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Knowledge-based Exploration for Reinforcement
Learning in Self-Organizing Neural Networks

Teck-Hou Teng, Ah-Hwee Tan
School of Computer Engineering, Nanyang Technologicaléhsity, Singapore 639798
Email: thteng, asahtan@ntu.edu.sg

Abstract—Exploration is necessary during reinforcement
learning to discover new solutions in a given problem space.
Most reinforcement learning systems, however, adopt a sinig
strategy, by randomly selecting an action among all the avéble
actions. This paper proposes a novel exploration strateggnown
as Knowledge-based Exploration, for guiding the exploratin of
a family of self-organizing neural networks in reinforcement
learning. Specifically, exploration is directed towards umxplored
and favorable action choices while steering away from those
negative action choices that are likely to fail. This is acteved
by using the learned knowledge of the agent to identify prior
action choices leading to lowQ-values in similar situations.
Consequently, the agent is expected to learn the right soligns
in a shorter time, improving overall learning efficiency. Usng
a Pursuit-Evasion problem domain, we evaluate the efficacy
of the knowledge-based exploration strategy, in terms of &k
performance, rate of learning and model complexity. Compaison
with random exploration and three other heuristic-based drected
exploration strategies show that Knowledge-based Explotan is
significantly more effective and robust for reinforcement karning
in real time.

Keywords-Reinforcement Learning, Self-Organizing Neural
Network, Directed Exploration, Rule-Based System

I. INTRODUCTION

situations. To this end, the learned knowledge is dichaterhi
into positive and negative chunks. Whipesitive chunksefer

to the knowledge of action choices that lead to desirable
outcomesnegative chunksefer to the knowledge of action
choices known to produce undesirable outcomes (indicated b
low @Q-values) for a given situation [6]. Consequentially, the
Knowledge-Based Exploration strategy directs the exfilmma

of new action choices away from those action choices encoded
by negative chunks for similar situations.

In this paper, the Knowledge-based Exploration Strategy
is illustrated using a self-organizing neural network know
as Temporal Difference - Fusion Architecture for Learning
and Cognition (TD-FALCON) [7]. It is a3-channel fusion
Adaptive Resonance Theory (ART) network [8] that incor-
porates temporal difference methods [9] into the ART mod-
els [10] for RL. Using the knowledge encoded by the cognitive
nodes in TD-FALCON, positive and negative chunks can be
identified readily. Working in tandem, the Knowledge-Based
Exploration strategy leverages on the learned knowledge fo
guiding the exploration during RL. Experiments are conddct
using a complex pursuit-evasion (PE) problem domain [11]
to evaluate the efficacy of the proposed Knowledge-based

Exploration is a necessary step during reinforcement leamBxploration Strategy in terms of task performance, leaynin
ing (RL) for the discovery of new solutions in a given problemspeed and resource utilization. Comparison with the baeseli
space [1]. During RL, an action choice is picked to exploneandom exploration and three other heuristic-based exfior

its effect on a given situation. Therefore, for a given peobl

strategies have shown that the Knowledge-based Explaratio

domain, the choice of exploration strategy has a role in tlg significantly more effective and robust for RL in real time

learning efficiency of the agent.

Having introduced and motivated our work, we shall then

There are undirected and directed exploration strategies [provide a survey of the related work in Section Il. This is
Exploration is undirected when knowledge is not used fdollowed by a summarized presentation of TD-FALCON in

the selection of action choices for exploration. Tdgreedy, Section Ill. Details on how knowledge can be inserted and
Boltzmann distribution and softmax are some examples pfuned are presented in Section IV. The proposed Knowledge-
undirected exploration strategies. Directed exploratizes Based Exploration strategy is detailed in Section V. The PE
some knowledge to direct subsequent exploration. Exampfgeblem domain and the performance measures are introduced
of recent directed exploration strategies are the BIMM moéh Section VI. The experiments and the results are presented
els [3], the reuse of policy [4] and the heuristics explamati and analysed in Section VII. The final section concludes with
strategies [5]. These methods direct exploration by tragkia discussion of the key results and provides a brief desmnipt
recently explored actions in their own ways. However, theyf the future work.
do not make use of learned knowledge of the learning agents.

Taking a different view from the other directed exploration
strategies, this paper proposes a novel exploration girate During reinforcement learning, knowledge is discovered
known asKnowledge-Based Exploratio®pecifically, it aims and used through exploration and exploitation respegtivel
to improve the efficiency of learning by making use offhe balance between these two phases is managed using an
the learned knowledge to avoid re-exploration of the actiattion selection policy such as tkegreedy and Boltzmann
choices known to lead to undesirable outcome in similaistribution. However, the selection of action choicesimyr

Il. RELATED WORK



exploitation and exploration is independent of the actiovectorS, an action fieldF? for accepting action vectoA,
selection policy. and a reward fieldF® for accepting reward vectdR. The

Exploration of action choices during RL can either be undknowledge layer has the category fieltf for storing the
rected or directed [2]. The absence of the use of exploratimommitted and uncommitted cognitive nodes. Each cognitive
specific information characterizes the undirected expiloma node; has three fields of Weightw‘;k fork=1,...,3.

strategy where action choices are randomly selected with un ,
Category Field F;

form probability for exploration. The choice of differerdtan Coge
selection policies result in different probability ditution of e ° EOOOO o0
picking random action choices for exploration. Such a ramdo
exploration strategy with the-greedy method is compared F TR &= :
with our proposed strategy in the experiments. Input/Output &

In contrast, directed exploration makes use of exploration Layer fwee) (AdonA) (Heward §)
specific information to select action choices for explanati Fig. 1. The FALCON Architecture.

Recent works on directed exploration includes the BIMM )
model that uses neural network to learn pre-existing knowl- 1he FALCON network has three modes of operations -

edge to direct exploration of state space [3]. However,rthdNSERT, PERFORM and LEARN. The modes of operation
choice of pre-existing knowledge is specified externalty. idetermine how the various parameters should be used. Rele-

another work, policies learned from different tasks aresed Vant to this work, some details on hgwior knowledge can be
for the learning of new task in the same domain [4]. ThgSerted and prune are provided in Section IV. In the coraext
presence of learned policies is assumed and a supervisol|§ WOk, it is sufficient to just outline the FALCON generic
required to identify similar policies for reuse. Withoutyan "€twork dynamics using Algorithm 1.
of these assumptions, the proposed Knowledge-based Ex
ration Strategy directs exploration using knowledge ledrn

Require: Activity vectors x¢* and all weights vectotw;’C

continuously. i . ;
.. . . 1: for eachFy nodej do
Three heuristic search-based exploration strategiesrare p2:  Code Activation: Derive choice functiori”’¢ using

nl
*Algorithm 1 FALCON Generic Network Dynamics

posed for RL [5]. All three strategies, namely the Neigh- 3 |xk A wek
borhood Search-based Exploration, the Simulated Anngalin Tj = Zv’“m
based Exploration and the Tabu Search-based Exploration k=1 g

track the use of action choices for each state and directs Where the fuzzy AND operatioip A q); = min(p;, g;), the norm
. .. . |.| is defined by|p| = >, p; for vectorsp andq, a®® € [0,1] is

exploration tOV‘_/ardS the r_nOSt_UnV_'S'ted actions for th_eestat the choice parametersS® € [0,1] is the contribution parameters and
These exploration strategies differ in the tracking andaten écf: 1,...,3
of the action choices. Comparisons are made with thege "
exploration strategies because they are most compatiltleeto 5:  Code Competitiont Index of winning cognitive nodd is found using
general approach adopted in this work. _ J = argmax{T¢ : for all F§ nodej}

Well suited to the agent-based approach, FALCON inte- J
grated with rules is used to implement cognitive agent te proG'

vide context-aware decision support [12]. Collaboratinthw

Template Matching: Check whether the match func:tiormf]’C of
cognitive nodeJ meet the vigilance criterion

ck ck
ok IXTAWG

a world-renowned simulator manufacturer, FALCON is used my = IcF| > p*
tq implement compute_r-generate_d force _(CGF) to evolvell-v- where ek € [0.1] for k = 1,.. .3 are the vigilance parameters
air combat maneuvering strategies against another CGF [13] if vigilance criterion is satisfiethen
and also the human pilots [14] separately. Sf elssesoname State attained
10: Match Tracking: Modify state vigilancep®! using

I11. THE REINFORCEMENTLEARNING MODEL B
, p¢! = min{m5* + 4, 1.0}
Although the proposed Knowledge-Based Exploration may where is a very small step increment to match funct'rtzr‘f,’c
be applicable to the other RL systems, this paper illusrate: Reset m<F = 0.0

its use through a self-organizing neural network modeledal 12:  end if _ _
. L . . : until Resonance Stats attained
TD-FALCON [7]. By learning multi-dimensional mappingsi4: if operating in LEARN/INSERT modéhen

across states, actions and values in an online and incramet: ~ Template Learing: modify weight vectorw<® using
manner, TD-FA_LCON enables RL of both value and action WREOW) (1 _ ek k(O | gek ek g k(1))
polices in real time.

where 3% € [0, 1] is the learning rate
16: else if operating in PERFORM modinen

A. Structure and Operating Modes 17:  Activity Readout: Read out the action vectéx of cognitive node.J
usin
Structurally, the FALCON network [15] employs &- 9 xe2(new) — xe2(old) 5 e
channel architecture (Fig. 1), comprising of an input/otitp Decodexc2(new) tg derive recommended action choige

(10) layer and a knowledge layer. The 10 layer has threl@: end if
input fields, namely a sensory fieldf! for accepting state




B. Incorporating Temporal Difference Method IV. KNOWLEDGE INSERTION AND PRUNING

Outlined in Algorithm 2, TD-FALCON [7] incorporates Symbol—based_ p_ropositional rules are inserted into TD-
Temporal Difference (TD) methods to estimate and leaffALCON as an |n|_t|al set_of knowledge. The learned knowl-
value functionQ(s, a) of state-action pair that indicates thefd9€ found to be ineffective for the task is pruned from TD-
goodness of taking action choieein states. Upon receiving FALCON. The mechanism for inserting and pruning knowl-
a feedback from the environment after performing the actioRd9€ in TD-FALCON are presented in this section.

a TD formula is used to estimate tlig-value for performing A. Knowledge Insertion

the chosen action in the previous state. The estim@tedlue As the knowledge structure of TD-FALCON is compatible
is used as the teaching signal to TD-FALCON to learn thgith the structure of generalized modus pongn&r knowl-
association of state and action choice. edge in the form of propositional rules can be inserted into
Algorithm 2 The TD-FALCON Algorithm TD-FALCON [18] before learning. Given a rule of the form

T Initialize FALCON IF antecedents THEN consequents FOR reward

: Sense the environment and formulate a state representati _ the antecedents are translated into state veStand the

: tliJOsr:aActlon Selection Policyo decide betweekxploration andExploita- consequents are translated into action vedorThe reward

: if Explorationthen vector R = {r,1 — r} encodes an estimate@-value of

1

2

3

4

5: UseExploration Strategyto select an action choice from action spac ; ;

6 else if Exploitation then %he inserted rule. The state vectBr action vectorA and
7

8

9:

10

UseDirect Code Acces§l6] to select an action choice from existingreward vectorR are then inserted into TD-FALCON using

. ené“i‘fow'edge the Generic Network Dynamics outlined in Algorithm 1.
: Use action choice: on states for states’ Algorithm 3 The Rule Insertion Algorithm
: Evaluate effect of action choice to derive a rewardr from the T Initialize TD-FALCON
environment Lo %
11: Estimate theQ-value functionQ(s,a) following a temporal difference %; flnmallzipc — .1t:0 | ruld
formula given byAQ(s,a) = aT Derr - for each propositional ruleo

12: PresenS, A andR for Leaming 4 Translate each component of the propositional rule ih® \ector
13: Update the current state= s’ 5 formatt dentss translated at s
14: Repeat from Step 2 until is a terminal state antecedentss transiated as state vectsr
6: consequentss translated as action vectdx
. . — . 7: reward is translated as reward vect®X
Iterative Value Estimation: A value function based on atem- g:  presens, A andR to TD-FALCON for learning
poral difference method known as Bound@el_earning [9] is 9: end for

used to iteratively estimate the value of applying actiooick  Indicated in Algorithm 3, rules are inserted using vigilanc
a to situations. The estimated)-valueQ(s, a) is learned by parameters®® = 1.0 for k = {1,2,3}. This is to ensure
TD-FALCON during RL. The temporal difference of the valuahat only identical set of state, action and reward vectoes a

function is iteratively estimated using grouped into the same cognitive node. Thus, each inserted ru
AQ(s,a) = AT Deyr(1 — Q(s, a)) leads to a committed cognitive node encoding {8e A, R}
tuple as its weight templates. Hence, there can be as many
wherea € [0,1] is the learning parameter, the ter(h — cognitive nodes as the number of inserted rules. The TD

Q(s,a)) allows the adjustment af)-values to be self-scaling method is used to refine these inserted rules during RL.
in such a way that it will not be increased beyohd and g Knowledge Pruning

TD.,. is the temporal error term derived usin
o P g During RL, the residual effect of exploration is the leain

TDerr =1+ 7y max Q(s',a") — Q(s,a) of knowledge that turns out to be ineffective or spurious pat

) ] terns. Action selection and learning become inefficient mwhe
where ~ <, [0,1] is the discount parameter and th§nese jrrelevant cognitive nodes are not pruned. Thergfore
maxys Q(s', a’) is the maximum estimated value of the nex{y,ch knowledge needs to be pruned for more efficient op-
states’ andr is either the intermediate or terminal reward. eration of TD-FALCON. A confidence-based pruning strategy
similar to the one proposed in [15] is adopted to prune these

C. Action Selection Policy irrelevant cognitive nodes.
During RL, an agent alternates between exploitation of Specifically, each cognitive nodg has a confidence level

learned knowledge and the exploration of solution spagé wherec, < [0'0’1'0]6}@ an ager; Wher(_aa_J: < [O’R]' A
for more effective knowledge. In this work TD-FALCONneWIy committed cognitive nodg has an |n|_t|a| confidence

- o ._level ¢;(0) and an initial ager;(0). The confidence level;
employs thee-greedy method, which selects action choices o . : . .
with the highest value with a probability df — ¢ and takes Of cognitive nodej picked for action selection and updating
a random action with a probability of [17]. In practice, is reinforced using

new old old
o . . c ="+ n(l — ¢
it is beneficial to have a higher value to encourage more J J n( i)

exploration in the initial stage and a lowewalue to optimize wheren is the reinforcement rate of the confidence level for all

the performance by exploiting the learned knowledge in tf@9nitive nodes. After each training iteration, the coriicke

later stage. Therefore, a lineardecay policy is adopted to [€ve! of all cognitive:e?ﬂdes are decg?i/ed using
gradually decay by a fixed decay raté over time. A €



where ¢ is the decay rate of the confidence level for aB. Searching for Positive/Negative Chunks

cognitive nodes. At the same time, the ageof cognitive  For state s and action choicea, a parallel search of
nodej is also incremented. _ applicable chunks can be performed across all the cognitive
The age attributer; of cognitive node; prevents it from ,qes. Specifically, the state vec®and the action vectoA
being pruned whew; = 7;(0), ¢; = ¢;(0) ande; < ¢™  ygpresenting the state and actiona respectively are used
wherec™ is the recommended confidence threshold. A cogs search for the most similar chunk. The search process

nitive no;jdej is pruned only wher; < ¢ ando; > 0?5 implemented using Line 1-13 of the FALCON Generic
wheres®“ is the old age threshold. Networks Dynamics.
V. KNOWLEDGE-BASED EXPLORATION High state and action vigilance parameters are used to
Prior to this work, TD-FALCON adopts a random exS€arch for a chunk that encodes a similar stdtevith the

ploration strategy, which randomly selects an action ahoi€Pecific actiona. The Q-value is not considered during the
from the pool of available actions. The key limitation of€arch by using zero reward vigilance parameter. The
such undirected exploration strategy is that it excludeg aﬁalue of_ the selgpted chunk is then evalugted to determine
consideration of the action choice during exploration. M/hiits polarity. Specifically, a selected chunk with a rangef

the assumption that a suitable action choice will show Wflues above/™ is a positive chunk while one with a range of

eventually is statistically valid, repeatedly selectingtien -value belowu™ is a negative chunk. The following lemma
choices known to be ineffective is highly inefficient and §hows that the fuzzy ART search procedure is guaranteed to
waste of exploration opportunities. find the positive or negative chunk if there exists one.

To address these shortcomings, this paper proposes al@ma 1- Guaranteed Search of Chunks:Suppose a chunk
rected exploration strategy known as Knowledge-Baseddexpf (S;+» A, R;-) exists for a given action choice in state
ration. It leverages on the learned knowledge of the agenttothe fuzzy ART code search procedure will enter into a
screen action choices for exploration. As a result, theieffiy résonance state with the input state ve&and action vector
of exploration can be improved by selecting action choicés €ncoding the state and action choice respectively.
from the reduced action space. The details of the proposed’r00f - Assuming a chuniC(S;-, A+, R;-) exists for a

strategy are presented in the following sections. given action choicez in states. And suppose the winning
o cognitive node/; selected by the fuzzy ART code activation
A. Knowledge Representation in TD-FALCON

and competition processes is not a chunk for statad action
Each cognitive node in TD-FALCON represents an associg-i.e., J, # j*.
tive mapping across the state, action, and reward spacen Gi  This means, eithes is dissimilar towS! such thatmé! <
a cognitive nodej, the encoded weight template vectors fopel and(.75 < p* < 1.0 or a is dissimilar tow<? such that
the three pattern channels, namélw', w$* w$} can be me? < p°? andp? = 1.0 '
interpreted as ahunkC(S;, A;, R;), whereS; represents ‘Any of such situation will result in the failure of template
a set of states characterized by the weight template veci®atching, leading to a reset of winning cognitive caljei.e.,
ws', A; represents a set of actions characterized by the — (. Consequently, a new search for another cognitive
weight template vectow?, and R; represents a range ofnode ensues until a resonance state, e > po, is
Q-values characterized by the weight template vest§?. achieved using another committed cognitive ndgesuch that
Specifically, through the learning of complement-codeditnp 7, -« J; and.J, = j*. B
reward vectorsR; = {L;,U;}, whereL; = 1 — w5} and _ _
U, = wfl” are the lower and upper bounds of thevalues. C. The Knowledge-Based Exploration Algorithm
Based on the)-values encoded in the chunks, each such The Knowledge-Based Exploration strategy outlined in Al-
learned knowledge chur&(S;, A ;, R;) can be dichotomized gorithm 4 limits the action choice during exploration to et
into either positive or negative chunks using ithesirability ~of unexplored action choice4* and the set of positive action
discriminantparametergy~, ™} as follows. choices A™. While unexplored actiongefers to those not
Definition: A chunkC(S;, A;,R;) is apositive chunkf the encoded by any existing chunks in TD-FALCON for a given
lower bound of itsQ-values (for performing an actione A; state,positive actionsare those encoded by positive chunks
in situations € S;) L, is abovey™. with similar states. The choice of amexplored actionfias
Definition: A chunkC(S;, A;,R;) is anegative chunif the the potential benefit of discovering new positive actionicas
upper bound of it€)-values (for performing an actione A; but at a potential cost of discovering negative action akmic
in situations € S;) U; is belowp™. The choice of apositive actionhas the potential benefit
For a given situation, TD-FALCON knows the likely out-of reaffirming its effectiveness but sacrifices the chance of
come from performing an action choice by differentiatingrying out new actions. Both operations are considered to be
between positive and negative chunks. Specifically, thetide beneficial for fulfilling the goals of RL.
fication of a negative chunk encoding the given pair of curren Given the current state the Knowledge-Based Exploration
state and action allows the agent to keep specific actiorcehostrategy loops through all possible actions in the acticacsp
out of the pool of available actions. This will help to avoid4d and partitions them into the set of positive actioAs,
applying an action choice already known to be undesirablethe set of negative actiongl™ and the set of unexplored



actions.A"“. Thereafter, Knowledge-Based Exploration selec&s. The State Space

an action choice randomly from the reduced action spéte

The Blue entity agent depends on a Situation-Awareness

given by A* U.A" for exploration. This means the probability\odel as defined by Endsley [23] for interacting with its
of selecting an unexplored action choice or a positive actigperating environment. In this problem domain, the sitrati
choice is in direct proportion to the number of unexploregyareness model is designed to hagenulti-valued attributes

action choices and the positive action choices.

which are based on the information of tememyand the

Algorithm 4 Knowledge-based Exploration of Action Spaceterrain for around3.2876 x 10* possible situations.

Require: State vectorS representing the state

Require: Reward vectoR = {1,1}

1: for each action choice in the action spaced do
Encode action choice as an action vectoA
PresentS and A to TD-FALCON for searching of chunks
if a positive chunk is founthen
actiona is apositive actioni.e.,a € At
else ifa negative chunk is founthen
actiona is anegative actioni.e.,a € A~

else

: actiona is unexplored i.e.,
10:  endif

11: end for

CoNoahwh

a€ A"

12: Create a reduced action spadg = A+ U A

13: Randomly select an action choiaefrom A" for exploration

14: return action choicea

VI. THE PURSUIT-EVASION PROBLEM DOMAIN
The PE problem domain is a popular choice in the fiel

Perception Layer: Information about the environment gath-
ered using the primary sensory apparatus is represented at
the perception layer. There are nine values eachEfoemy-
Direction and SafeArea-Directiomattributes, eight values for
the Enemy-Orientationattribute and two values for each of
the Adjacent-Locationattribute in each compass direction.
Together, there is a total df0 possible combinations from
11 types of attributes.
Comprehension Layer: Information at this layer is derived
using information from the perception layer using hardembd
domain-specific knowledge. There are ten attributes for the
comprehension layer. Among the ten attributes, there are
three values forEnemy-Locatiorattribute, seven values for
nemy-Proximityattribute and five values for thEaversabil-

of game theory as well as machine learning [19]. There & atribute in each compass direction. These three types of

works just on evolving either the pursuer [13], [20] or theyinytes gives a total of.2778 x 10* possible combinations
evaders [21] as well as the co-evolution of strategies fah boy; e comprehension layer.

types of agent [22]. The PE problem in this work is designgsl,

ojection Layer: The projection of the situation is derived

to be complex such that the learning task is non-trivial. ¢&8n sing information from the perception and comprehension
the complexity of this problem domain necessitates the tiae Qayer. In this work, there is only one projection attribute o

Situation-Awareness Model and a combinative reward scheg@ presence of threat using the orientation and positicheof
with multiple reward attributes.

Unsafe Area

« Red Entity Agent

Blue Entity Agent

Safe A‘rea

Safe Area

A
/

/

e
Entrané

v\\Nélll

Unsafe Area

adversary. This projection of threat is evaluated for eatch o
the eight compass directions. For a single adversary, tiés g
a total of 8 combinations for thigrojection of threat

B. The Action Space

The Blue entity agent evades the pursuit of the Red entity
agent by moving in a particular compass direction. Thesgfor
the action space is comprised of the eight compass direction
- north, northeast, east, southeast, south, southwest,ands
northwest - as the consequent of the decision-making tdsk. T
effect of the evade directions to the situation is learned an

Fig. 2. The2D Grid-Based Environment for the PE problem domain. may be exploited for subsequent decision-making instances
As illustrated in Fig. 2, there are two autonomous agents The Reward Space

known as the Blue entity agent and the Red entity agent. Therpg reward attributes refer to the sensory information used
Red entity agent is hostile towards the Blue entity agene Th, quantify the effect of an action choice on a situation ritie

two-dimensional environment has two safe areas where r&e

these reward attributes are used to derive the immediate

Blue entity agent will be safe from the Red entity agent. The\yard factor of the action choice. The reward attributes
Red entity agent is constantly searching for the Blue em'%ecific to this problem domain are presented in Table I.

agent. It eliminates the Blue entity agent by contacting lite
Blue entity agent is tasked with a search mission of the areas

TABLE |
REWARD ATTRIBUTES FORPEPROBLEM DOMAIN

Reward Attribute Positive Negative

Therefore, it is also moving constantly. It will have to eead —proxmiy with Adver-

Increase in proximity with
adversary

Decrease in proximity
with adversary

the Red entity agent to avoid elimination. sary
Orientation w.r.t. Di-

The pursuit strategy of the Red entity agent is determiisti rection of Adversary

Facing in the direction of
the adversary

Facing away from the di-
rection of the adversary

. . ; i paciousness of resul
while the Blue entity agent learns the evasive strategies T Datination

Move into a more spacious
location

Move into a more con-
strained location

improve on its chance of evading the Red entity agent pregreSroxmity to Safe
sively. Knowledge on the desired response is implicitly eom-Aea e

Move closer to a safe ared

Move further away from
a safe area

Move to an obstacle-freq
location

Move to a blocked Toca-
tion

municated to the entity agent using the Situation—AwarenesAttackeol S
Model and the evaluated effect of the action choices. sary Y

Not attacked by adversary

Is attacked by adversary




VII. A. Effect of TD-FALCON on Exploration Strategies

Experiments are conducted using the complex PE problemrp_Fal CON without prior knowledge and pruning is used
to evaluate the efficacy of the proposed Knowledge-based Ex-this set of experiments. It uses five different explonatio
ploration Strategy. For the PE problem domain, TD-FALCONrategies for learning evasive strategies in the PE pnoblie-
coupled with the relevant exploration strategy is tasked fgain. The learning efficiency due to the proposed Knowledge-
learn the effective evasive maneuvers efficiently. The majfyseq exploration strategy is benchmarked against foer oth
performance indicators are the mission completion €&l  exploration strategies in this experiment.
and the code populatiofl.,,.

Mission Completion 2,,,.: Each training iteration lasts for
the duration the Blue entity agent requires to complete th o
search mission or till it is being eliminated by its adveysar
No time-out is included in this PE problem domain. For eac
training iterationi, the Blue entity agent fails to complete the 5

E XPERIMENTAL RESULTS

100

search mission when it is eliminated by the Red entity agerg
In this sensef,,. is the percentage of the number of timess
the Blue entity agent completes the search missicover ¢
training iterations, implyings < ..
Code Population(2.,: The number of cognitive nodes at eacr
training iteration: is termed as the Code Populatifp,. TD-
FALCON always has an uncommitted cognitive node to lear
an adequately distinct state-action pair. Without prunihg
growth of the code population is proportionally correlated
the rate of exploration. It is expected to saturate when tt
effective evasive strategies are learned.

Five different exploration strategies are used with T
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Mission completion rate$),,. of TD-FALCON using various
Dexploration strategies.

FALCON in three different configurations. TD-FALCON is = As shown in Fig. 4, the KnowledgeBased configuration is
used with and withouprior knowledge and pruning to give shown to have the best,,. among the exploration strategies
three different configurations. Each experiment is comtdjctthroughout the training process. It is also the only exlora
for 2000 training iterations. Each set of experimental result i§trategy to saturate tb00% €2,,.. Random, TabuSearch and
averaged using0 runs of the same experiment. In additionNeighborSearch configurations saturate9%# 2,,,. while

for trending purpose only and to minimize nO”'essentiQimuIatedAnneaIing fluctuates at ab®2% ,,...

fluctuations, everyl00 data points are averaged to gi26
representative data points. The controlled parameters fase

the experiments are presented in Table IlI.
TABLE Il
PARAMETERS OFTD-FALCONAND ACTION SELECTION POLICY
FALCON Parameters for £ = {1, 2,3} TD Learning Parameters
Choice Parameters® 0.1,0.1,0.1 Learning Rate 0.5

7000

6000

5000

VY YV Y VoYY

Learning Rateg3®* 1.0,1.0,1.0 InitialQ-Value 0.5 i P
Learn Vigilancep* 0.85,1.0,0.45 Discount Facter 0.1 § 4000 » T8=KnowledgeBased ... |
Perform Vigilanceps” 0.85,0.0,0.45 < * - ﬁz%dh%rgrsﬁmh
Contribution Parametersc’C 0.5,0.5,0.0 K] —4— SimulatedAnnealing
¢-Greedy Policy Parameters g 3000 - TabuSearch 1
Initial € Value 0.8 ¢ Decay Rate 0.0005 a

The desirability discriminant parametars andp~ are set 2000

to 0.55 and0.45 respectively. The temperaturefor Simulated
Annealing-based Exploration Strategy is setltd while the
cooling factor« is set t00.9. For the Tabu Search-based
Exploration strategy, the duration at which an action choic 9

remains tabu is set a0 exploration cycles. This tabu durationgy 5 code population2., of TH-FALGON using various exploration
is reduced at a step size bf The Neighborhood Search-basedtrategies.

Exploration Strategy has no external parameter. dgecedy
method is used all configurations.

1000

300 500 700 900 1100

| | | |
1300 1500 1700 1900 2100

Plots of Q., in Fig. 5 show KnowledgeBased configura-
tion having similarQ2., with SimulatedAnnealing and Neigh-

[= EnemyDirection = South borSearch configurations while attaining high@y,. than

THEN _ EvadeDirection = North these two configurations. The TabuSearch configuration has

Statistics Reward = 075 . .
Confidence = 10 the highest(2., but the second lowedi,,. among the five

' . . n - configurations. Such an observation highlights the efieeti
Fig. 3. A trivial sample of arinsertedPropositional Rule. Reward indicates .
effectiveness of the rule while Confidence indicates théulsess of the rule. Ness of the proposed Knowledge-based Exploration Strategy



in learning more effective knowledge. This is because tlie ne From Fig. 7, KnowledgeBaseBriorKB
ative chunks are used to prevent further exploration obasti with the highest {2.,, among the five configurations.
known to be ineffective. This has helped KnowledgeBased Thhis is followed closely by TabuSeardPriorkB.
attain higherQ2,,,. than all other exploration strategies. SimulatedAnnealingPriorKkB and NeighborSearcRriorkKB
saturate to similarQ2., while RandomPriorKB has quite
expectedly saturate to the loweSt,. Therefore, it is clear
Further experiments are conducted using TD-FALCON (déom Fig. 6 and Fig. 7 that insertingrior knowledge has a
noted using PriorKB) inserted withrior knowledge using the positive impact on the proposed Knowledge-based Exptorati
technique described in Section IV-A. The effect of insgytinStrategy. Combining the use pfior knowledge and learned
prior knowledge such as the one illustrated in Fig. 3 into TOknowledge to direct exploration has resulted in the disopve
FALCON on the exploration strategies is studied here. Tled more effective knowledge. Unlike the Knowledge-based
same five exploration strategies are used with PriorKB wersiExploration Strategy, the other exploration strategies ar

is observed

B. Effect of Prior Knowledge on Exploration Strategies

of TD-FALCON.
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unable to benefit as much from tipgior knowledge because
they do not make use of the learned and inserted knowledge
during exploration.

C. Effect of Pruning on Exploration Strategies

This round of experiments are conducted using TD-
FALCON (denoted using Prune) with the pruning ability de-
scribed in Section IV-B. The effect of pruning away ineffeet
knowledge chunks on the exploration strategies is studied
here. In the experiments, cognitive nodes with confidence

v B i v— TabuSearch_ PriorkB g
oo |~ 7 | level below35% of the average confidence level are pruned.
L The same five exploration strategies are used with the Prune
" version of TD-FALCON.
50; | 100
4?00 360 560 760 9(50 1£OO 13‘00 1560 17‘00 19‘00 2100

Training Iterations

Fig. 6. Mission completion rateQ,,,. of TD-FALCON with prior knowledge
using various exploration strategies.

From Fig. 6, the KnowledgeBasd@riorKB configura- g /; . —a— KnowledgeBased_Prune
tion already has close tda/0% Q. in the first 100 £ | v / e prine
training iterations. It stays above all the other configure g o of H ;7,:- o SmulatedAnnealing_Prune
tions right up to its100% €,,. saturation at around the © ¢ /f -

1400*" training iteration. Beginning at the lowe&,,. level, GO‘Z/:§(/;\'
the RandomPriorKB configuration is the only other con- [ *
figuration to attain100% $,,.. TabuSearchPriorKB and 50t

SimulatedAnnealingPriorkKB saturate to the next highegt, .

level while NeighborSearclPriorKB converges to the lowest

Qe level.
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Fig. 8. Mission completion rateQ,,. of TD-FALCON with pruning using
various various exploration strategies.
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With reference to Fig. 8, the KnowledgeBasBdune con-
figuration has the most efficie?,,. profile than the other
configurations. Though TabuSearéhmune has also converged
to 100% e, it has larger fluctuations prior to satura-
tion. All the other exploration strategies have quite samil
profile during training. On saturation, NeighborSeartune
has the next highest?,,. while RandomPrune and
SimulatedAnnealindPrune saturate to the sarfig,. level.

From Fig. 9, due to the effect of pruning, there is a
downward shift of the saturation levels 6f., for all five
configurations when compared with the saturation levels of
., seen in Fig. 5 and Fig. 7. However, the correlations of
., among the configurations remains unchanged from what
are observed in Fig. 7. From the experimental results, the



6000

work may focus on better management of the cognitive node
5000 o g | population by not exploring unnecessarily while maintagni
the performance level. The duration of the training process
may also need to be reduced significantly by having a faster
saturation rate for a quicker turnaround time.
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