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Rule Extraction: From Neural
Representation

Architecture to Symbolic

GAIL A. CARPENTER & AH-H\TEE TAN

(Receiaed for publication I February 1994; reaised paper accepted August 1994)

This paper shows how knowledge, in the form of fuzzy rules, can be derizted from a
superuised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in
two stages: pruning, which simplifies the network structure by remooing excessiae
recognition categories and weights; and quantization of continuous learned weights, which
allows the final system state to be translated into a usable set of descriptizte rules. Three
benchmark studies illustrate the rule extraction methods: (l) Pima Indian diabetes
diagnosis, (2) mushroom classification and (3) DNA promoter recognition. Fuzzy
ARTMAP and ART-EMAP are compared with the ADAP algorithm, the k nearest
neighbor system, the back-propqgation network and the C45 decision tree. The ARTMAP
rule extraction procedure is also compared with the Knowledgetron and lr{opM algorithms,
which extract rules from back-propagation networks. Simulation results consistently indicate
that ARTMAP rule extraction produces compact sets of comprehensible rules for which
accuracy and complexity compare faztorably to rules extracted by ahernatizte algorithms.

KEy\roRDs: Fuzzy ARTMAP, rule, confidence factor, pruning.

1. Introduction: Rules and Fuzzy ARTMAP

Fuzzy ARTMAP (Carpenter et al., 1992) is a neural network architecture rhat
performs incremental supervised learning of recognition categories (pattern classes)
and multi-dimensional maps for both binary and analog input patrerns. When
performing classification tasks, fuzzy ARTMAP formulates recognition categories
of input patterns, and associates each category with its respective prediction. The
knowledge that ARTMAP discovers during learning is equivalent to if-then rules
which link sets of antecedents to their consequents. At any point during
incremental learning, the system architecture can be translated into a set of rules.
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However, this set of rules may be too large to be readily comprehensible. This
paper describes a procedure to reduce a trained fuzzy ARTMAP system to a
compact rule-based representation that maintains the predictive accuracy of the full
network, and compares the complexity and performance of this system to that of
other neural network, machine learning and rule-extraction algorithms.

Rules can be derived more readily from an ARTMAP network than from a
back-propagation network, in which the role of hidden units is usually not explicit.
In fuzzy ARTMAP, each category node in the Fi field (Figure l) roughly
corresponds to a rule. Each node has an associated weight vector that can be
directly translated into a verbal or algorithmic description of the antecedents in the
corresponding rule. However, large databases typically cause ARTMAP to generate
too many rules to be of practical use. The goal of the rule-extraction task is thus
to select a small set of highly predictive category nodes and to describe them in a
comprehensible form. To evaluate a category node, a confidence factor that
measures both usage and accuracy is computed. Removal of low-confidence
recognition categories created by atypical examples produces smaller networks.
Removal of redundant weights in a category node's weight vector reduces the
number of antecedents in the corresponding rule. Further, in order to describe the
knowledge in a simplified rule form, real-valued weights are quantized into a small
set ofvalues.

The ARTMAP rule-extraction algorithm has been evaluated using the Pima
Indian diabetes (PID) data set obtained from the UCI repository of machine
learning databases (Murphy & Aha, L992). Simulation results (Carpenter & Tan,
1993) show that pruning consistently produces rule sets that are more accurate

ART"

Figure r. Fuzzy ARTMAP archirecture (Carpenter er al., l99z). The ART,
complement coding preprocessor transforms the Mo-vecror a into the 2M,-vector
A: (a,a') at the ART" field F6. A is the input vector ro the ART" field Ff.
Similarly, the input to Ft is the 2M6-vector (b,b'). When ART, disconfirms a
prediction of ART,, frop field inhibition induces the match-rracking process.
Match tracking raises the ART" vigilance (p") to just above the F!-to-Ffi match
ratio l*"l l lAl. This triggers an ART" search which leads to activation of either an
ART" category that correctly predicts b or to a previously uncommitted ART,

category node.
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than the full system but only one-third the size. Quantization produces more
comprehensible rules at only a slight cost in terms of performance.

In addition to the PID benchmark, this paper reports two other benchmark
studies that compare ARTMAP rule extraction with two other neural network rule-
extraction algorithms. Performance was assessed in terms of predictive accuracy
and system complexity. Predictive accuracy was measured by the performance of
the extracted rules on a test set that was unseen during both training and rule
extraction. The number of rules and antecedents in the rule set determine system
complexity.

The mushroom data set (Schlimmer, L987) benchmark problem partitions
sensory feature vectors into two classes, edible or poisonous. ARTMAP rule
extraction is compared with a back-propagation rule-extraction system called
Knowledgetron (Fu, 1992). Simulation results indicate that the ARTMAP pruning
procedure derives rules that are more accurate and far fewer in number than the
Knowledgetron conjunctive rules.

The final data set, which recognizes promoters in DNA sequences, is an
expanded version of the promoter data set maintained by Craven and Shavlik
(1993, 1994). Fuzzy ARTMAP and ART-EMAP are compared with the K nearesr
neighbour (KNN) algorithm, the back-propagation network and the C4.5 decision
tree. The ARTMAP rule-extraction procedure is also compared with the NorM
algorithm that extracts rules from back-propagation networks (Craven & Shavlik,
1993, 1994). Preliminary simulations (Tan, 1994) indicated that while the
performance of ARTMAP rules was equivalent to that of NopM rules, ARTMAP
had faster learning but NopM had better code compression. In this paper, a new
ARTMAP rule pruning strategy and an antecedent pruning procedure further
reduce ARTMAP complexity. Using the revised pruning merhod on the DNA
promoter simulations, the ARTMAP rule sets are comparable to NonM rules both
in accuracy and in system size, while maintaining the fast learning advantage.

To make this article self-contained, Section 2 provides a summary of fuzzy
ART and ARTMAP. Section 3 describes the ARTMAP rule-extraction algorithm.
Section 4 reviews the Knowledgetron, NonM, ADAP, KNN and C4.5 algorithms.
The final section reports simulation results of the PID, mushroom and DNA
promoter benchmark studies.

2. Fuzzy ARTMAP

ARTMAP (Carpenter et a1.,1991a) is a neural network for supervised learning and
prediction of binary inputs. Fuzzy ARTMAP (Carpenter et al., 1992) generalizes
ARTMAP to classify inputs by a fuzzy set of features, or a pattern of fuzzy
membership values that indicate the extent to which each feature is consistently
present or absent with respect to a given category. This generalization is
accomplished by replacing the ART 1 modules (Carpenter & Grossberg, 1987,
1991) of binary ARTMAP with fuzzy ART modules (Carpenter et al., 1991b).
\flhere ART I dynamics are described in terms of set-theoretic operations, fuzzy
ART dynamics are described in terms of fuzzy set-theoretic operations (Zadeh,
1965; Kosko, 1986) (Figure 2).

Each ARTMAP system includes a pair of adaptive resonance theory modules
(ART" and ARTa) that create stable recognition categories in response to arbitrary
sequences of input patterns (Figure 1). During supervised learning, ART, receives
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ART 1
(BTNARY)

Fuzzy ART
(ANALOG)

CATEGORY CHOICE

r r  nqrrj = b-qT ! =*.Ar*l

l I  nwrr> p
t I  I

MATCH CRITERION

FAST LEARNING

r rA ]4>p
t I l

*lnew)= I n*r(o'o)

6 _ logical AND
| | - intersection

Figure 2. Analogy between

(new) (old)
w J '  

' = l A w l '

,r fuzzv AND
/ \ = minimum

ART I and fuzzy ART.

a stream {aor1 of input patterns and ART6 r€ceiv€s a stream {b<,lt of input
patterns, where b(e) is the correct prediction givetr 

"(a). 
An associative learning

network and an internal controller link these modules to make the ARTMAP
system operate in real time. The controller creates the minimal number of ART"
recognition categories, or 'hidden units', needed to meet accuracy criteria. A
minimax learning rule enables ARTMAP to learn quickly, efficiently and
accurately as it conjointly minimizes predictive error and maximizes code
compression. This scheme automatically links predictive success to category size
on a trial-by-trial basis using only local operations. It works by increasing the
ART" vigilance parameter (p") by the minimal amount needed to correct a
predictive error at ART6.

An ART" baseline vigilance parameter p" calibrates the minimum confidence
needed for ART" to accept a chosen category, rather than search for a better one
through automatically controlled search. Lower values of p" enable larger
categories to form, maximizing code compression. Initially, po:Fo. During
training, a predictive failure at ART6 increases p" by the minimum amount needed
to trigger ART, search, through a feedback control mechanism called match
tracking. Match tracking sacrifices the minimum amount of compression necessary
to correct the predictive error. Hypothesis testing selects a new ART, category,
which focuses attention on a cluster o1 

"(a) 
input features that is better able to

predict b@). \fith fast learning, match tracking allows a single ARTMAP sysrem to
learn a different prediction for a rare event than for a cloud of similar frequent
events in which it is embedded.
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2.1. Fuzzy ART

Fuzzy ART incorporates computations from fuzzy set theory into ART systems.
The crisp (non-fuzzv) intersection operator (n) that describes ART I dynamics is
replaced by the fuzzy AND operator ( A ) of fuzzy set theory in the choice, search
and learning laws of ART I (Figure 2).By replacing the crisp logical operarions of
ART I with their fuzzy counterparts, fuzzy ART can learn stable categories in
response to either analog or binary patterns.

2.1.1. ART field actioity zsectors. Each ART system includes a field Fo of nodes
that represent a current input vector, a field F, that represents the active code, or
category and a field F1 that receives both bottom-up input from Fo and top-down
input from F2. Vector I: (1t, ...r 1-) denotes Fo activity, with each component 4
in the interval  [0,1] ,  for  i :  1,  . . . ,  M. Yector x:  ( r r ,  . . . ,  xz l^)  denotes F1 act iv i ty
and y:(- ! r r . . . r - ! . r r )  denotesF2 act iv i ty.  The number of  nodes in each f ie ld can be
arbitrarily large.

2.1.2. Weight z)ector. Associated with each F2 category node j (j: l , ..., N) is a
vector wi=(u1s...,witt) of adaptive weights, or long-term memory (LTM) traces.
Init ially

zrrr(0) w1u(0):  I  ( l )

Then each category is uncommitted. After a category codes its first input, it
becomes committed. Each componelt wir can decrease but never increase during
learning. Thus, each weight vector wi (t) converges to a limit. The fuzzy ART
weight, or prototype, vector w, subsumes both the bottom-up and top-down weight
vectors of ART 1.

2.1.3. Parameters. A choice parameter d ) 0, s learning rate parameter p€[0,1]
and a vigilance parameter pc[0,1] determine fuzzy ART dynamics.

2.1.4. Category choice. For each input I and F2 node 7, the choice function Z, is
defined by

l I A w ' r
T /I\
r  .  

r +  l w ;  I
where the fuzzy intersection A (Zadeh,1965) is defined by

(p A q)o : minQt;, q;)

and where the norm | 
. l ir defined by

M

l p l =  I  l p o ,

The system makes a category choice when at most one F2 node can become active
at a given time. The indexJ denotes the chosen category, where

Ty: max{T, :  j  :  l ,  . . . ,  N} (5)

If more than one I is maximal, the category with the smallest 7 index is chosen.
In particular, nodes become committed in order j : I, 2, 3, ... . \f lhen the Jth
category is chosenrgj :1;  and yi :0 for  j+J. In a choice system, the F1 act iv i ty

(2)

(3)

(4)
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vector x obeys the equation

I I if Fz is inactive
x -

I I n *, if the J th F, node is chosen

2.1.5. Resonance or reset.
the chosen category meets

l I A w z l
- - - U

l r l

Learning then ensues, as defined below. Mismatch reset occurs if

l I A w y  I < p
l r l

that is, if

.  l * l  :  I I A * _ t l  < p l I l

Resonance occurs if the
the vigilance criterion

(6)

match  func t ion  l IAwy l / l I l  o f

(7)

category becomes active, resonance occurs if

(8)

(e)

(10 )

that is, by (6), when theJth

l r l  :  l I A w T l  > p l I l

Then the value of the choice function T7 is set to 0 for the duration of the input
presentation to prevent the persistent selection of the same category during search.
A new index J represents the active category, selected by (5). The search process
continues until the chosen J satisfies the matching"criterion (7).

2.1.6. Learning. Once search ends, the weight vector w;r learns according to the
equation

*9'*): p(lAw!"tar;+(1 -p)*fto, (l l)

Fast learning corresponds to setting f : L The learning law of the NGE sysrem
(Salzberg, 1990) is equivalent to (11) in the fast-learn limit with the complement
coding.

2.1.7. Fast-commit, slow-recode. For efficient coding of noisy input sets, it is useful
to set p: I when J is an uncommitted node, and then to take p < I for slower
adaptation after the category is already committed. The fast-commit, slow-recode
option makes *f'*' : I the first time category J becomes active. Moore (1989)
introduced the learning law (11), with fast commitment and slow recoding, to
investigate a variety of generalized ART I models. Some of these models are
similar to fizzy ART, but none uses complement coding. Moore describes a
category proliferation problem that can occur in some analog ART systems when
many random inputs erode the norm of weight vectors. Complement coding solves
this problem.

2.1.8. Normalization by complement coding. Normalization of fuzzy ART inputs
prevents category proliferation. The Fo-Fr inputs are normalized if, for some
7 > 0 ,

2 I r :  l I l = y

for all inputs I. One way to normalize each vector a is

a

l " l

(r2)

( l  3)
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Complement coding normalizes the input but it also preserves amplitude
information, in contrast to (13). Complement coding represents both the on-
response and the off-response to an input vector a (Figure l). In its simplest form,
a represents the on-response and a', the complement of a, represents the off-
response, where

a l : l - a i

The complement coded Fo-Fr input I is the 2M-dimensional vector

I  :  ( a ,  a ' ) =  ( a r , . . . , a M > a \ , . . . , q . ' M )  C 1  r ' ' " '  )

A complement coded input is automatically normalized, because

l I  |  :  l (a ,  a ' )  |

(14)

( l s )

M / t v t \
:  L  a i - r ( u -  2  o , l

i : l  \  i : l  /

- M

\(lith complement coding, the initial condition

zl, r(0)

(16 )

(r7)
replaces the fuzzy ART initial condition (1).

The close linkage between fuzzy subsethood and ART choice/search/learning
forms the foundation of the computational properties of fuzzy ART. In the
conservative l imit, where the choice parameter d:0*, the choice function Tl(2)
measures the degree to which wr.is afuzzy subset of I (Kosko, 1986). A categoryJ
for which w7 is a fuzzy subset of I will then be selected first, if such a category
exists. Resonance depends on the degree to which I is a fuzzy subset of wy, by (7)
and (9). When J is such a fuzzy subset choice, then the match function value is

l I A w ; l  l * - t
( 1 8 )

lrl lrl
Choosing J to maximize lw, I among fuzzy subset choices, by (2), thus maximizes
the opportunity for resonance in (7). If reset occurs for the node that maximizes

l*7 l, then reset wil l also occur for all other subset choices.

2.2. ARTMAP Prediction and Search

Fuzzy ARTMAP incorporates two fuzzy ART modules ART, and ART6 thar are
linked together via an inter-ART module F"b called a map field. The map field
forms predictive associations between categories and realizes the ARTMAP match
tracking rule. Match tracking increases the ART, vigilance parameter p.z in
response to a predictive error, or mismatch, at ART6. Match tracking reorganizes
category structure so that subsequent presentations of the input do not repeat the
error. An outline of the ARTMAP algorithm follows.

2.2.1. ART" and ART6. Inputs to ART, and ART6 ate complement coded. For
ART", I : A: (o, a')1 and for ART6, I: B : (b, b') (Figure l). Variables in ART,
or ART6 are designated by subscripts or superscripts a or b. For ART",
x":(x i . . .x i .br , )  denotes the Fi  ourput vecror;  y"=(yi . . .y(r)  denores the F3
output vector; and wf =(w3 ,, wl z, . . ., wi, zu.) denotes the /th ART" weight vector.
For ART b, xb =(*\ . . .xLu) denotes the Fl  ourput vector;  yu =(yI . . .yb*^) denotes
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the F2 output vector; and rd =(wbnrrwbezr...rwT,zuu) denotes the ftth ART6 weight
vector. For the map field, xob=(x1b, ..., x?3) denotes the F"b output vector, and
wiu = (wi\, . . . , wifu) denotes the weight uectoi from the 7th Fj node to F"b . Vectors
xoryorxbrVbrand xob are reset to 0 between input presentat ions.

2.2.2. ART6 for classification. \fhen the output vector b represents a binary
classification, such as poisonous or edible mushrooms, ART6 structure and
function become simplified. Then, both Fi nodes and F2 nodes correspond to the
set of output classes. An ART6 bottom-up/top-down match is either perfect, when
a predicted class is the same as the supervised learning vector b; or a complete
mismatch, when the two differ. Thus, all ART6 vigilance values between 0 and I
give equivalent performance. All simulations in this article are classification
problems.

2.2.3. Map field actioation The map field F"' receives input from either or both of
the ART" or ART6 category fields. A chosen Fi node J sends input to the map
fie\d F"b via the weights w!. ln active F! node K sends input to F"b via one-to-
one pathways betwe en Fb2 and F"b . Thus, for classification examples , F"u nodes also
represent the set of possible predictive classes. If both ART, and ART 6 ztr- active,
then F"' remains active only if ART, predicts the same caregory as ART6. The F"b
output vector x"b obeys the following:

, if theJth F i node is active and F2 is active

if the Jth F ! node is active and F2 is inactive

it Fi is inactive and F3 is active

if F5 is inactive and Fb, is inactive

y' fails to confirm the map field prediction made by *f . Such
riggers an ART, search for a better category, as follows.

2.2.4. Match tracking. At the start of each input presentarion, ART" vigilance p"
equals a baseline vigilance parameter po. \U(rhen a predictive error occurs, match
tracking raises ART" vigilance iust enough to trigger a search for a new Fi coding
node. ARTMAP detects a predictive error when

l * "u l  .  p"u lyu l (20)

where pou is the map field vigilance parameter. A signal from the map field to the
ART" orienting subsystem causes po to 'track the F! match'. That is, po increases
until i t is slightly higher than the Ff match value lA A 

"61 lA | 
- ' . 

Then, since

l * " 1  :  l A A w l l  < p " l A l

(v 'n8
lwxb.

x o b : 1  : '

lv",
l.0,

By (19) ,  x "6  :0  i f
a mismatch event t

( le )

(2r)
ART" fails to meet the matching criterion, as in (10), and the search for another Fi
node begins. The search leads to a different chosen F5 nodeJ with

l * " 1  :  l A A w f  l  > p " l A l
and

l*"u | : I y' n *3u | > p.ulyu I

(22)

(23)

If no such node exists and if all F i nodes are already committed, F 3 automatically
shuts down for the remainder of the input presentation.
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2.2.5. Map field learning. Weights wi! in Fi--+F"b paths initially satisfy

wi!101:1 (24)

During resonance with the ART" category J active, w!' approaches the map field
vector xob as in (11). With fast learning, onceJlearns to predict the ART6 category
K, that association is permanent, i.e. wibls: I and wlbu:0 (k+n for all t ime.

2.2.6. Voting. Fast learning implies that category structure depends significantly
on the order of input presentation. \(rhen a given training set is presented to two
ARTMAP networks with different input orderings, the two ART" category
structures, and the corresponding input-output predictions, may differ, even if the
accuracy of the two networks is the same. Overall predictive accuracy can benefit
from this order dependence through a simple voting strategy, as follows. Each of
several voting ARTMAP networks is trained on a given input set presented in
random order. For the test set input, the number of networks predicting a given
outcome is counted. The prediction receiving the most votes wins. Voting tends to
improve performance because the strategy helps to cancel errors of a given system
that occur near a noisy region or decision boundary. Moreover, the number of
votes provides a measure of certainty for a given prediction.

3. ARTMAP Rule Extraction

In an ARTMAP network, each node in the Fi field represents a recognition
category of ART" input patterns. Through the inter-ART map field, each such
node is associated with an ART6 category in the nb, field, which in turn encodes a
prediction. Learned weight vectors, one for each F5 node, constitute a set of rules
that link antecedents to consequents (Figure 3). The number of rules equals the
number of committed F3 nodes.

3.1. Rule Pruning

To reduce the complexity of fuzzy ARTMAP, a rule-pruning procedure aims to
select a small set of rules from a trained network. based on each rule's confidence

ARTb

lnput Features Output Prediction

Figure 3. Schematic diagram of a rule in fuzzy ARTMAP. Each Fi node maps
prototype feature vector (antecedents) to a prediction (consequent).
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factor. To derive concise rules, an antecedent pruning procedure aims to remove
antecedents from rules while preserving accuracy. The rule-extraction process
partitions the input set into a training set, a predicting set and a test set. The
training set provides inputs for ARTMAP weight adaptation. The predicting ser
provides an accuracy estimate for each rule in the full network. The test set then
measures performance of the reduced network, following rule extraction. In order
to ensure fair comparison of algorithms in benchmark simulations, a fixed test set
is normally used to evaluate final performance of all algorithms. If an algorithm,
such as back-propagation, uses only a training and a test set, that training set is
split into training and predicting subsets for ARTMAP learning and rule
extraction.

The rule-pruning algorithm derives a confidence factor for each Fi category
node in terms of its usage frequency in the training set and its predictive accuracy
on the predicting set. The confidence factor identifies good rules with nodes that
are frequently used and generally correct, as well as nodes that are rarely used but
highly accurate. ARTMAP removes rules that have low confidence. Overall
performance is actually improved when the pruning algorithm removes rules that
represent misleading special cases from the training set.

Specifically, the pruning algorithm evaluates an Fi recognition category j in
terms of a confidence factor CFi:

CFj : (I - y)Ui t ^tAi 
e5)

where U, is the usage of node j,Aris its accuracy, and ye [0,1] is a weighting factor.
Typically, setting I : 0.6 would allow a rare (Ui=0) but accurate (Ai=l) rule 7 to
have a confidence factor (CF1=0.6) that would survive a pruning threshold in the
usual range of 0.5-0.6.

3.1.1. Usage. For an ART, category / that predicts outcome ft, its usage U, it
defined to be the number of training set patterns coded by any node j (C), divided
by the maximum number (Cy) of training patterns coded by any node J that
predicts fr:

U1: Cilmax{C7: nodeJ predicts outcome ft} (26)

Usage is thus scaled to lie between 0 and l, with { equal to I for ar least one
node/ among those predicting outcome A.

3.1.2. Accuracy. For an ART, categoryT that predicts outcome ft its accuracy 41 is
defined to be the per cent (Pj) of predicting set patterns predicted correcrly by
node 7, divided by the maximum per cent (P7) of patterns predicted correctly by
any nodeJ that predicts outcome A:

41: Pllmax{P1 nodeJ predicts outcome A} (27)

Accuracy is thus also scaled to lie between 0 and l, with 41 equal to I for at least
one node / among those predicting each outcome ft. Scaling within each outcome
class ft ensures that at least one Fi node in the pruned network will predict each
outcome.

After confidence factors are determined, recognition categories are removed
from the network using a threshold pruning strategy or a local pruning strategy, as
follows.

3.1.3. Threshold pruning. This is the simplest type of pruning, where the Fi nodes
with confidence factors below a given threshold r are removed from the network.
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A typical setting for r is 0.5. This method is fast and provides an initial
elimination of nodes that are infrequently used and inaccurate. To avoid over-
pruning, it is sometimes useful to specify a minimum number of recognition
categories to be preserved in the system.

3.1.4. Local pruning. Local pruning removes recognition categories one at a time
from an ARTMAP network. The baseline system performance on the training and
the predicting sets is first determined. Then the algorithm deletes the recognition
category with the lowest confidence factor. The category is replaced, however, if its
removal degrades system performance on the training and predicting sets. A
variant of the local pruning strategy updates baseline performance each time a
category is removed. In simulations, this option, called hill-climbing, gives slightly
larger rule sets but better predictive accuracy. A hybrid strategy first applies
threshold pruning and then applies local pruning to the remaining smaller set of
rules.

3.2. Antecedent Pruning

During rule extraction, a non-zero weight to an Fi category node translates into an
antecedent in the corresponding rule. The antecedent pruning procedure calculates
an error factor for each antecedent in each rule based on its performance on the
training and predicting sets. Vhen a rule makes a predictive error, each antecedent
of the rule that also appears in the current input has its error factor increased in
proportion to the smaller of its magnitudes in the rule and in the input vector.
After the error factor for each antecedent is determined, a local pruning strategy,
similar to the one for rules, removes redundant antecedents by setting the
corresponding weight equal to zero.

3.3. Quantizing Weight Values

With analog input patterns or slow learning, ARTMAP learns real-valued weights.
In order to describe the rules in words rather than real numbers, the feature values
represented by weights wl; are quantized. A quantization level Q is defined as the
number of feature values in the quantized rules. For example, with Q: 3, feature
values are described as low, medium or high in the fuzzy rules. Quantization by
truncation divides [0,1] into Q intervals and assigns a quantization point to the
lower bound of  each interval ,  i .e.  Vo:(q- l ) lQ for Q:1,  . . . ,  Q.. \ f lhen a weight
falls in interval q, the algorithm reduces its value to Vo. Quantization by round-off
distributes Q quantization points evenly, with one at each end point, i.e.
Vo: (q-L)l(Q- 1). The algorithm then rounds off a weight to the nearest V, value.

4. Comparative Algorithms

Knowledgetron and Non'M are algorithms that extract symbolic rules from back-
propagation networks. Each uses a clustering technique during training to facilitate
rule extraction. Simulations in Section 5 compare ARTMAP performance with
these and with benchmark simulations of the ADAP, KNN and C4.5 sysrems. For
reference, these comparison algorithms are briefly described here.

4.1. Knowledgeton

The Knowledgetron algorithm (Fu, 1992) consists of the Knowledgerron back-
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propagation (KTBP) trainer and the Knowledgetron (KT) translator. The KTBP
trainer iterates a process of adapting a multi-layer neural network and clustering
hidden units to encode information more compactly. The KT translator searches
the rule space for confirming and disconfirming rules. Positive (negative) attributes
refer to attributes which link to a unit with positive (negative) weights. For each
unit, the algorithm forms confirming rules by exploring combinations of positive
attributes and negated negative attributes that activate the unit. Similarly, the
algorithm forms disconfirming rules by exploring combinations by negative
attributes and negated positive attributes.

4.2. NoeM Algorithm

The NopM algorithm (Table I) constructs rules of the form:

If 11 of the M antecedents are true, then ...

from a trained feedforward network. The NonM algorithm was originally used to
extract symbolic rules from knowledge-based neural networks in which the toplogy
and initial weights had been specified by an approximately correcr domain theory
(Towell & Shavlik, 1992). The NorM algorithm was extended by Craven and
Shavlik (1993, 1994) who trained back-propagation networks using soft weight-
sharing (Nowlan & Hinton, 1992), which encourages weights ro form clusrers
during training.

4.3. C4.5

On a DNA promoter data set, Craven and Shavlik showed that the Non'M
algorithm induced rules with better predictive accuracy rhan rules produced by the
symbolic learning algorithm Ca.5 (Quinlan, 1993). The C4.5 algorithm construcrs
a decision tree based on attribute values. Its pruning and rule-generation processes
made it a natural choice for the comparative studies of Craven and Shavlik (1994).

4.4. ADAP

The ADAP (adaptive) learning routine (Smith et al., 1988) has previously been
applied to the PID data set (Section 5.1). The three-layer ADAP architecture
(Figure 4) uses fixed connections from the sensory layer to the association layer,
and error feedback to adapt connections from the association layer to the responder
layer.

4.5. KNN

The KNN algorithm is a look-up system that stores all training parrerns in its
memory. The category of a test pattern is determined by a vote of the categories of

Thble I. A summary of the NonM algorithm

(I) Clusteing: The weights converging on each hidden and ourput unir are grouped into clusters using
the join algorithm (Hartigan, 1975), a standard clusrering method.

(2) Aaeraging: The value of each weight is set to the average value of the weights in its cluster.
(3) Eliminaring: Clusters that are not needed to activate correcrly a unit are eliminated.
(4) Optimizing: Unit biases are retrained after rhe changes.
(5) Extracting: Each hidden and output unit is translared inro a set of N-of-M rules rhat describe the

conditions under which the unit will be activated.
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Figure 4. The ADAP architecture (Smith et a1.,1988).

the K training patterns closest to the test pattern. KNN is often most useful when
the available training set is small. However, both memory requirements and search
time scale up rapidly for large data sets.

5. Comparative Simulations

5.1. PID Diagnosis (cf: ADAP)

The PID task seeks to determine whether a patient develops diabetes, based on
eight clinical indices. The PID data set (Table II) contains 768 cases, of which the
268 positive cases (35%) are from patients diagnosed as diabetic. Smith et al. (1988)
converted the 8 feature values into 37 binary variables. The simulations used
100000 association units (p.263). Real-valued predictions were converted to binary
predictions using a cut-off of 0.448. After training on 576 inputs, the sensitivity
(per cent correct of actual positive cases) and specificity (per cent correct of actual
negative cases) on the 192 test set cases were each 76%o.

In order to compare fuzzy ARTMAP with ADAP performance, each
simulation used the same 192 test set inputs. For extracting ARTMAP rules, the
remaining 576 cases were partitioned into a training set of 384 inputs and a
predicting set of 192 inputs. During pruning, the weighting factor y and the
pruning threshold r were each fixed at 0.5. Two indices are used to compare test
set performance, namely (1) accuracy, equal to the per cent correct by binary
prediction, and (2) the c-index. The c-index is an evaluation of the predicrive score
that is independent of the relative frequency of positive and negative outcomes. It
is equal to the average probability, over all possible pairs of cases with different
outcomes, that the classifier will assign a higher score to a positive case. To apply
a voting strategy, an ARTMAP system was trained in 20 simulation runs with
inputs presented in different orderings. For each test case, voting produced a net
predictive score between 0 and I for each outcome, equal to the fraction of times
that network predicts that outcome. The entire simulation, including the training
of fuzzy ARTMAP, extraction of rules and performance evaluation, was repeated
ten times.
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Table II. The eight input features of a PID
data set was obtained from the UCI machine

1992)

input and their statistics. The PID
learning repository (Murphy & Aha,

No. Feature Description SD

I
2
3
4
5
6
7
8

PREG
PGC
DBP
TSFT
SI
BMI
DPF
AGE

3.8
t20.9
69.1
20.5
79.8
32.0
0.5

33.2

3.4
32.0
t9.4
16.0

rt5.2
7.9
0.3

I  1 . 8

Number of times pregnant
Plasma glucose concentration
Diastolic blood pressure (mm Hg)
Triceps skin fold thickness (mm)
2-hour serum insulin (lU ml t)

Body mass index
Diabetes pedigree function
Age (years)

Table III. PID simulation results of ADAP, fuzzy ARTMAP and systems obtained
by combinations of rule extraction methods. ARTMAP resuhs are obtained by
voting across 20 simulations. Rule pruning improves test set performance, while

quantization gradually degrades performance

Training Predicting Testing

Methods
Data set No.
partition nodes/rules Accuracy c-index Accuracy c-index Accuracy c-index

ADAP
Frzzy ARTMAP
Threshold pruning

Prun ing  - tQ :10
Pruning *Q= 5
Prun ing  *Q :3

5761r92
s76lr92
384lre2l192
38411921r92
38411921r92
38411921r92

100 000
63.s (4e-82)
le .6  (12-30)
re.7 (rr-28)
ie .6  ( l  l  -28)
re.6 (12-26)

1.000
0.940 88.2
0.854 82.7
0.801 80.7
0.737 69.9

100.0
86.7
79.3
75.7
70.5

76.0
7 5.e  0 .819

0.942 78.5 0.848
0.855 79.0 0.842
0.804 77.5 0.829
0.725 69.3 0.73r

Voting fuzzy ARTMAP is about as accurate as ADAP but uses far fewer nodes
(Table III). \fith fast learning, ARTMAP correctly learned all 576 training
predictions after 6 to l5 input presentations (epochs). The reduced rule sets do not
classify correctly all the training patterns, but actually show better performance on
the test set (Table III). In particular, the threshold pruning procedure yields about
one-third as many rules but gives better test-set performance as measured by both
accuracy and the c-index. Quantization degrades performance gradually as the
number of quantized steps Q decreases. Quantization with Q: 3 uses simpler
rules, with 'low, medium and high' as feature values, but produces significantly
poorer performance. A good compromise uses Q: 5 quantized steps.

Table IV shows six PID rules extracted by rule pruning and quantization
(Q: 5). Each row can be directly translated into a fuzzy rule. Because of
complement coding, fuzzy ARTMAP learns a pair of weights for each feature.
These weights specify a minimum and a maximum value, or interval, for each
feature in each rule. For example, row I can be interpreted as the rule shown in
Table V. The rules extracted can be evaluated and adapted by medical experts.
Novel rules discovered through the rule-extraction process may provide new
insights for human and machine diagnosis.



Table IV. Six
pruned set of
76.0% test set
feature values.
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PID rules extracted by pruning and quantization (Q: 5). The
23 rules predicts correctly 78.2% training, 77.6% predicting and
vectors. Each rule is described in terms of a range of quantized
Interpretation of weight values: I : very low, 2 : low, 3 : medium,
high and 5 : very high. '1-5' means a feature is irrelevant

Feature weights Rule statistics Test set

Predict PREG PGC DBP TSFT SI BMI DPF AGE Usage Accuracy CF No. Accuracy

+
+
+

3-5 3-5 3-5 1-3
r -2  3-5 3-4 i -3
l - 3  3 -5  3 -5  r -3
t-2 3-4 3-4 r-2
I -2  2-4 3-4 1-3
r -2  3-4 3-4 1-3

r -2  t -4  r -2
r-4 3-4 1-3
r - 5  3  l - 3
r*2 2-3 1-2
I -2  2 -4  l -3
I-2 2-3 r-2

2-4 1.00
t -2  0 .78
r-4 0.33
I -2  1 .00
r-2  0 .54
r-2  0 .38

0.80
0.62
1.00
0.94
0.88
1.00

0.90
0.70
0.67
0.97
0.71
0.69

0.7r
0.83
0.88
0.89
0.92
1.00

7
l 8
8

t 9
t2
t 0

Thble V. Interpretation of rule
PID rule set (Table

I in the sample
IV)

If number of times pregnant is medium to very high
and plasma glucose concentration is medium to very high
and diastolic blood pressure is medium to very high
and triceps skin fold thickness is very low ro medium
and 2-hour serum insulin is below medium
and body mass index is not very high
and diabetes pedigree function is below medium
and age is not extreme

THEN diabetes is l ikelv

5.2. Mushroom Classification (cf: Knowledgetron)

The mushroom classification problem is to determine whether a mushroom is
edible or poisonous based on its observable features. The mushroom database
(Schlimmer, 1987) consists of 8124 instances) each of which is characterized by 22
sensory features (Table VI). Inputs that represent 3916 poisonous mushrooms
constitute 48.2% of the total population.

On this problem, Fu (1992) used 1000 inputs to train a back-propagation
network containing 127 input units, 63 hidden units, 2 output units and 8127
connections. The network classified the 1000 training cases with 100%o accuracy
and a disjoint test set of 1000 cases with 99.0Vo accuracy. Knowledgetron then
generated a system of 233 rules, which classified the 1000 training cases with 100%
accuracy and the 1000 test cases with 99.6% accuracy.

In ARTMAP simulations, the 22 input features were converted into 125
binary attributes. Complement coding was applied to represent both the presence
and absence of each attribute. ARTMAP learning and testing were performed with
parameter values a : 0.001, l l : I and po: 0. The simulation results averaged over
20 runs are summarized in Table VII. When ARTMAP is trained with 1000 cases,
an average of 5.8 rules are created, compared to the 233 of Knowledgetron.
Simulations are 99.8% accurate over the remaining7l24 cases.

In the rule-extraction simulations, 1000 cases were used as the training set,
1000 cases as the predicting set, and the system was tested on the remaining 6124
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Table VI. The 22 input features of the mushroom data set (Schlimmer, 1987)

No. Features Values

I cap-shape
2 cap-surface
3 cap-color
4 bruises
5 odor
6 gill-attachment

7 glll-spacing
8 gil l-size
9 gil l-color

l0 stalk-shape
I I stalk-root

bell/conical/convex/fl atlknobbed/sunken
fi brous/grooves/scaly/smooth
b rown/b uff/ci nnamon/graylgreen/pi n k/purple/red/white/yel low
true/false
almond/anise/creosote/fi shy/foul/musty/none/pungent/spicy
attached/descending/free/notched
close/crowded/distan t
broad/narrow
black/brown/buff/chocolatel gr ay I green/oran gelpink/purple/

rediwhite/yellow
enlarging/tapering
bulbous/club/cup/equal/rhizomorphs/rooted/missing

12 stalk-surface-above-ring fibrous/scaly/silky/smooth
l3 stalk-surface-below-ring fibrous/scaly/silky/smooth
14 stalk-color-above-ring brown/buff/cinnamon/graylorangelpink/red/white/yellow
l5 stalk-color-below-ring brown/buff/cinnamon/graylorangelpink/red/white/yellow
16 veil-type
17 veil-color
18 ring-number
19 ring-type
20 spore-print-color
21, population
22 habitat

partial/universal

brown/orange/white/yellow
none/one/two
cobwebby/evanescenr/fl aringllar gelnone/pendant/sheathin gl zone
black/brown/buff/chocolate/green/orange/purple/white/yellow
abundant/clustered/numerous/scattered/several/solitary
grasses/leaves/meadows/paths/urban/waste/woods

Table VII. Comparison between ARTMAP, ARTMAP rule-extracrion methods,
back-propagation and Knowledgetron on the mushroom data set. Data partitions
indicate the number of training, predicting and test patterns; number of rules
shows the average number and range of rules; number of antecedents counts the

total number of antecedents summing over all rules

No. No.
Systems Data partition rules antecedenrs Train (%) Predict (%) Test (%)

Back-propagation 1000/0/1000 100.0 99.0
Knowledgetron 1000/0/1000 233 100.0 99.6
ARTMAP 10001017124 5.8 (4-7) 100.0 e9.8
Rule pruning 10001100016124 5.r (4-7) 366.0 99.9 99.9 99.8
Antecedent pruning 1000/1000/6124 5.1 (4-7) 51.0 99.9 99.9 99.8

cases. Rule pruning and antecedent pruning used the local pruning strategy
(Section 3.1) with I:0.5 in the confidence factor equarion (25). As shown in Table
vII, the rule and antecedent pruning procedures combine to remove an average of
315 antecedents but only 0.7 rules from the already small sets of ARTMAP rules.
After pruning, systems with an average of 5.1 rules and 5l antecedents maintain
predictive accuracy at99.8%. Table VIII shows a sample set of four ARTMAP rules
created in the simulations.
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Table VIII. A sample set of four ARTMAP rules with a total of 22 antecedents for
classifying mushrooms. These rules classify correctly 99.9% of the 8124 mushrooms

in the data set

Predict
IF
and

Predict
IF
and
and
and
and
and
and

Predict
IF

Predict
IF
and
and
and
and

Edible (Conf 1.00 Usage 1.00 Accuracy 1.00 Predict 835 Test Acc 1.00)
ring-type is not none
spore-print-color is not chocolate

Edible (Conf 0.85 Usage 0.69 Accuracy 1.00 Predict 2286 Test Acc 1.00)
cap-surface is not grooves
odor is not creosote, not foul, and not pungent
gil l-color is not buff
stalk-surface-below-ring is not scaly
spore-print-color is not green
population is not abundant and not numerous
habitat is not meadows

Poisonous (Conf 0.78 Usage 0.56 Accuracy i.00 Predict 483 Test Acc 1.00)
habitat is not waste

Poisonous (Conf 1.00 Usage 1.00 Accuracy 1.00 Predict 2520 Test Acc 1.00)
odor is not almond, and not anise
stalk-color-above-ring is not gray
stalk-color-below-ring is not gray
veil-color is not brown, and not orange
population is not abundant, not numerous, and not solitary

5.3. DNA Promoter Recognition (cf: KN /, Back-propagation, NonM, C4.5 and
ART-EMAP)

The third simulation is that of recognizing promoters in DNA sequences.
Promoters are short nucleotide sequences that occur before genes and serve as
binding sites for the EffiRNA polymerase during gene transcription. The
promoter data set (Craven & Shavlik,1993) is an expanded version of the 106-case
promoter data set in the UCI repository. It consists of 468 patterns, half of which
are positive instances (promoters). Each input pattern represenrs a 57-position
window, with the leftmost 50 window positions labeled - 50 ro - I and the
rightmost seven labeled I to 7 (Figure 5). Each position is a nominal fearure which
takes one of the four nucleotide values (A, G, T, C) or unknown (?). Using local
representation, each DNA sequence is expanded into a 228-bit (57 x4) nucleotide
string.

In the following sections, fuzzy ARTMAP and ARTMAP rule-extracrion
algorithms are compared with KNN, C4.5, back-propagarion and NopM
algorithms. Note that each system handles missing values differently. KNN
replaces missing values by ones; a back-propagation network, and hence NorM,
assigns 0.25 to missing featuresl ARTMAP replaces them with zeros; and C4.5
distributes missing values probabilistically according to relative frequencies of
known cases. Since only about I% of feature values are missing, however, these
variations are of minor importance in the present simulation.

5.3.1. K IN simulations. Test set performance of KNN on the promoter dara set
was very accurate (Figure 6), with a minimum error rate of 5.5% obtained using
K: 30 neighbors. However, since KNN performs no data compression, it is most
useful for problems with small data sets. For the promoter data set, KNN stores all
468 patterns with a total of 26676 attributes. The Non'M and ARTMAP rule-
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57-position DNA sequence

228 -bit nucle otide .strin g

Figure 5. 57-position DNA sequence. Each position takes one of the four
nucleotide values (A, G, T, C) or unknown (?). Using local representarion, each

DNA sequence is expanded into a228-bit nucleotide string.

Enor (Vo)

L2*Norm

t-t -No-.m
1 8

1 6

14

I 2

10

0

Figure 6. Average predictive error rate of KNN on the promoter data set over 100
runs using K: I to 50 neighbors.

extraction simulations create approximately 10 to 20 rules with about 100
antecedents, but have error rates around l0%, making a trade-off between system
complexity and predictive accuracy.

5.3.2. Back-propagation, NorM and C4.5 simulations. Craven and Shavlik (1993,
1994) used the promoter data set to evaluate their NorM algorithm against the
symbolic learning system Ca.5 (Quinlan, 1993). Using a lO-fold cross-validation
methodology, the accuracy and the system size of back-propagation networks and
NorM rules were compared with those of a C4.5 decision tree and extracted C4.5
rules.

A back-propagation network trained using soft weight sharing achieved an
error rate of 7.9% (Table IX), less than half the 16.9% error rare of C4.5 decision
trees. The NopM rules produced an error rate of ll.lo/o, still lower than the 13.5%
error of C4.5 rules. However, the C4.5 rules were more concise than the NopM

K
t0
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networks with soft-weight

C4.5 decision trees, C4.5
sharing and NopM rules on
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rules, back-propagation
the promoter data set

Systems No. rules No. antecedents Error (%)

C4.5 decision trees
C4.5 rules
Back-propagation

NopM rules
Nor--M rules (after pruning)

23_2

8.2
8 . 1

47.3

I19 .6
97.2

t6.9
r  3 .5
7.9

I  l . l
r0.2

rules in terms of the number of antecedents. To reduce the system size, Craven and
Shavlik derived a rule/antecedent pruning algorithm which reduced both the
complexity and the error rate of NorM rules.

5.3.3. ART-EMAP spatial eaidence accumulation. The promoter data set has very
few (468) examples, given the dimension of its input vectors (228). For such
problems with sparse data points, the ART-EMAP spatial evidence accumularion
process (Carpenter & Ross, 1993), which integrates distributed activity across Fi
category nodes, is effective for classifying noisy or novel inputs. In ARTMAP
systems with category choice, only the Fi node J that receives maximal Fl--+Fi
input Ti predicts ART6 outpur. In simulations with category choice

^ t q  _

c t 9  -
Y 1  

-

I r,
1 0 ,

if j :7 where 73, Tj for all ),#J

otherwise
(28)

as in (5). ART-EMAP uses the choice rule (28) during the initial period of
supervised learning. However, during performance, the Fi output vector f
represents a less extreme contrast enhancement of the F! --Fi input T". Two
algorithms that approximate contrast enhancement by competitive networks
(Grossberg, 1973) are studied below.

Power rule. The power rule, as used in the ART-EMAP system, raises Ti to a
power p and normalizes the total activity:

^," - (Ti)o
t t  -  

, ,1r"yo

(Figure 7 (a)). The power

(2e)

rule converges toward the choice rule as p becomes large.

K-max rule. In the spirit of the KNN system, the K-max rule makes a prediction
based on the set of K Fi nodes receiving the largest Ff --Fi input Ti. The Fi
activities yf are then

ri
Z,,=nTi. '

0,

i fTcA

otherwise
(30)

where A is the set of K category nodes with the largest 7"r? values (Figure 7(b)).
The K-max rule with K: N is equivalent to the power rule with p : l; and the K-
max rule with K: I is equivalent to the choice rule (28).
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Figure 7. (a) Contrast enhancement by the power rule with p : 2. (b) Conrrast
enhancement by the K-max rule. Ti is the input to the j th F2 node and yf is the

contrast enhanced activity of node7.

After the Fi activity vector I is contrast enhanced by (29) or (30), the input
vector x"6 from Fi to the map field F"b is

(Figure 1).

5.3.4. ARTMAP simulations. The 1O-fold cross-validation methodology of Craven
and Shavlik (1993,1994) was also used to evaluate ARTMAP performance. The
data set was divided into ten partitions. ARTMAP was rrained on nine partitions
and tested on the remaining partition, using parameter values r: 10, f : I and
po: 0. The real-valued scores produced by ART-EMAP spatial evidence
accumulation were thresholded at 0.5 to produce a binary prediction.

The ART-EMAP power rule and the K-max rule both perform consistently
better than the choice rule (Figure 8). Fi choice is equivalent ro rhe K-max rule
when K: I and to the power rule oSp--+co. \fhen K:N, the K-max rule is the
same as the power rule with p: L The K-max rule reduces the error rate from
L7.8% with K: I (choice) to 8.0% with K: 20 predictive categories. The power
rule performs best with distributed Fi activity y".The best performance (7.4%
error) is obtained with P :2 (Figures 7(a) and 8). Both the power rule and the K-
max rule simulations indicate that distribute d Fi activity improves predictive
accuracy compared to compressed code representations. All rule-extraction
simulations use the power rule with p :2.

5.3.5. ARTMAP ruIe extraction. In ARTMAP rule-extraction simulations of the
DNA promoter data set, seven of the ten input partitions were used to train and
evaluate usage U1 of each rule; two partitions were used to evaluate accuracy A;
and the remaining one partition was used to test the extracted rules. Setting the
usage/accuracy weighting factor y equal to 0.6 in (25) gave 60Vo weight to accuracy
and 40% to usage in the confidence factor. To avoid over-pruning, the system
always preserved a minimum of 36 rules. No quantization was needed, since the
binary input patterns and fast learning produce binary weights.

For distributed ART-EMAP prediction, a slightly different definition of usage
U, aims to preserve a more representative mix of rules for each outcome in the

xob :2 *iu yi ( 3 1 )
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Enor (7o)

choice

, power

K-max

p/K

Figure 8. Ten-run average predictive error rate of ART-EMAP on the promoter
data set, compared to fuzzy ARTMAP choice at Fi. Parameter p is the power used
in the power rule (29) and K is the number of F3 recognition categories used in
the K-max rule (30). Compression decreases from choice to a linear representation
of the input as p decreases from co to I for the power rule or as K increases from

I to N for the K-max rule.

pruned set. Recall that in (26), for a node 7 that predicts outcome k, Ci is the
number of training set patterns coded by node7. Usage is here defined to be

U : Ft lmaxT{F1}

18

l 6

l4

t z

10

l 5t0

(32)

where 4 it the fraction of training set patterns with outcome & that are coded by
nodeT:

\: Ql(# training set patterns with outcome A) (33)

Table X summarizes ARTMAP performance on the promoter data set together
with those obtained by back-propagation, NorM and KNN algorithms. The
performance of fuzzy ARTMAP is slightly better than that of the back-propagation
network. A pruning threshold r : 0.6 reduces the number of ARTMAP rules from
117 to 39.3, which increases the error rate from 7.4% to9.8o/o. Local rule pruning
with hill-climbing takes away an additional 13.7 rules and 98.5 antecedents.
Finally, local antecedent pruning removes over half of the antecedents from the
remaining rules. The resultant rule sets, with an average of 19.9 rules and 87.5
antecedents, produce a predictive error of 10.4%, which is comparable to that of the
NorM rules. Comparing system complexity, NonM has fewer rules but more
antecedents than ARTMAP.

Also reported in Table X are the results of l0-voting ARTMAP. Under the
voting strategy, an ARTMAP system is trained in multiple simulation runs using
different orderings of a fixed input set. The outpur predictions of ARTMAP across
runs are averaged to form a final prediction for each test case. This technique was
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Table X. Performance of ARTMAP networks and pruning methods on the
promoter data set compared to back-propagation networks, the NorM algorithm
and the KNN system. ARTMAP networks used the ART-EMAP power rule with

P : 2

Systems No. rules No. antecedents Error (%)

KNN (K: 30)
Back-propagation
NorM rules
NorM rules (after pruning)
Fuzzy ARTMAP
Threshold rule pruning
Local rule pruning

Local antecedent pruning
Voting ARTMAP
Threshold rule pruning

468

8.2
8 . 1

l  17 .0
39.3
25.6
t9.9

(voting across
(voting across

26676

119 .6
97.2

286.6
1  88 .1
87.5

l0 simulations)
l0 simulations)

5 .5
7.9

1 1 . 1
t0.2
7.4
9.8

r0.3
r0.4
5 . 5
7.0

used by Towell et al. (1990) in the promoter simulations to obtain a slight
improvement in performance, but the rule-extraction simulations of Craven and
Shavlik (1993, 1994) did not utilize this technique. \ilhen extracting rules, the
predictions of rule sets extracted across runs are averaged to form a final
prediction. Voting gives ARTMAP a significant improvement in performance.
Even after threshold pruning, the rules still perform slightly better (7.0% error)
than the full network (7.4% error).

5.3.6. Semantic interpretation and comparison. Table XI shows a sample set of rules
extracted from a fuzzy ARTMAP system. Rules with consequents Pr, Pr, . .., P6 are
created by positive instances (promoters) and rules with consequents l1r, l1r, .. .,
.A/16 ?r€ created by negative instances (non-promoters). The system prediction is
made by summing evidence for promoters across the positive rules. Note that the
positive rules for identifying promoters in Table XI are quite simple, while the
negative rules for identifying non-promoters are slightly more complicated. This is
perhaps due to greater variations among non-promoters. Certain interesting
regularities in the rules can also be observed. For example, features like T@-36,
T@-lS and G@-34 consistently appear across the positive rules but not in the
negative rules. This suggests that these features are good indicators for promoters.

The form of ARTMAP rules differs from the form of Non'M rules (Table XII).
ARTMAP creates rules for predicting both promoters and non-promoters. NonM
focuses only on positive instances (promoters), then uses a two-choice assumption
to identify non-promoters. By using ART-EMAP evidence accumularion,
ARTMAP rules include intermediate variables (P1, Pr, ..., Pu and .A/1, Nr, ..., N,o)
that correspond to Fi category nodes, whereas the intermediate variables of Noe'M
rules correspond to hidden units in back-propagation networks. The negative
weights in back-propagation networks allow NonM rules to include negative terms;
in ARTMAP rules, the effect of negative terms could be included through
complement coding of input patterns. Complement coding, however, was not used
in ARTMAP promoter simulations, to keep the input dimension smaller.

Neither system requires an exact match to fire a rule. NopM rule firing is
based on the satisfaction of individual conditions (NonM) stated within each rule.
ARTMAP rule firing is based on competition among all positive and negative
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Table XI. A sample set of 17 ARTMAP rules consisting of 68 antecedents. The
antecedent notation T@-36 indicates the nucleotide T in the position 36

nucleotides before the start of a putative gene

Rule statistics
Promoter Feature template/conditions

CF Usage Accuracy

Pr
P2
P3
P4
P5
P6

Nr
N,
N3
N.
N5
N

N7
N8
N
Nro

1.00
0.92
0.88
0.84
0.84
0.60

0.72
0.72
0.64
0.50

: -  I f :  r f  (P, )  >0.5 where f  (x ) : * ' l (L f : rP?+I l9 ,Ni )
:- T@-36 G@-34 T@-t: A@-12 T@-8
:- T(@-36 G(l-34 T@-30 A@-11
: -  TCq-35 T@-r4 A@-13 TGt- tZ A@-10
: -  G@-37 T@-rS A@-: t
:- T(rr-36
: -  T@-38

1.00 1.00
0.80 1.00
0.70 1.00
0.60 1.00
0.60 1.00
0.50 0.67

0.50 1.00
0.40 1.00
0.40 1.00
0.40 1.00
0.40 1.00
0.30 1.00

0.30 1.00
0.30 1.00
0.10 1.00
0.50 0.50

: -  C@-13 C@;-6 0 .80
:- ACa:-17 G(46 0.76
:- C@l-15 T@,'-14 GCo,-l  0.76
:- G@-33 G@l-15 CC@-5 0.76
:- C@-43 G@t-20 G@-24 G@-21 0.76
:- G@-47 G@)-37 T(!-34 A(r/-28 C@-12 c(4-11 c@/-3 0.72

c@4 c@s
:-  C@)-35 A@-l+ C@-i0 G@,-7 G(q3
:- C@r-40 G@-2 G@7
:- A@-8 c@-6
:- GCQ-4 T(@7

Thble XII. Sample NorM rules exrracted from
network (Craven & Shavlik.

a back-propagation promoter
r994)

promoter

hidden-3

hidden-4

hidden-5

: - 2 o f

: - 7  o f

: -  l 0  o f

: - 4 o f

{hidden-3, hidden-4, hidden-5 }.

{not (A@-36), not (G@-35), not (A@-34), not (G@-33),C@-32,
not (C@-31), not (C@-21), not (C@-15), T@-12, T@-Sl.

{not (G@-44), not (C@-36), TGi-35, not (G@-33), not (G@-32),
not (C@-31), not (G@-13), not (C@-12), A@-11, not (G@-10),
not (G@-9), not (G@)-8),T@-7, not (G@2)).

{T@)-36, not (A@-35), not (G@-13), A@t-I0, not (G@-3)}.

rules. Considering each rule independently, an ARTMAP positive or negarive rule
is roughly equivalent to a lwil-of-M rule. However, when functioning as a whole,
each ARTMAP rule affects the others' activities through sparial evidence
accumulation. Another feature of ARTMAP rules is that each carries a confidence
factor which reflects its rate of use and reliabilitv.

6. Conclusion

ARTMAP rules and NonM rules are roughly comparable in rerms of both
predictive accuracy and system complexity. Since NonM rules are derived from a
back-propagation network, training must be off-line, with slow learning, while
ARTMAP networks are designed to maintain stability even with fast, incremental
training. Simulations in this paper also illustrate how ARTMAP networks, wirh
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rule extraction, have better code compression than alternative algorithms such as
ADAP, Knowledgetron and KNN, while maintaining or improving predictive
accuracy.
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