
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Research Collection School Of Computing and
Information Systems School of Computing and Information Systems

4-2001

Predictive self-organizing networks for text categorization Predictive self-organizing networks for text categorization

Ah-hwee TAN
Singapore Management University, ahtan@smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research

 Part of the Databases and Information Systems Commons, Numerical Analysis and Scientific

Computing Commons, and the OS and Networks Commons

Citation Citation
1

This Conference Proceeding Article is brought to you for free and open access by the School of Computing and
Information Systems at Institutional Knowledge at Singapore Management University. It has been accepted for
inclusion in Research Collection School Of Computing and Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email
cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis_research
https://ink.library.smu.edu.sg/sis
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6280&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F6280&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Predictive Self-Organizing Networks for

Text Categorization

Ah-Hwee Tan

Kent Ridge Digital Labs, 21 Heng Mui Keng Terrace, Singapore 119613
ahhwee@krdl.org.sg

Abstract. This paper introduces a class of predictive self-organizing
neural networks known as Adaptive Resonance Associative Map (ARAM)
for classi�cation of free-text documents. Whereas most statistical ap-
proaches to text categorization derive classi�cation knowledge based on
training examples alone, ARAM performs supervised learning and in-
tegrates user-de�ned classi�cation knowledge in the form of IF-THEN
rules. Through our experiments on the Reuters-21578 news database, we
showed that ARAM performed reasonably well in mining categorization
knowledge from sparse and high dimensional document feature space. In
addition, ARAM predictive accuracy and learning e�ciency can be im-
proved by incorporating a set of rules derived from the Reuters category
description. The impact of rule insertion is most signi�cant for categories
with a small number of relevant documents.

1 Introduction

Text categorization refers to the task of automatically assigning documents into
one or more prede�ned classes or categories. It can be considered as the sim-
plest form of text mining in the sense that it abstracts the key content of a
free-text documents into a single class label. In recent years, there has been an
increasing number of statistical and machine learning techniques that automat-
ically generate text categorization knowledge based on training examples. Such
techniques include decision trees [2], K-nearest-neighbor system (KNN) [7, 19],
rule induction [8], gradient descent neural networks [9, 16], regression models
[18], Linear Least Square Fit (LLSF) [17], and support vector machines (SVM)
[6, 7]. All these statistical methods adopt a supervised learning paradigm. Dur-
ing the learning phase, a classi�er derives categorization knowledge from a set of
prelabeled or tagged documents. During the testing phase, the classi�er makes
prediction or classi�cation on a separate set of unseen test cases. Supervised
learning paradigm assumes the availability of a large pre-labeled or tagged train-
ing corpus. In speci�c domains, such corpora may not be readily available. In a
personalized information �ltering application, for example, few users would have
the patience to provide feedback to a large number of documents for training the
classi�er. On the other hand, most users are willing to specify what they want
explicitly. In such cases, it is desirable to have the exibility of building a text
classi�er from examples as well as obtaining categorization knowledge directly
from the users.

In machine learning literatures, hybrid models have been studied to integrate
multiple knowledge sources for pattern classi�cation. For example, Knowledge
Based Arti�cial Neural Network (KBANN) re�nes imperfect domain knowledge
using backpropagation neural networks [15]; Predictive self-organizing neural
networks [4, 12] allows rule insertion at any point of the incremental learning
process. Benchmark studies on several databases have shown that initializing
such hybrid learning systems with prior knowledge not only improves predictive
accuracy, but also produces better learning e�ciency, in terms of the learning
time as well as the �nal size of the classi�ers [13]. In addition, promising results
have been obtained by applying KBANN to build intelligent agents for web page
classi�cation [11].

This paper reports our evaluation of a class of predictive self-organizing neu-
ral networks known as Adaptive Resonance Associative Map (ARAM) [12] for
text classi�cation based on a popular public domain document database, namely
Reuters-21578. The objective of our experiments is two-folded. First, we study
ARAM's capability in mining categorization rules from sparse and high dimen-
sional document feature vectors. Second, we investigate if ARAM's predictive
accuracy and learning e�ciency can be enhanced by incorporating a set of rules
derived from the Reuters category description.

The rest of this article is organized as follows. Section 2 provides a brief
introduction of ARAM. Section 3 describes our choice of feature selection and
extraction methods. Section 4 presents the ARAM learning and classi�cation
algorithms. Section 5 presents the procedure for rule insertion. Section 6 reports
the experimental results. The �nal section summarizes and concludes.

2 Adaptive Resonance Associative Map

ARAM belongs to a family of predictive self-organizing neural networks known
as predictive Adaptive Resonance Theory (predictive ART) that performs in-
cremental supervised learning of recognition categories (pattern classes) and
multidimensional maps of patterns. An ARAM system can be visualized as two
overlapping Adaptive Resonance Theory (ART) [3] modules consisting of two
input �elds F a

1 and F b
1 with an F2 category �eld. For classi�cation problems,

the F a
1 �eld serves as the input �eld containing the input activity vector and the

F b
1 �eld servers as the output �eld containing the output class vector. The F2

�eld contains the activities of the recognition categories that are used to encode
the patterns. During learning, given an input pattern presented at the F a

1 input
layer and an output pattern presented at the F b

1 output �eld, a F2 category node
is selected to encode the pattern pair.

When performing classi�cation tasks, ARAM formulates recognition cate-
gories of input patterns, and associates each category with its respective predic-
tion. The knowledge that ARAM discovers during learning, is compatible with
IF-THEN rule-based representation. Speci�cally, each node in the F2 �eld rep-
resents a recognition category associating the F a

1 input patterns with the F b
1

output vectors. Learned weight vectors, one for each F2 node, constitute a set of

rules that link antecedents to consequents. At any point during the incremental
learning process, the system architecture can be translated into a compact set of
rules. Similarly, domain knowledge in the form of IF-THEN rules can be inserted
into ARAM architecture.

3 Features Selection/Extraction

As in statistical text categorization systems, ARAM adopts a bag-of-words ap-
proach to representing documents in the sense that each document is represented
by a set of keyword features. ARAM keyword features can be obtained from two
sources. Through rule insertion, a keyword feature can be speci�ed explicitly by
a user as an antecedent in a rule. Features can also be selected from the words in
the training documents based on certain feature ranking metric. Some popularly
used measures for feature ranking include keyword frequency, �2 statistics, and
information gain. In our experiments, we only use �2 statistics which has been
reported to be one of the most e�ective measures [20].

During rule insertion and keyword selection, we use an in-house morpholog-
ical analyzer to identify the part-of-speech and the root form of each word. To
reduce complexity, only the root forms of the noun and verb terms are extracted
for further processing.

During keyword extraction, the document is �rst segmented and converted
into a keyword feature vector

v = (v1; v2; : : : ; vM): (1)

where M is the number of keyword features selected. We experiment with three
di�erent document representation schemes described below.
tf scheme: This is the simplest and the �rst method that we used in earlier
experiments [14]. The feature vector v simply equals the term frequency vector
tf such that the value of feature j

vj = tfj (2)

where tfj is the in-document frequency of the keyword wj .
tf*idf scheme: A term weighting method based on inverse document frequency

[10] is combined with the term frequency to produce the feature vector v such
that

vj = tfj log2
N

dfj
(3)

where N is the total number of documents in the collection and dfj is the number
of documents that contains the keyword wj .
log-tf*idf scheme: This is a variant of the tf*idf scheme. The feature vector v is
computed by

vj = (1 + log2 tfj) log2
N

dfj
: (4)

After encoding using one of the three feature representation schemes, the
feature vector v is normalized to produce the �nal feature vector

a = v=vm where vm >= vi 8i 6= m: (5)

before presentation to the neural network classi�er.

4 The Classi�er

4.1 Learning

In an ARAM network (Figure 1), the unit for recruiting an F2 category node is
a complete pattern pair. Given a pair of patterns, the category �eld F2 selects a
winner that receives the largest overall input from the feature �elds F a

1 and F b
1 .

The winning node selected in F2 then triggers a top-down priming on F a
1 and

F b
1 , monitored by separate reset mechanisms. Code stabilization is ensured by

restricting encoding to states where resonances are reached in both modules. By
synchronizing the unsupervised categorization of two pattern sets, ARAM learns
supervised mapping between the pattern sets. Due to the code stabilization
mechanism, fast learning in a real-time environment is feasible.

The ART modules used in ARAM can be ART 1 [3], which categorizes binary
patterns, or analog ART modules such as ART 2, ART 2-A, and fuzzy ART [5],
which categorize both binary and analog patterns. The fuzzy ARAM model,
that is composed of two overlapping fuzzy ART modules (Figure 1), is described
below.

+

-

+

y

xa

+ +

- xb

F2

A B

F
b
1F1

a

aw bw

ba

category field

feature field feature field

ARTa ARTb

Fig. 1. The Adaptive Resonance Associative Map architecture.

Input vectors: Normalization of fuzzy ART inputs prevents category prolif-
eration. The F a

1 and F b
1 input vectors are normalized by complement coding

that preserves amplitude information. Complement coding represents both the
on-response and the o�-response to an input vector a. The complement coded
F a
1 input vector A is a 2M-dimensional vector

A = (a; ac) � (a1; : : : ; aM ; ac1; : : : ; a
c
M) (6)

where aci � 1� ai.
Similarly, the complement coded F b

1 input vector B is a 2N-dimensional
vector

B = (b;bc) � (b1; : : : ; bN ; b
c
1; : : : ; b

c
N) (7)

where bci � 1� bi.
Activity vectors: Let xa and xb denote the F a

1 and F b
1 activity vectors respec-

tively. Let y denote the F2 activity vector. Upon input presentation, xa = A

and xb = B.
Weight vectors: Each F2 category node j is associated with two adaptive
weight templates wa

j and wb
j . Initially, all category nodes are uncommitted and

all weights equal ones. After a category node is selected for encoding, it becomes
committed.
Parameters: Fuzzy ARAM dynamics are determined by the choice parameters
�a > 0 and �b > 0; the learning rates �a 2 [0; 1] and �b 2 [0; 1]; the vigilance
parameters �a 2 [0; 1] and �b 2 [0; 1]; and a contribution parameter 2 [0; 1].
Category choice: Given the F a

1 and F b
1 input vectors A and B, for each F2

node j, the choice function Tj is de�ned by

Tj =
jA ^wa

j j

�a + jwa
j j

+ (1�)
jB ^wb

j j

�b + jwb
j j
; (8)

where the fuzzy AND operation ^ is de�ned by

(p ^ q)i � min(pi; qi); (9)

and where the norm j:j is de�ned by

jpj �
X
i

pi (10)

for vectors p and q.
The system is said to make a choice when at most one F2 node can become

active. The choice is indexed at J where

TJ = maxfTj : for all F2 node jg: (11)

When a category choice is made at node J , yJ = 1; and yj = 0 for all j 6= J .
Resonance or reset: Resonance occurs if the match functions, ma

J and mb
J ,

meet the vigilance criteria in their respective modules:

ma
J =

jA ^wa
J j

jAj
� �a and mb

J =
jB ^wb

J j

jBj
� �b: (12)

Learning then ensues, as de�ned below. If any of the vigilance constraints is
violated, mismatch reset occurs in which the value of the choice function TJ is
set to 0 for the duration of the input presentation. The search process repeats
to select another new index J until resonance is achieved.

Learning: Once the search ends, the weight vectors wa
J and wb

J are updated
according to the equations

w
a(new)
J = (1� �a)w

a(old)
J + �a(A ^w

a(old)
J) (13)

and

w
b(new)
J = (1� �b)w

b(old)
J + �b(B ^w

b(old)
J) (14)

respectively. For e�cient coding of noisy input sets, it is useful to set �a = �b = 1
when J is an uncommitted node, and then take �a < 1 and �b < 1 after the
category node is committed. Fast learning corresponds to setting �a = �b = 1
for committed nodes.

Match tracking: Match tracking rule as used in the ARTMAP search and
prediction process [4] is useful in maximizing code compression. At the start of
each input presentation, the vigilance parameter �a equals a baseline vigilance
�a. If a reset occurs in the category �eld F2, �a is increased until it is slightly
larger than the match function ma

J . The search process then selects another F2

node J under the revised vigilance criterion. With the match tracking rule and
setting the contribution parameter = 1, ARAM emulates the search and test
dynamics of ARTMAP.

4.2 Classi�cation

In ARAM systems with category choice, only the F2 node J that receives max-
imal F a

1 ! F2 input Tj predicts ARTb output. In simulations,

yj =

�
1 if j = J where TJ > Tk for all k 6= J
0 otherwise:

(15)

The F b
1 activity vector xb is given by

xb =
X
j

wb
jyj = wb

J : (16)

The output prediction vector B is then given by

B = (b1; b2; : : : b2N) = xb (17)

where bi indicates the con�dence of assigning a pattern to category i.

5 Rule Insertion

ARAM incorporates a class of if-then rules that map a set of input attributes
(antecedents) to a disjoint set of output attributes (consequents). The rules are
conjunctive in the sense that the attributes in the IF clause and in the THEN
clause have an AND relationship. Conjunctive rules has limited expressive power
but is intuitive and reasonably comprehensive for representing simple heuristic
for categorization.

ARAM rule insertion proceeds in two phases. The �rst phase parses the
rules for keyword features. When a new keyword is encountered, it is added
to a keyword feature table containing keywords obtained through automatic
feature selection from training documents. Based on the keyword feature table,
the second phase of rule insertion translates each rule into a 2M-dimensional
vectorA and a 2N-dimensional vectorB, whereM is the total number of features
in the keyword feature table and N is the number of categories. Given a rule of
the following format,

IF x1; x2; : : : ; xm;:y1;:y2; : : : ;:yn THEN z1; z2; : : : ; zp
where x1; : : : ; xm are the positive antecedents, y1; : : : ; yn are the negative an-
tecedents, and z1; : : : ; zp are the consequents, the algorithm derives a pair of
vectors A and B such that for each index i = 1; : : : ;M ,

(ai; a
c
i) =

8<
:
(1; 0) if wi = xj for some j 2 f1; : : : ;mg
(0; 1) if wi = yj for some j 2 f1; : : : ; ng
(1; 1) otherwise

(18)

where wi is the ith entry in the keyword feature table; and for each index i =
1; : : : ; N ,

(bi; b
c
i) =

�
(1; 0) if wi = zj for some j 2 f1; : : : ; pg
(0; 0) otherwise

(19)

where wi is the class label of the category i.
The vector pairs derived from the rules are then used as training patterns

to initialize a ARAM network. During rule insertion, the vigilance parameters
�a and �b are each set to 1 to ensure that only identical attribute vectors are
grouped into one recognition category. Contradictory symbolic rules are detected
during rule insertion when identical input attribute vectors are associated with
distinct output attribute vectors.

6 Experiments: Reuters-21578

Reuters-21578 is chosen as the benchmark domain for a number of reasons. First,
it is reasonably large, consisting of tens of thousands of pre-classi�ed documents.
Second, there is a good mix of large and small categories, in terms of the number
of documents in the category. It enables us to compare ARAM's learning capa-
bility and the e�ect of rule insertion using di�erent data characteristics. The

last but not the least, Reuters-21578 has been studied extensively in statistical
text categorization literatures, allowing us to compare ARAM performance with
prior arts.

To facilitate comparison, we used the recommended ModApte split (Reuters
version 3) [1, 19] to partition the database into training and testing data. By
selecting the 90 (out of a total of 135) categories that contain at least one training
and one testing documents, there were 7770 training documents and 3019 testing
documents.

6.1 Performance Measures

ARAM experiments adopt the most commonly used performance measures, in-
cluding recall, precision, and the F1 measure. Recall (r) is the percentage of the
documents for a given category (i.e. topic) that are classi�ed correctly. Precision
(p) is the percentage of the predicted documents for a given category that are
classi�ed correctly. It is a normal practice to combine recall and precision in
some way, so that classi�ers can be compared in terms of a single rating. Two
common ratings are the break-even point and the F1 measure. Break-even point

is the value at which recall equals precision. F1 measure is de�ned as

F1(r; p) =
2rp

r + p
: (20)

These scores can be calculated for a series of binary classi�cation experi-
ments, one for each category, and then averaged across the experiments. Two
types of averaging methods are commonly used: (1) micro-averaging technique
that gives equal weights to each document; and (2) macro-averaging technique
that gives equal weight to each category [19]. As micro-averaging F1 scores are
computed on a per-document basis, they tend to be dominated by the classi�er's
performance on large categories. Macro-averaging F1 scores, computed on a per-
category basis, are more likely to be inuenced by the classi�er's performance
on small categories.

6.2 Learning and Classi�cation

ARAM experiments used the following parameter values: choice parameters
�a = 0:1, �b = 0:1; learning rates �a = �b = 1:0 for fast learning; contribu-
tion parameter = 1:0, and vigilance parameters �a = 0:8, �b = 1:0. Using a
voting strategy, 10 voting ARAM produced a probabilistic score between 0 and
1. The score was then thresholded at a speci�c cut o� point to produce a binary
class prediction.

We �xed the number of keyword features at 100 determined empirically
through earlier experiments. Null feature vectors and contradictory feature vec-
tors were �rst removed from the training set before training. We experimented
with all three feature representation schemes, namely tf, tf*idf, and log-tf*idf.
Table 1 summarizes the performance of ARAM averaged across 90 categories of

Reuters-21578. Among the three feature representations, log-tf*idf produced the
best performance in terms of micro-averaged F1. The tf*idf however performed
better in terms of macro-averaged F1.

Table 1. Performance of ARAM using the three feature representation schemes
in terms of micro-averaged recall, micro-averaged precision, micro-averaged F1 and
macro-averaged F1 across all 90 categories of Reuters-21578.

Feature Representation miR miP miF1 maF1
tf 0.8251 0.8376 0.8313 0.5497
tf*idf 0.8368 0.8381 0.8375 0.5691
log-tf*idf 0.8387 0.8439 0.8413 0.5423

6.3 Rule Insertion

A set of IF-THEN rules was crafted by the authors based on a description
of the Reuters categories provided in the Reuters-21578 documentation (cat-
descriptions 120396.txt). The rules simply linked the keywords mentioned in the
description to their respective category labels. Creation of such rules was rather
straight-forward. A total of 150 rules was created without any help from domain
experts. They are generally short rules containing one to two keywords extracted
from the category description. A partial set of rules is provided in Table 2 for
illustration.

Table 2. An illustrative set of rules generated based on the category description.

acq :- acquire acquisition
acq :- merge merger
crude :- crude oil
grain :- grain
interest :- interest
interest :- rate
money-fx :- foreign exchange
money-fx :- money exchange

In the rule insertion experiments, rules were parsed and inserted into the
ARAM networks before learning and classi�cation. Table 3 compares the results

obtained by ARAM with and without rule insertion on the 10 most populated
Reuters categories. The micro-averaged F1 and the macro-averaged F1 scores
across the top 10 and all the 90 categories are also given. Eight out of the top 10
categories, namely acq, money-fx, grain, crude, interest, ship, wheat, and corn,
showed noticeable improvement in F1 measures by incorporating rules. Inter-
estingly, one category, namely trade, produced worse results. No improvement
is obtained for earn, the largest category. Overall improvement on the micro-
averaged F1 scores across the top 10 and all the 90 categories were 0.004 and
0.011 respectively. The improvement obtained on the macro-averaged F1 scores,
0.006 for the top 10 and 0.055 for the 90 categories, were much more signi�cant.
This showed that rule insertion was most e�ective for categories with a smaller
number of documents. The results were encouraging as even a simple set of rules
was able to produce a noticeable improvement.

Table 3. Predictive performance of ARAM with and without rule insertion on
Reuters-21578. N refers to the number of learning iterations for ARAM to achieve
100% accuracy on the training set. C refers to the number of ARAM recognition cate-
gories created. The last two rows show the micro-averaged F1 and the macro-averaged
F1 across the top 10 and the 90 categories respectively. Boldfaced �gures highlighted
improvement obtained by rule insertion.

No. of ARAM ARAM w/rules
Category Test Docs N C F1 N C F1

earn 1087 4.5 717.3 0.984 5.3 722.4 0.984
acq 719 5.1 732.0 0.930 6.1 732.9 0.938

money-fx 179 4.2 334.4 0.750 5.5 336.0 0.763

grain 149 4.7 104.5 0.895 5.0 108.3 0.906

crude 189 6.7 86.4 0.802 6.9 86.7 0.813

trade 117 6.0 257.2 0.689 6.8 260.9 0.661
interest 131 4.7 281.3 0.727 5.6 287.4 0.740

ship 89 4.6 46.8 0.793 4.8 48.7 0.796

wheat 71 4.2 87.7 0.789 8.1 89.0 0.803

corn 56 3.6 89.6 0.748 8.0 90.2 0.765

Top 10 (miF1,maF1) (0.897,0.811) (0.901,0.817)
All 90 (miF1,maF1) (0.841,0.542) (0.852,0.597)

Table 4 compares ARAM results with top performing classi�cation systems
on Reuters-21578 [19]. ARAM performed noticeably better than the gradient
descent neural networks and the Native Bayes classi�ers. Its miF1 scores were
comparable with those of SVM, KNN, and LLSF, but the maF1 scores were sig-
ni�cantly higher. As miF1 scores are predominantly determined by the largest
categories and miF1 scores are dominated by the large number of small cate-
gories, the results indicated that ARAM performed fairly well for large categories
and outperformed in small categories.

Table 4. Performance of ARAM compared with other top performing text classi�cation
systems across all 90 categories of Reuters-21578.

Classi�ers miR miP miF1 maF1
ARAM w/rules 0.8909 0.8155 0.8515 0.5967
ARAM 0.8961 0.7922 0.8409 0.5422

SVM 0.8120 0.9147 0.8599 0.5251
KNN 0.8339 0.8807 0.8567 0.5242
LLSF 0.8507 0.8489 0.8498 0.5008
Gradient descent NNet 0.7842 0.8785 0.8287 0.3765
Native Bayes 0.7688 0.8245 0.7956 0.3886

7 Conclusion

We have presented a novel approach to incorporate domain knowledge into a
learning text categorization system. ARAM can be considered as a scaled down
version of KNN. Increasing the ARTa vigilance parameter to 1.0 would cause
ARAM's performance to converge to that of KNN with the price of storing all
unique training examples. ARAM, therefore, is more scalable than KNN and is
useful in situations when it is not practical to store all the training examples
in the memory. Comparing with SVM, ARAM has the advantage of on-line
incremental learning in the sense that learning of new examples does not require
re-computation of recognition nodes using previously learned examples.

The most distinctive feature of ARAM, however, is its rule-based domain
knowledge integration capability. The performance of ARAM is expected to im-
prove further as good rules are added. The rule insertion capability is especially
important when few training examples are available. This suggests that ARAM
would be suitable for on-line text classi�cation applications such as document
�ltering and personalization.

References

1. C. Apte, F. Damerau, and S.M. Weiss. Automated learning of decision rules for
text categorization. ACM Transactions on Information Systems, 12(3):233{251,
1994.

2. C. Apte, F. Damerau, and S.M. Weiss. Text mining with decision rules and deci-
sion trees. In Proceedings of the Conference on Automated Learning and Discovery,
Workshop 6: Learning from Text and the Web, 1998.

3. G. A. Carpenter and S. Grossberg. A massively parallel architecture for a self-
organizing neural pattern recognition machine. Computer Vision, Graphics, and
Image Processing, 37:54{115, 1987.

4. G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen.
Fuzzy ARTMAP: A neural network architecture for incremental supervised learn-
ing of analog multidimensional maps. IEEE Transactions on Neural Networks,
3:698{713, 1992.

5. G. A. Carpenter, S. Grossberg, and D. B. Rosen. Fuzzy ART: Fast stable learning
and categorization of analog patterns by an adaptive resonance system. Neural
Networks, 4:759{771, 1991.

6. S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms
and representation for text categorization. In Proceedings, ACM 7th International
Conference on Information and Knowledge Management, pages 148{155, 1998.

7. T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Proceedings, 10th European Conference on Machine
Learning (ECML'98), pages {, 1998.

8. D.D. Lewis and M. Ringuette. A comparison of two learning algorithms for text
categorization. In Proceedings, Third Annual Symposium on Document Analysis
and Information Retrieval (SDAIR'94), Las Vegas, pages 81{93, 1994.

9. H.T. Ng, W.B. Goh, and K.L. Low. Feature selection, perceptron learning, and
a usability case study for text categorization. In Proceedings, 20th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR'97), pages 67{73, 1997.

10. G. Salton and C Buckley. Term weighting approaches in automatic text retrieval.
Information Processing and Management, 24(5):513{523, 1988.

11. J.W. Shavlik and T. Eliassi-Rad. Building intelligent agents for web-based tasks: A
theory-re�nement approach. InWorking Notes of the Conf on Automated Learning
and Discovery Workshop on Learning from Text and the Web, Pittsburgh, PA, 1998.

12. A.-H. Tan. Adaptive Resonance Associative Map. Neural Networks, 8(3):437{446,
1995.

13. A.-H. Tan. Cascade ARTMAP: Integrating neural computation and symbolic
knowledge processing. IEEE Transactions on Neural Networks, 8(2):237{250, 1997.

14. A-H. Tan and Lai F-L. Text categorization, supervised learning, and domain
knowledge integration. In Proceedings, KDD-2000 International Workshop on Text
Mining, Boston, pages 113{114, 2000.

15. G. G. Towell, J. W. Shavlik, and M. O. Noordewier. Re�nement of approximately
correct domain theories by knowledge-based neural networks. In Proceedings, 8th
National Conference on AI, Boston, MA, pages 861{866. AAAI Press/The MIT
Press, 1990.

16. E. Wiener, J. O. Pedersen, and A. S. Weigend. A neural network approach to topic
spotting. In Proceedings of the Fourth Annual Symposium on Document Analysis
and Information Retrieval (SDAIR'95), 1995.

17. Y. Yang. Expert network: E�ective and e�cient learning from human decisions
in text categorization and retrieval. In Proceedings, 17th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR'94), 1994.

18. Y. Yang and C. G. Chute. An exampled-based mapping method for text catego-
rization and retrieval. ACM Transactions on Information Systems, 12(3):252{277,
1994.

19. Y. Yang and X. Liu. A re-examination of text categorization methods. In Pro-
ceedings, 22th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR'99), pages 42{49, 1999.

20. Y. Yang and J. P. Pedersen. Feature selection in statistical learning for text catego-
rization. In Proceedings, Fourteehth International Conference on Machine Learn-
ing, pages 412{420, 1997.

This article was processed using the LATEX macro package with LLNCS style

	Predictive self-organizing networks for text categorization
	Citation

	tc_kdd.dvi

