition is posed as a multi-label learning
problem [16]. More recent works exploit neural networks,

including DCNN and deep Boltzmann machine (DBM), for
this problem [16], [52]. To increase the robustness of recogni-
tion, multi-task learning, which leverages food category labels
as supplementary supervised information, is often employed
for simultaneous classification of food and ingredient labels
[16], [19]. As the appearance of an ingredient change depend-
ing on food preparation, cooking and cutting methods are
also explored as supervised information in [20] for ingredient
recognition. However, as food preparation is a process, label-
ing of ingredients with cooking and cutting attributes is com-
plicated and not intuitive. Other supervised information being
explored in the literature include restaurant menus using bipar-
tite graph representation [53], cuisine, and course using DBM
[52]. Another branch of approaches pose ingredient recogni-
tion as cross-modal learning problem [54]–[56]. Specifically,
both images and recipes are projected into a joint embedding
space for similarity measure. Ingredients are either extracted
from the matched recipe of an image [54], [56] or directly
predicted from the joint space [57]. However, as the perfor-
mance is not scalable to large recipe dataset as studied in [58]
and cross-modal learning is inherently a “black box” model,
the robustness of these approaches is not yet seriously studied.

III. DATASET

We construct a large food dataset specifically for Chinese
dishes, namely Vireo Food-251. Different from other publicly
available datasets [18], [29], [59], both food categories and
ingredient labels are included. To the best of our knowledge,
this is the largest dataset that provides both food categories
and ingredient labels.

A. Dataset Collection

VIREO Food-251 is extended from the original Vireo
Food-172 [16]. With the newly added 79 food categories,
the dataset covers the most of popular Chinese dishes. The
new dataset is compiled from the top-200 popular food
listed on the website “Go Cooking”1. The popularity is
sorted based on the number of user-uploaded food images.
The popular food list is further combined with the original

1https://www.xiachufang.com/category/
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Fig. 3. The distribution of food categories under eight major food groups in
Vireo Food-251.

172 categories in the old version, resulting in 251 food
categories and 406 ingredient labels. For each newly added
food category, a total of 2,000 user-uploaded images were
crawled. We manually checked each image by excluding
images incorrectly labeled, with multiple dishes, suffered
from blurring, or with resolution lower than 256 × 256.

The 251 categories cover eight major groups of food,
as shown in Figure 3. The group meat contains the most
number of categories, with examples include “braised pork”
and “sautéed shredded pork in sweet bean sauce”. On the
other hand, there are less than ten categories under the group
soup, and examples include “lotus root & spare ribs soup” and
“crap & tofu soup”. Figure 2 shows some examples of food
categories in VIREO Food-251.

B. Ingredient Labeling

We compiled a list of more than 400 ingredients based
on the recipes of 251 food categories. The ingredients range
from popular items such as “shredded pork” and “shredded
pepper” to rare items such as “codonopsis pilosula” and
“radix astragali”. Labeling hundreds of ingredients for over
hundred thousands of images could be extremely tedious. First,
some ingredients are difficult to be recognized, for example,
ingredients under soup or sauce. Second, some ingredients
are invisible in flour-made food categories such as dumpling
and noodle. Third, certain ingredients such as egg exhibit
large visual variations (see Figure 4) due to different ways
of cutting and cooking. To address these problems, we label
only those ingredients that are visible. In addition, we create
additional labels for ingredients with large visual appearance;
for example, we have 13 different labels for “egg”, such as
“preserved egg slices” and “boiled egg”.

We recruited 10 homemakers who have cooking experience
for ingredient labeling. The homemakers were instructed to
label only visible and recognizable ingredients. They were also
allowed to introduce and annotate new ingredients not in the
list, which would be explicitly checked by us. To guarantee
the accuracy of labeling, we purposely awarded homemakers
with cash bonuses as incentives to provide quality annota-
tion, in addition to the regular payment. For this purpose,
we checked a small subset of labels and provided immediate
feedback to homemakers such that they were aware of their
performance. We spent two months in total to label the
whole dataset. By excluding images with no ingredient labels,

Fig. 4. The ingredient “egg” shows large difference in visual appearance
across different kinds of dishes.

Fig. 5. The distribution of training examples for (a) food categories and
(b) ingredient labels.

VIREO Food-251 contains a total of 406 ingredient labels and
169,673 images, with an average of 3 ingredients per image.
Figure 5 shows the distribution of positive examples in food
and ingredient categories. As observed, the number of training
samples is unbalanced. On average, there are 676 positive
samples per food category, and 1,196 per ingredient.

IV. INGREDIENT RECOGNITION

We present two methods for ingredient recognition. The first
method is a multi-task model, with two tasks for food and
ingredient recognitions [16]. The second model is a single-task
model that predicts ingredient labels at local image regions.
Both models are based on deep convolutional neural networks
(DCNNs).

A. Multi-Task Learning

The conventional DCNN is an end-to-end system with input
as picture and output as the prediction scores of class labels.
DCNN models, such as AlexNet [11], VGG [12], and ResNet
[13], are trained under the single-label scenario. Specifically,
there is an assumption of exactly one label for each input
picture. As ingredient recognition is a multi-label problem,
i.e., more than one label per image, a different loss function
needs to be used for training DCNN. On the other hand,
directly revising DCNN with appropriate loss function for
ingredient recognition may not yield satisfactory performance,
given the varying appearances of an ingredient in different
dishes. To this end, we propose to couple food categoriza-
tion problem, which is a single-label problem, together with
ingredient recognition, which is a multi-label problem, for
simultaneous learning.

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2021 at 13:34:51 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. Four different deep architectures for multi-task learning of food category and ingredient recognition.

We formulate the food categorization and ingredient recog-
nition as a multi-task deep learning problem and modify the
architecture of DCNN for our purpose. The modification is not
straightforward as it involves two design issues. The first is on
whether the prediction scores of both tasks should directly or
indirectly influence each other. Direct influence means that the
input of one task is connected as the output of another task.
Indirect influence decouples the connection such that each task
is on a different path of the network. Both tasks influence each
other by updating the shared intermediate layers. The second
issue is about the degree in which the intermediate layers
should be shared. Ideally, each task should have its own
private layer(s) given that the nature of both tasks, single
versus multi-labeling, is different. In such a way, the updating
of parameters can be done more freely for optimization of
individual performance.

Based on the two design issues, we derive four different
deep architectures as depicted in Figure 6, respectively name
as Arch-A to Arch-D. The first design (Arch-A) considers
stacked architecture by placing food categorization on top of
ingredient recognition, and vice versa. As the composition of
ingredients for different dishes under the same food category
can be different, this architecture has the risk that model
learning converges slowly as observed in the experiment.
The second design (Arch-B) is similar except that indirect
influence is adopted and both tasks are at different pathways.
Both designs are relatively straightforward to implement by
adding additional layers to DCNN. The next two architectures
consider the decoupling of some intermediate layers. The
third design (Arch-C) allows each task to privately own two
intermediate layers on top of the convolutional layers for
parameter learning. The last design (Arch-D) is a compromise
version between the second and third architectures, by having
one shared and one private layer. Arch-D has the peculiarity
that the shared layer can correspond to the high or mid-level
features common between the two tasks at the early stage
of learning, while the private layer preserves the learning of
specialized features useful for optimizing the performance of
each task.

The architectures are modified from existing deep models,
including VGG-16 [12], ResNet-50 [13], ResNet-101 [13], and
SENet-154 [60]. In terms of design, the major modification
is made on the fully connected layers. As VGG contains two
fully connected layers, we modify the fully connected layers to
implement all the architectures presented in Figure 6. For the
private layers in Arch-D, there are 4,096 neurons for both the

food categorization and ingredient recognition layers. RestNet
and SENet, on the other hand, have only one fully connected
layer. In this case, only Arch-B can be implemented. Due to
the different natures of tasks, we adopt multinomial logistic
loss function L1 for single-label food categorization and
cross-entropy as the loss function L2 for multi-label ingredient
recognition. Denote N as the total number of training images,
the overall loss function L is as following:

L = − 1

N

N∑

n=1

(L1 + λL2) (1)

where λ is a trade-off parameter. This loss function is also
widely used in other works such as [61]. During training,
the errors propagated from the two branches are linearly
combined and the weights of the convolutional layers shared
between the two tasks will be updated accordingly. The updat-
ing will subsequently affect the last two layers simultaneously,
adjusting the features separately owned by food and ingredient
recognition. Let q̂n,y as the predicted score of an image xn for
its ground-truth food label y, L1 is defined as follows:

L1 = log(q̂n,y) (2)

where q̂n,y is obtained from softmax activation function.
Furthermore, denote pn ∈ {0, 1}t , represented as a vector in
t dimensions, as the ground-truth ingredients for an image
xn . Basically pn is a binary vector with entries of value 1 or
0 indicating the presence or absence of an ingredient. The loss
function L2 is defined as

L2 =
t∑

c=1

pn,clog( p̂n,c) + (1 − pn,c)log(1 − p̂n,c) (3)

where p̂n,c denotes the probability of having ingredient cate-
gory c for xn , obtained through sigmoid activation function.

B. Region-Wise Ingredient Recognition

The previous section considers the global image feature
for multi-label learning, while ignoring regional information.
This section introduces region-wise ingredient recognition,
as illustrated by the pipeline in Figure 7. Given a food
image I , the feature map (denoted as F I ∈ R

m×m×d ),
which corresponds to the last convolution layer of DCNN
and retains the spatial information of the original image,
is extracted from DCNN. The feature map is divided into
m × m grids, where each grid is represented by a vector of

Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2021 at 13:34:51 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 7. The pipeline of region-wise ingredient recognition. Given a food image, the feature maps from the last convolutional layer of deep models are
extracted for region-wise ingredient classification. Max pooling is performed across different regions to obtain the final predictions.

d dimensions. The value of m varies depending on the image
size. Using VGG as an example, m = 14 if the size of an
image is 448 × 448. In this case, each grid corresponds to
a receptive field of 32 × 32 resolution. We denote Fi as the
feature vector for i th grid or region, where i ∈ [0, m × m].

As each grid depicts a small region of the original image,
a reasonable assumption is that there is one dominant ingre-
dient per region. Hence, ingredient recognition is performed
in a region-wise manner by single-label classification on each
grid. The activation function being applied is so f tmax for
getting the probability distributions of ingredients, denoted as
p̂i ∈ R

t for i th region as follows:
p̂i = so f tmax(W Fi + b). (4)

The learnt transformation matrix is W ∈ R
t×d , b ∈ R

t is the
bias terms, and t is the number of ingredients.

Since each region is associated with the probability distrib-
utions of the ingredients, a straightforward way to obtain the
image-level labels is by max-pooling over the distributions
across regions. Let p̂I be the probability distribution of
ingredients for image I . The response of an ingredient indexed
by j element is obtained as follows:

p̂I ( j) = max{ p̂i ( j)|m2

i=1} (5)

where m2 is the total number of image grids. The loss
function is cross-entropy since ingredient recognition is a
multi-label classification problem. Denote pIn

∈ {0, 1}t as the
ground-truth ingredients for a food picture In , represented by
a binary vector whose elements are either 1 or 0 indicating
the presence or absence of a particular ingredient. The loss
function L is defined as

L = 1

N

N∑

n=1

(

t∑

j=1

pIn ,j log( p̂In ,j )+(1− pIn ,j )log(1 − p̂In ,j ))

(6)

V. EXPERIMENTS

The experiments are conducted on the VIREO Food-
251 dataset. In each food category, 60% of images are
randomly picked for training, while 10% for validation and
the remaining 30% for testing. Note that only 385 ingredient
categories that have at least 10 training examples are evaluated.
As ingredient recognition is a multi-label problem, micro-
F1 and macro-F1 that take into account both precision and

TABLE I

PERFORMANCE COMPARISON AMONG DIFFERENT MULTI-TASK LEARN-
ING ARCHITECTURES FOR INGREDIENT RECOGNITION ON VIREO

FOOD 251 DATASET. VGG IS UTILIZED AS THE BACKBONE NET-
WORK. MICRO-F1 AND MACRO-F1 ARE REPORTED

recall of ingredient recognition are employed as evaluation
metrics. We split the experiments into two parts to verify
the performances of multi-task learning (Section V-A) and
region-wise recognition (Section V-B) respectively. The first
part aims to evaluate different deep architectures for multi-task
learning in comparison to single-task DCNN. The second part
aims to demonstrate the merits of region-wise learning for
ingredient recognition.

A. Multi-Task Learning

For multi-task model training, we fix the value of λ = 0.3
in Equation 1 for VGG model. When λ = 0.3, the ingredient
recognition achieves the best performance on the valida-
tion set. As ingredient recognition involves multiple labels,
a threshold is required to gate the selection of labels. The
threshold is set to be the value of 0.5, following the standard
setting when sigmoid is used as the activation function. The
learning rate is set to be 0.001 and the batch size to be 64.
The learning rate decays when the model reaches a plateau.
We first evaluate the performances of different multi-task
learning architectures by using VGG as the backbone network.
The multi-task learning includes the four deep architectures
illustrated in Figure 6. Note that we experiment with two
variants of Arch-A, with the layer of food categorization on top
of ingredient recognition (Arch-A1) and vice versa (Arch-A2).
For comparison, the single task VGG trained with ingredient
labels only is utilized as the baseline.

Table I lists the performances of different multi-task archi-
tectures for ingredient recognition. Except for Arch-A, all
multi-task models exhibit better performance than single-task
VGG. As the recognition results for both food and ingredient
are imperfect, layer stacking as in Arch-A actually could
hurt each other’s performance. Specifically, the inaccurate
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TABLE II

PERFORMANCE COMPARISON AMONG DIFFERENT MULTI-TASK LEARN-
ING ARCHITECTURES FOR FOOD CATEGORIZATION ON VIREO FOOD

251 DATASET. VGG IS UTILIZED AS THE BACKBONE NETWORK

AND AVERAGE TOP-1 AND TOP-5 ACCURACIES ARE REPORTED

prediction in one task will directly affect the other task. On the
other hand, while having separate paths as in Arch-B leads
to better performances, the improvement is smaller compared
with Arch-C and Arch-D that do not share the same lower
layer before the classification layer. Arch-D, which shares one
layer while also learning separate layers tailor-made for both
tasks, attains the best performance in terms of Micro-F1 and
Macro-F1.

Table II lists the performance of food categorization. For
multi-task learning, similar trends are observed as ingredient
recognition. For top-1 accuracy, the best result is attained
by Arch-D while for top-5, the best results are attained by
Arch-C. This basically verifies the importance of private
layers for both tasks. It is worth to note that, different from
ingredient recognition, Arch-A1 performs much better than
Arch-A2 for food categorization. The result indicates that
recognizing the food category based on the composition of
the ingredients is more feasible than inferring ingredients
based on the food category. To verify that the improvement
is not by chance, we conduct a significance test to compare
multi-task (Arch-D) and single-task (VGG) using the source
code provided by TRECVID2. The test is performed by
partial randomization with 100,000 iterations, with the null
hypothesis that the improvement is due to chance. At a
significance level of 0.05, Arch-D is significantly different
from VGG in both food categorization and ingredient
recognition by Top-1 accuracy and Macro-F1, respectively.
The p-values are close to 0, which rejects the null hypothesis.

To further contrast the performance between single-task
and multi-task learning models, Table III lists the ingre-
dients showing large deviations in performances. Basically,
for ingredients that are unique for a few food categories,
the multi-task learning model performs much better than
the single-task learning model. For example, “cordyceps
sinensis” only appears in “black chicken soup”, and hence
multi-task VGG is able to outperform single-task VGG with
a large margin. Another example is “red bean paste” which
is unique to the food category “traditional Chinese rice-
pudding”, multi-task VGG outperforms single-task VGG by
33.1%. On the contrary, multi-task learning suffers from
lower performance when confused by the frequently appear-
ing ingredients. As shown in Table III, ingredients such as
“corn block”, “cabbage”, “sliced tomato” are always seen

2http://www-nlpir.nist.gov/projects/t01v/trecvid.tools/
randomization.testing

TABLE III

TEN INGREDIENTS SHOWING LARGE PERFORMANCE DIFFERENCES IN
F1 BETWEEN SINGLE-TASK VGG AND MULTI-TASK VGG

TABLE IV

PERFORMANCES OF INGREDIENT RECOGNITION IN EACH GROUP. THE

NUMBER OF INGREDIENT CATEGORIES, AVERAGE AND MEDIAN NUM-
BERS OF TRAINING IMAGES ARE SHOWN IN THE 2ND, 3RD AND 4TH

COLUMNS RESPECTIVELY

in different food categories. Introducing the food category
information for multi-task learning will increase the confusion
and hence resulted in lower recognition performance. Overall,
with multi-task learning, the macro-F1 is boosted from 56.79%
to 61.74%, with 285 ingredients showing improvements.

To provide insights on which type of ingredients are difficult
to recognize, we divide the ingredients into ten major food
groups and report the Macro-F1 of each group in Table IV.
As shown, the Macro-F1 for “fish” and “meat” are fairly high
due to a sufficient number of training samples. The average
numbers of training samples for the ingredient in “meat”
and “fish” are 1,226 and 1,301, respectively, which results
in high recognition accuracies. On the contrary, the group
“fruits” has only 240 training samples on average, which is
the fewest among all the groups. The median number is even
fewer, which is only 40 as most of the training samples are
from the ingredient “pineapple”. As a result, the Macro-F1 of
“fruits” is rather low, which is only 24.03%. Despite having
903 training samples on average, the group “seasonings” has
the second-lowest Macro-F1, which suggests that recognizing
ingredients in the “seasonings” group is relatively challenging
compared with the other ingredients.

Figure 8 shows three failure examples of seasoning ingredi-
ent recognition. In these examples, seasoning ingredients are
“dried chili”, “minced garlic”, “broad bean paste”, “minced
ginger” and “minced green onion”. Basically, there are
three major reasons for the low performance of seasoning
ingredient recognition. First, some seasoning ingredients tend
to confuse with each other due to similar appearances. For
example, in Figure 9(a), “dried chilli sections” is incorrectly
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Fig. 8. Failure examples of seasoning ingredients (i.e., “dried chili”,
“minced garlic”, “broad bean paste”, “minced ginger”, “minced green onion”)
recognition. False positives are marked in red while false negatives are marked
in yellow.

predicted as “dried chilli”. As “dried chili sections” differs
from “dried chili” only in shape, the model tends to confuse
them because of occlusions among different ingredients in
the dish. Second, seasoning ingredients tend to be small in
size and portion, which makes the recognition of “minced
garlic” in Figure 9(b)-(c) and “minced ginger” in Figure 9(c)
difficult. Such examples are not easy to be recognized even
by humans. Third, as the training samples for some seasoning
ingredients are not sufficient, the recognition performance is
not satisfactory. For example, there are only 18 samples for
seasoning ingredient “broad bean pasta”, resulting in incorrect
prediction as shown in Figure 9(b).

To validate the the effectiveness of multi-task learning strat-
egy for other backbone networks (e.g., ResNet [13], Inception-
V3 [62], SENet-154 [60]), we report the performances of
different backbone networks in Table V. As most of the
convolutional networks contain only one fully connected layer,
hence we implement Arch-B for multi-task learning on differ-
ent backbone networks. Although Arch-B is not the optimal
design for multi-task learning, it still performs better than
single-task learning models, which verifies the effectiveness of
leverage food category information for ingredient recognition.
The general trend is that the deeper a network is, the higher the
recognition rate will be. In the case of ingredient recognition,
providing food categories as an extra global cue can reduce
false positives in ingredient recognition. This advantage does
come with the trade-off of introducing more false negatives.
As a result, in terms of numerical scores, both single and
multi-task learning do not seem to differ too much. We further
perform result analysis and notice the following. The false
positives introduced by single-task include major ingredients
while the false negatives introduced by multi-task are mostly
auxiliary ingredients. From the application point of view, aux-
iliary ingredients have much less impact than major ingredients
towards the estimation of nutrition facts. Furthermore, false
positives can adversely frustrate user experience in food log-
ging. Hence, multi-task still has its advantage over single-task
despite marginal improvement in terms of the numerical
score.

B. Region-Wise Recognition

We then evaluate the performance of region-wise ingredient
recognition. Table VI compares the ingredient recognition
performance between image-level and region-wise recognition

TABLE V

PERFORMANCE OF MULTI-LABEL INGREDIENT RECOGNITION ON VIREO
FOOD-251 DATASET. NOTE THAT ARCH-B IS IMPLEMENTED FOR

MULTI-TASK LEARNING

TABLE VI

PERFORMANCE OF INGREDIENT RECOGNITION

models. Basically, region-wise recognition helps to improve
the ingredient recognition performances on all backbone
networks except for SENet-154. Since the key idea of SENet
is to re-calibrate channel-wise (i.e., region-wise) feature
responses by explicitly modeling inter-dependencies between
channels (regions), performing region-wise recognition for
SENet-154 will harm the dependencies among region features
and lead to worse recognition performance. On the contrary,
with region-wise recognition, VGG and ResNet-50 further
improve macro-F1 by around 5% and 4% respectively. The
improvement in terms of micro-F1 is not so obvious, which is
around 1%. This is due to the fact that region-wise recognition
mostly benefits ingredient categories with a smaller number of
training examples. For example, the rare ingredient “cordyceps
sinensis” having only 10 training examples improves F1 from
0% to 100%. This is because region-wise recognition, similar
to data augmentation, inherently increases the number of
training examples. Furthermore, the ingredients that are small
in size are less likely to be dominated by other ingredients
during feature learning. As a consequence, the contribution
of region-wise recognition is more significant for ingredients
in small size and with less number of training examples.
Figure 9 shows examples to contrast the performance between
region-wise and image-level recognitions. Region-wise recog-
nition is robust to size (e.g., “parsley” in Figure 9(a)), cutting
method (e.g., “minced ginger” in Figure 9(b)) and training size
(e.g., “kiwi fruit” in Figure 9(c)). On the other hand, limited by
region size, context information is not fully leveraged. Ingredi-
ents such as “crisp fritter” in Figure 9(e)) and “yellow peach”
are predicted correctly by image-level but not region-wise
recognition. Table VII shows the top-10 ingredients that gain
the largest improvement due to region-wise recognition.
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Fig. 9. Examples of ingredient recognition. False positives are marked in red while false negatives are marked in yellow. The backbone network is ResNet-50.

TABLE VII

TEN INGREDIENTS SHOWING LARGE PERFORMANCE IMPROVEMENT IN

F1 WITH REGION-WISE RECOGNITION MODEL. THE BACKBONE NET-
WORK IS RESNET-50

A by-product of the region-wise recognition model is the
capability of locating ingredients. We visualize the result in a
response map, which is formed by converting the prediction
score of an ingredient on an image grid into pixel intensity
value. Figure 10 shows the response maps of ingredients.
Generally speaking, the better the result of localization is,
the higher the prediction accuracy will be.

C. Discussion

Why not multi-scale recognition? As the scales of ingre-
dients change depending on camera-to-dish distance and cut-
ting methods, intuitively region-wise recognition should be
benefited from multi-scale processing, as reported in [20].
We input a pyramid of images in multiple resolutions for
region-wise recognition. In this way, the receptive field of a
grid can spatially extend to a larger scope depending on the
resolution of the input image. For example, for an image of
size 448 × 448, each grid in the feature map obtained from
VGG corresponds to a receptive field of 32×32 image region.
By reducing the size of the image to a resolution of 224×224,

Fig. 10. Ingredient localization: original image (left) and the response maps
of three ingredients. The backbone network is ResNet-50.

the receptive field extends to the spatial size of 64 × 64 in the
original image before resizing.

The consideration of multi-scale recognition will only
introduce minor changes to the original region-wise deep
network architecture. Except for region-level pooling that
involves ingredient recognition probabilities from multiple
scales, the updating of parameters remains the same through-
out the learning procedure. Denote pl

I as the probability
distribution of ingredients at scale l, max pooling is conducted
across different regions and scales as follows:

p̂I ( j) = max{max{ p̂l
i ( j)|m2

i=1}|L
l=1}. (7)

Basically, the multi-scale design ensures that an ingredient
can be adaptively pooled from a region in a particular scale
that exhibits the highest possible prediction confidence.

Multi-scale ingredient recognition is performed at two dif-
ferent scales: 224 × 224 and 448 × 448. Table VIII contrasts
the performances between single and multi-scale recognition.
Different from the results reported in [20], multi-scale recogni-
tion indeed does not show an apparent advantage. In contrast,
both micro-F1 and macro-F1 drop for most of the backbones.
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TABLE VIII

PERFORMANCE DIFFERENCE BETWEEN SINGLE AND MULTI-SCALE
REGION-WISE INGREDIENT RECOGNITION

Our analysis shows that multi-scale recognition boosts the con-
fidence of prediction for both true positive and false negative
ingredients. As a consequence, simply using the confidence
threshold of 0.5 for selecting ingredients results in slightly
lower precision. On the other hand, despite that multi-scale
recognition can inherently generate more training samples,
its contribution to categories with few training examples is
not significant. We argue that a better alternative way is the
adaptive fusion of results from multiple scales, rather than
simple thresholding for multi labeling, which is beyond the
scope of this paper.

Why not multi-task region-wise recognition? Region-wise
ingredient recognition can be carried out in a multi-task learn-
ing fashion together with food recognition. Figure 11 depicts
an end-to-end learning architecture, where the two tasks are
branched out from the last convolution layer. Intuitively,
such architecture might learn to strike a balance between
image-level and region-level learning, reaching optimal perfor-
mance to contextualize ingredient recognition while attending
to regional features.

Table IX compares the performance when region-wise
recognition is implemented in single and multi-task fashions.
As noted, multi-task implementation degrades the recognition
rate significantly across different CNN backbones. We attribute
the failure to the fact that both tasks indeed perform recog-
nition at different levels of granularities, i.e., image ver-
sus region information. Optimizing both tasks based on the
architecture in Figure 11 might lead to conflict in learning
objectives, resulting in fluctuating performance. For example,
the performance of ingredients such as “raisin” and “Ginseng”,
which are small in size, decreases when adopting multi-task
region-wise recognition. This might because introducing the
image categorization task forces the model to pay more
attention to global features which somehow overlooks the
small ingredients and harms the regional features optimized
for ingredient recognition.

When visualizing the response maps (Figure 12), we also
notice that the ingredients cannot be localized as precise as
in the single-task model. In some cases, the regions with
multiple ingredients are attended, while small-size ingredients
are overlooked. Furthermore, the inherent data augmentation
in region-wise recognition cannot be effectively leveraged by
multi-task learning. As a consequence, the recognition rate
for ingredients with a small number of training samples does
not improve compared to the single-task model. The result

Fig. 11. The pipeline of multi-task region-wise recognition based on ResNet
backbone. The model performs region-wise ingredient categorization and
image-level food recognition.

TABLE IX

PERFORMANCE DIFFERENCE BETWEEN SINGLE AND MULTI-TASK

REGION-WISE INGREDIENT RECOGNITION

TABLE X

PERFORMANCE OF MULTI-LABEL INGREDIENT RECOGNITION
ON UEC FOOD-100

is worse than that of the single-task image-level ingredient
recognition, implying that the multi-task model fails in taking
advantages of context and region levels information for recog-
nition. More advanced architectures, such as attention branch
network that leverages spatial attention [63], are worth further
exploration.

Performance on UEC Food-100 [29] dataset. We further
conduct evaluations on UEC Food-100 dataset. UEC Food-
100 is a Japanese food dataset, including 14,361 images
from 100 categories of food. [16] labeled this dataset with
190 ingredient classes. By merging the duplicate ingredient
labels, we finally obtain 176 ingredients. Basically, simi-
lar observations can be found on UEC Food-100 datasets.
As shown in Table X, multi-task learning generally improves
the performances of ingredient recognition on all backbone
models. It is worth noting that due to the lower resolution
problem, the ingredient recognition performances on UEC
Food-100 are much lower than that on Vireo Food-251.

Table XI further compares the performance between
image-level recognition, region-wise recognition and
multi-scale region-wise recognition. Similar to the results
on Vireo Food-251, region-wise recognition improves the
performances in terms of macro-F1. Since region-wise
recognition is equivalent to data augmentation, it benefits
the recognition of ingredient categories with only a few
training samples hence leading to higher macro-F1. However,
different to the results on Vireo Food-251, the performances
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TABLE XI

PERFORMANCE OF INGREDIENT RECOGNITION ON UEC FOOD-100

Fig. 12. Ingredient localization with multi-task region-wise recognition
model: original image (left) and the response maps of three ingredients. The
backbone network is ResNet-50.

of multi-scale recognition are much lower than single-scale
recognition. This is due to the reason that the images
in UEC Food-100 are in low resolution, resizing the
lower resolution images to a higher resolution to perform
multi-scale recognition will introduce noise hence leading to
worse recognition results.

VI. CONCLUSION

We have presented a Chinese food dataset, along with two
proposed methods for ingredient recognition. The common
challenges, regardless of multi-task learning or region-wise
recognition, are an unbalanced number of training examples,
varying sizes and scales of ingredients under different image
capturing conditions. On the other hand, similar to most
recognition tasks, the experiments also show a large margin of
improvement when deeper networks are employed. Leveraging
the food category as a prior, such as in multi-task learning, has
advantages for recognizing ingredients that are unique only for
a few numbers of food categories. For ingredients frequently
appear in different dishes, the performances are either not
improved or degraded. Comparing image and region-wise
recognitions, the latter improves recognition performance for
ingredients in small size and labels with less number of
training examples. Region-wise recognition is effective in seg-
regating irrelevant parts of an image from recognition, while
augmenting image patches which results in more examples
for model training. Nevertheless, as indicated in our result,
multi-scale image processing to compensate loss in image
context is not helpful for ingredient recognition. Furthermore,
image-level food categorization and region-level ingredient
recognition, which leverage on different levels of feature

granularities, are conflicting in learning objectives. Optimiz-
ing both tasks in a multi-task learning fashion needs more
sophisticated network architecture, or otherwise will result in
significant performance degradation as shown in our analysis.
Future work should pay more attention to adaptive fusion
of recognition results from multiple image scales as well
as effective leveraging food categorization to contextualize
ingredient recognition.

Several research problems can be explored on Vireo Food-
251 dataset. First, the dataset is highly unbalanced in the num-
ber of training examples for different ingredient labels, ranging
from 1 to 32,859 examples. The distribution is long-tail as in
real-world scenarios. Solutions such as few-shot learning could
be promising for pushing the recognition rate at the tail of the
distribution. Second, the co-occurrence probability of ingre-
dients are not random, but follows certain inherent rules in
cooking practice. Mining and applying such rules are expected
to boost ingredient recognition. Finally, Vireo food-251 can
be studied jointly with other datasets for domain adaptation
based ingredient recognition. Examples include transferring
the model trained by Chinese food to recognize ingredients
in Western cuisines with different cooking methods.
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