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ABSTRACT
Although autobiographical memory is an important part of the hu-
man mind, there has been little effort on modeling autobiographical
memory in autonomous agents. With the motivation of developing
human-like intelligence, in this paper, we delineate our approach
to enable an agent to maintain memories of its own and to wander
in mind. Our model, named Autobiographical Memory-Adaptive
Resonance Theory network (AM-ART), is designed to capture au-
tobiographical memories, comprising pictorial snapshots of one’s
life experiences together with the associated context, namely time,
location, people, activity, and emotion. In terms of both network
structure and dynamics, AM-ART coincides with the autobiograph-
ical memory model established by the psychologists, which has
been supported by neural imaging evidence. Specifically, the bottom-
up memory search and the top-down memory readout operations
of AM-ART replicate how the brain encodes and retrieves auto-
biographical memories. Furthermore, the wandering in reminis-
cence function of AM-ART mimics how human wanders in mind.
For evaluations, we conducted experiments on a data set collected
from the public domain to test the performance of AM-ART in re-
sponse to exact, partial, and noisy memory retrieval cues. More-
over, our statistical analysis shows that AM-ART can simulate the
phenomenon of wandering in reminiscence.

Categories and Subject Descriptors
I.2.0 [ARTIFICIAL INTELLIGENCE]: General—Cognitive sim-
ulation; I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Intelligent agents

General Terms
Algorithms, Experimentation

Keywords
Cognitive model, Computational autobiographical memory model,
Memory storage and retrieval, Wander in reminiscence

1. INTRODUCTION
Autobiographical memory is “a system that encodes, stores and

guides retrieval of all episodic information related to our personal
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experiences” [4]. Although autobiographical memory is an impor-
tant part of the human mind, there has been little effort on modeling
autobiographical memory in autonomous agents. With the motiva-
tion of developing human-like intelligence, in this paper, we de-
lineate our approach to enable an agent to encode and retrieve the
autobiographical memories and to wander in reminiscence. Rem-
iniscence, often being investigated as a function of autobiographi-
cal memory, plays a critical role in self-acceptance and self-change
[4]. In this paper, we refer to wandering in reminiscence as recall-
ing a sequence of contextually connected autobiographical memory
across different episodes of life events. This is the typical objective
of reminiscence therapies often being used with senior citizens to
improve their psychological and cognitive well-being [16].

The main focus of our paper is to show how our agent can encode
and retrieve autobiographical memory (AM) like human brains do
[7], especially when dealing with noisy retrieval cues. Moreover,
our agent can emulate the wandering in reminiscence effect by re-
trieving contextually connected memories across episodes of events.
To the best of our knowledge, our model is the first research that
simulates the phenomenon of wandering in autobiographical mem-
ories. Our agent is web-based, which allows users to upload their
memories and even to import memories from popular online social
networks, such as Facebook. A preliminary demonstration proto-
type of our AM agent has been described in [29]. In this paper, we
present the detailed design and the dynamics of our computational
AM model and show how it can be considered as human-like.

Our model, named Autobiographical Memory-Adaptive Reso-
nance Theory network (AM-ART), follows the hierarchical struc-
ture of the AM model established by psychologists [7], which has
been supported by neural imaging evidence [1]. More importantly,
the dynamics of AM-ART coincide with the three stages of the gen-
erative memory retrieval process identified in [7]. AM-ART adopts
the dynamics of a self-organizing neural network named fusion
ART [24], but extends the network structure to a three-level hierar-
chy. The bottom layer of AM-ART encodes event-specific knowl-
edge comprising 5W1H, namely time (when), location (where),
people (who), activity (what), imagery (which), and emotion (how).
The middle layer encodes events by associating the event-specific
knowledge and the top layer encodes episodes by associating re-
lated events. Memory retrieval in AM-ART first takes place in the
bottom layer, where the retrieval cue is presented. By following the
bottom-up memory search procedure, the corresponding event and
episode can be identified in the middle and top layers, respectively.
Consequently, we can retrieve them by performing the top-down
memory readout procedure. One of the novel features of AM-ART
is its capability to emulate human mind in wandering in reminis-
cence. Specifically, AM-ART can iteratively perform the gener-



ative retrieval of autobiographical memories by mutating the re-
trieval cue with regulated noise in each iteration.

Experiments have been conducted, wherein AM-ART is used to
capture a person’s autobiographical memory based on a data set
collected from the public domain. After encoding the memories,
we perform memory retrieval using three types of cues, namely ex-
act, partial, and noisy ones. To demonstrate the advantage of AM-
ART, we compare its performance against the standard keyword-
based query method, which is employed by many existing photo
or memory repositories and the recently proposed computational
AM models (e.g., [12]). The comparisons show that AM-ART
performs robust and flexible memory retrievals, especially in re-
sponse to noisy cues. The ability to handle uncertainty is one of
the key functionalities of our human brains, which has not been
well catered by many existing photo or memory repositories. Fur-
thermore, to evaluate the performance of AM-ART in wandering in
reminiscence, we devise three measurement metrics, namely cov-
erage, diversity, and relatedness. We compare the performance of
AM-ART in different parameter settings against each other and two
baseline retrieval methods, namely sequential retrieval and random
retrieval. Moreover, we propose two null hypotheses that mind
wandering simulated by AM-ART performs on the same level as
the baseline methods. The statistical analysis of the results sup-
ports the rejection of both hypotheses and shows that AM-ART can
emulate mind wandering in terms of recalling a sequence of con-
textually connected memory across different episodes covering a
moderate subset of a person’s autobiographical memory.

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 introduces the psychological basis es-
tablished by the psychologists, leading to the design of our compu-
tational AM model. Section 4 first presents the network structure
of our AM model and discusses how it coincides with its psycho-
logical basis, and then introduces its dynamics with detailed for-
mal definitions and algorithms. Section 5 introduces how our AM
model emulates the wandering in reminiscence phenomenon. Sec-
tion 6 presents the experimental results with visualizations and dis-
cussions. Section 7 concludes this paper and proposes future work.

2. RELATED WORK
Memory modules are always the important components of the

various cognitive models. For example, cognitive models, such as
Soar [13, 15], ACT-R [2], and Icarus [14], incorporate long-term
memory modules besides short-term and/or working memory mod-
ules. Although the aforementioned cognitive models may not spec-
ify the exact types of the long-term memory modules they employ
such as episodic [26], semantic [11], or autobiographical [21], a
specific model of Soar [17] explicitly states its incorporation of an
episodic memory module, which is mainly used to perform case-
based reasoning by mining the stored historical data. In addition, a
well-defined computational episodic memory model, which stands
alone without connecting to other cognitive modules, is presented
in [30]. It explicitly defines the formation, retrieval, and forget-
ting of the past events happened in a computer game. However, the
model’s usage is limited to the recall of historical data and it does
not incorporate emotion [8] as one of the input fields, which is an
important element in autobiographical memory [3].

Episodic memory and autobiographical memory are two closely
related terms as both refer to memory collections of past events
experienced by an individual. However, autobiographical mem-
ory can be considered as a special type of episodic memory con-
taining a person’s life long experience from a personal perspective
[4]. Nonetheless, most existing computational episodic and autobi-
ographical memory modules do not significantly differentiate from

one another in terms of their usages and/or their representations.
We identify our computational memory model as autobiographical
because (a) it explicitly incorporates emotion [3] and (b) it focuses
more on the cohesiveness or the connectedness among the retrieved
memories. Connectedness is another criterion given in [9] to dif-
ferentiate between the autobiographical and episodic memories.

Research work related to the autobiographical memory is emerg-
ing. The AM model, named Xapagy [5], is “designed to perform
narrative reasoning, an activity roughly analogous to some of the
mental processes humans perform with respect to stories”. Xapagy
is well-defined and incorporates complex natural language process-
ing methods. However, its usage is limited to storytelling. Thudt,
Baur, and Huron developed an online system to enable users to
build visual mementos as a form of visualized AM based on their
movement data, in the form of GPS coordinates and other context,
for self-reflection and sharing experiences [25]. Pointeau, Petit, and
Dominey stored the human-robot interactions as AM, by which a
humanoid robot can accumulate its experience and extract regu-
larities [19]. However, when retrieving the stored memories, all
the three afore-reviewed AM models only invoke simple retrievals
using the minimal amount of indexing knowledge. Specifically,
they simply retrieve all memories [19], all memories of the partic-
ular user [25], or all memories comprising the selected verb [5].
Kope, Rose, and Katchabaw proposed a computational AM model
using keyword-based queries for memory retrieval [12]. Taking
input memories in the form of sentences describing the events hap-
pened in a game environment, their proposed model maintains a
linked graph of all the parsed keywords, wherein the weights as-
sociated with the links represent the coexistence of the keyword
pairs. Unlike all the computational AM models proposed in the
literature, our computational AM model, named AM-ART, is de-
signed to capture the memories comprising pictorial snapshots of
one’s life experience together with the associated context, namely
time, location, people, activity, and emotion. It can retrieve en-
coded AM using different types of cues and emulate the wandering
in reminiscence phenomenon of the human mind.

To the best of our knowledge, in the literature of both episodic
and autobiographical memory models, there is no prior study fo-
cusing on the wandering phenomenon. Pavloski and Karimi made
such an attempt to emulate the wandering effect in short- and long-
term associative memories modeled by the self-trapping attractor
neural network [18]. They refer wandering in their network to the
mechanism of allowing “the sparsely connected network to wan-
der to the vicinity of attractors far from the initial state.” In AM-
ART, we refer wandering to the process of regulated memory re-
trievals wherein the subsequent memories are retrieved based on
highly similar but randomly mutated cues.

3. PSYCHOLOGICAL BASIS OF AM-ART
Among the various AM models established by the psychologists,

the one presented by Conway and Pleydell-Pearce [7] has been ac-
cepted widely in the academic world. They categorized autobi-
ographical memory knowledge into three levels, namely lifetime
periods, general events, and event-specific knowledge (from gen-
eral to specific, see Figure 1). Furthermore, they proposed that
autobiographical memories can be directly accessed if the cues are
specific and personally relevant. On the other hand, if the cues are
general, a generative retrieval process must be engaged to produce
more specific cues for the retrieval of relevant memories. The main
difference between the direct and generative retrieval is that “the
search process is modulated by control processes in generative re-
trieval but not, or not so extensively, in direct retrieval” [7]. This
difference between the two types of memory retrieval is supported



Figure 2: Network structure of AM-ART.

Table 1: Operations applied in AM-ART to realize the three stages of generative autobiographical memory retrieval.
# Stage Description given in [7] AM-ART operations
1 Elaboration “The elaboration of a cue with which to search memory and Template masking, mutation (See Algorithm 3),

the simultaneous setting of verification criteria.” and setting of the vigilance parameters (see (3))
2 Strategic search “Matching the description to records in memory.” Code activation and code competition
3 Evaluation “Records accessed in memory were assessed against the Template matching

verification criteria.”

Figure 1: Illustration of the autobiographical memory hierar-
chy. This figure replicates Figure 1 presented in [7].

by neural imaging evidence that we can observe the difference in
various regions of the brain, such as left parahippocampal gyrus,
left medial prefrontal cortex, left inferior frontal gyrus, left medial
parietal cortex, and left hippocampus/entorhinal cortex [1]. These
established neural-psychology theories serve as the design princi-
ples of our computational autobiographical memory model.

4. AM-ART MODEL AND ITS DYNAMICS
The network structure of our computational Autobiographical

Memory-Adaptive Resonance Theory (AM-ART) model is shown
in Figure 2. AM-ART is a three-layer neural network that in the
top-down order, its F3, F2, and F1 layers encode lifetime periods,
general events, and event-specific knowledge, respectively. The
structure of AM-ART is consistent with the hierarchical model es-
tablished by Conway and Pleydell-Pearce (see Figure 1), which
serves as the theoretical basis of AM-ART. Following the examples
given in Figure 1, we can highlight the correspondence between the
two models. The life experience of “working at A" can be repre-
sented as a code (learned episode) in F3 of AM-ART. The associ-

ated events of that episode, namely “first day at work", “working
in the C office", and “drinks at W Friday evenings", can be rep-
resented as codes (learned events) in F2. A specific event, taking
“drinks at W Friday evenings" as an example, can be read out in F1

that on Friday night (time), at W (location), with colleagues (peo-
ple), drinking (activity), feeling happy (emotion), together with the
pictorial memory (imagery).

Furthermore, memory retrieval in AM-ART replicates the three
stages of the generative memory retrieval presented in [7], namely
the elaboration stage, strategic search stage, and evaluation stage.
The operations applied in AM-ART to realize the three stages of
the generative memory retrieval are summarized in Table 1.

AM-ART extends the network structure of the fusion ART model
[24], which is a generic self-organizing neural network comprising
two layers of neural fields connected by bidirectional conditional
links. However, the same bottom-up search and top-down readout
operations between the layers still apply in AM-ART.

4.1 Dynamics of Fusion ART
With reference to the F1 (comprising of six input fields) and F2

(comprising of one association field) layers shown in Figure 2, we
introduce the dynamics of fusion ART as follows.

Input vectors: Let Ik = (Ik1 , I
k
2 , . . . , I

k
L) denote an input vec-

tor, where Iki denotes the input i to channel k, for i = 1, 2, . . . , L
and k = 1, 2, . . . , N , where L denotes the length of channel k and
N denotes the number of channels.

Input fields: Let F k
1 denote an input field that holds the input

pattern for channel k. Let xk = (xk1 , x
k
2 , . . . , x

k
L) denote the ac-

tivation vector of F k
1 receiving Ik, where xki ∈ [0, 1]. To prevent

code proliferation when using fuzzy operations (see (1) and (4)),
complement coding is applied that each xk is augmented with a
complement vector xk such that xki = 1 − xki [6]. Readers may
refer to [28] for a more detailed description of complement coding.

Association field: Let y = {y1,y2, . . . ,yC} denote the activa-
tion vector of F2, where C denotes the number of codes in F2.

Weight vectors: Let wk
j denote the weight vector of the jth code

in F2 for learning the input pattern in F k
1 .



Parameters: The dynamics of fusion ART are regulated by the
parameters associated with all the input fields in the lower layer,
namely choice parameters αk > 0, learning rate parameters βk ∈
[0, 1], contribution parameters γk ∈ [0, 1], where

∑
γk = 1, and

vigilance parameters ρk ∈ [0, 1].
Code activation: A bottom-up knowledge search starts from the

computation of the activations (choice function values) for all codes
in F2. Specifically, given xk, for each F2 code j, the choice func-
tion Tj is computed as follows:

Tj =
∑
k

γk |xk ∧wk
j |

αk + |wk
j |
, (1)

where the fuzzy AND operation∧ is defined by pi∧qi ≡ min(pi, qi)
and the norm |.| is defined by |p| ≡

∑
i pi.

Code competition: A code competition process follows under
which the F2 code with the highest choice function value is identi-
fied. The winner is indexed at J , where

TJ = argmax{Tj : for all F2 code j}. (2)

Template matching: A template matching process checks whether
resonance occurs at the chosen code J . Specifically, resonance oc-
curs if for each channel k, the match function mk

J meets its vigi-
lance criterion, such that

mk
J =

|xk ∧wk
J |

|xk| ≥ ρk. (3)

If any vigilance constraint is violated, mismatch reset occurs in
which TJ is set to 0 for the duration of the input presentation. Thus,
another F2 code will be selected as the new winner. This search and
evaluation process is guaranteed to end, because either a committed
code that satisfies the vigilance criteria will be identified or an un-
committed one (all weight values initialized to 1, which definitely
satisfies the criteria) will be recruited to encode the new input pat-
tern. Once an uncommitted code is recruited, a new uncommitted
code will be autonomously added in F2. Thus, the fusion ART
model self-organizes its network structure.

Template learning: Once the code J is identified as wherein
resonance occurs, for each channel k, the weight vector wk

J can be
updated by the following learning rule:

w
k(new)
J = (1− βk)w

k(old)
J + βk(xk ∧w

k(old)
J ). (4)

Knowledge readout: This top-down retrieval procedure is in-
voked when the chosen F2 code J presents its weight vectors to
the input fields in F1, such that xk(new) = wk

J .
Template masking: Due to the dynamics of fusion ART, not all

input vectors have to be presented for knowledge retrieval [23]. In
such cases, all the values of the absent vector xk (including com-
plements) are set to 1.

4.2 Encoding and Retrieval of Events
In AM-ART (see Figure 2), the input fields in F1 encode the

5W1H, respectively. To make the activation vectors xk compact
and generic, we use normalized values to represent time and lo-
cation. On the other hand, we use categorical values to present
people, activity, emotion, and imagery.

Time vector (x1): It represents when the event happened in
terms of six values, namely the normalized day (x11 = I11/31),
month (x12 = I12/12), and year (x13 = (I13 − 1900)/200), together
with their complements.

Location vector (x2): It represents where the event happened in
terms of four values, namely the normalized latitude (x21 = (I21 +
90)/180)) and longitude (x22 = (I22 + 180)/360) (I2 denotes the

Figure 3: Categorization of emotion based on Russell’s circum-
plex model of affect [22].

input vector of location, which is determined via Google Geocoder
API), together with their complements.

People vector (x3): It is a binary-valued vector representing
who were involved in the event. Its length corresponds to the cate-
gorization of people based on relationship.

Activity vector (x4): It is a binary-valued vector representing
what was the event. Similarly, its length corresponds to the catego-
rization of activities.

Emotion vector (x5): It is a binary-valued vector representing
how was the feeling during the event. Emotion is an important com-
ponent of our past experience, which affects the encoding and re-
trieval of autobiographical memories [3]. We categorize nine types
of emotion, namely neutral, astonished, excited, happy, satisfied,
tired, sad, miserable, and annoyed (see Figure 3). Thus, the length
of x5 is 18. This categorization follows the pleasure-arousal model
established by Russell [22] and applied in [27].

Imagery vector (x6): It is a binary-valued vector representing
which pictorial memory was associated with the event. Its value en-
codes the file-path of the stored imagery. During memory retrieval,
this vector is not presented along with the others as a part of the
retrieval cue. Therefore, in Algorithms 3 and 4, only the first five
input fields of F1 (see Figure 2) are involved.

The F2 layer of AM-ART encodes events. The procedure of
event encoding and retrieval is shown in Algorithm 1.

Algorithm 1 Event encoding and retrieval

1: Encode xk in F1 w.r.t the given input pattern Ik

2: Activate all codes in F2 . see (1)
3: repeat selecting the winner code J . see (2)
4: until resonance occurs . see (3)
5: if encoding is required then perform learning . see (4)
6: end if
7: if retrieval is required then read out wk

J in F1

8: end if

4.3 Encoding and Retrieval of Episodes
Assume the related events of one episode happened at t0, t1, . . . , tn

and let yti denote the activation value of the event happened at ti.
To encode the sequence of the events, we need to always hold the



inequality that ytn > ytn−1 > · · · > yt0 . Therefore, we use a
decay parameter τ ∈ (0, 1) to regulate the activation decays, such
that y(new)

j = y
(old)
j (1− τ) at each new time step.

The F3 layer of AM-ART encodes episodes to associate the re-
lated events encoded in F2. The procedure of episode encoding and
retrieval is shown in Algorithm 2.

Algorithm 2 Episode encoding and retrieval
1: for all subsequent events of an episode do
2: select the winner code J in F2 w.r.t xk in F1

3: yJ ← 1 . or a predefined value if using partial sequence
to identify the episode

4: for all previously selected codes in F2 do
5: y

(new)
i ← y

(old)
i (1− τ)

6: end for
7: end for
8: Select the winner code J ′ in F3 w.r.t y
9: if encoding is required then learn the weight vector w′J′ in F3:

w
′(new)

J′ ← (1− β2)w′(old)J′ + β2(y ∧w
′(old)
J′ )

10: end if
11: if retrieval is required then read out w′J′ in F2

12: end if

5. WANDER IN REMINISCENCE
In this section, we present how we enable AM-ART to wander

in reminiscence. The wandering involves two major procedures,
namely mutating the retrieval cue and iteratively retrieving autobi-
ographical memories using a mutated cue in each iteration.

We show the procedure of mutating a retrieval cue in Algorithm 3,
which is conceptually similar to mutate the chromosomes in genetic
algorithms [10]. We can summarize the mutation procedure as that
upon given a retrieval cue, we intentionally add regulated noise to
it in the randomly determined positions. The mutation process is
regulated by two parameters, namely mutation rate T ∈ [0, 1] and
noise level L ∈ [0, 1]. We use mutation rate T to control the prob-
ability on mutating the value of the retrieval cue in a certain field
and use noise level L to control the amount of mutation.

Algorithm 3 Mutation of Memory Retrieval Cues

1: Given a memory retrieval cue: x = {x1,x2, . . . ,x5}
2: for all xi ∈ x do
3: if rand() ≤ T then . the ith field is selected for

mutation, where 0 ≤ rand() < 1

4: for all xij , where j = 1, 2, . . . , |x
i|
2

do . |p| denotes
the cardinality of vector p

5: if i ≤ 2 && rand() ≤ 2
|xi| then . for normalized

vector, the jth value is selected for mutation
6: xij ← (1 + (rand()− 0.5)L) · xij ;
7: bound xij within the [0, 1] interval
8: else if i ≥ 3 && rand() ≤ 2(1+L)

|xi| then . for
binary-valued vector

9: negate the binary value of xij
10: end if
11: end for
12: for all xij , where j = |xi|

2
+ 1, |x

i|
2

+ 2, . . . , |xi| do
xij ← 1− xij−|xi|/2 . recompute the complements

13: end for
14: end if
15: end for

Table 2: List of AM-ART parameters used in experiments.
Parameter Value Description/Remark

Choice (αk) 0.1 Mainly used to avoid having NaN in (1)
Learning rate (βk) 1 Not in use during memory retrieval
Contribution (γk) 0.167 Equally assigned, such that

∑
γk = 1

Vigilance (ρk) 1 Value varies in different retrieval settings, see
Fig. 4; set to 0 during wandering, see Algo. 4

Decay rate (τ ) 0.1 Used for encoding event sequence

We show how AM-ART wanders in reminiscence in Algorithm 4.
We can summarize the wandering procedure as that upon given the
memory retrieval cue at the beginning of each iteration, we first
use the given cue to retrieve the most related event, which has not
been included in the retrieved memory set, and then we append
the retrieved event to the memory set and proceed to the next it-
eration with the mutated retrieval cue. The stopping criterion of
Algorithm 4 is by retrieving a predefined number (N ) of events,
which is mainly set for experimental purposes. However, this cri-
terion can be easily removed or modified for continuous retrieval.

Algorithm 4 Wandering in Reminiscence

1: Given a memory retrieval cue: x = {x1,x2, . . . ,x5}
2: ρk ← 0, for k = 1, 2, . . . , 6 . remove all vigilance criteria

during memory retrieval
3: M = ∅; . initialize the memory set
4: repeat
5: repeat identify E in F2 w.r.t x; . find winner event
6: yE ← 0 . suppress its activation value
7: until E /∈M
8: M←M ∪ {E} . retrieving order preserved in M
9: Mutate x . see Algorithm 3

10: until |M| = N
11: retrieve all events in M

6. EXPERIMENTS
To conduct experiments, we collected a data set comprising 53

snapshots of events, together with the corresponding context, of
Mr. Obama, the current President of the USA. The 53 events are
organized in twelve episodes, each of which contains three to seven
events. Most of these photos are collected from Zimbio1 and oth-
ers via Google Images. From the online web pages, we directly
extracted all features except emotion, which was manually derived
from the picture and its context. It is important to note that the auto-
mated extraction of such contextual information is not the focus of
this paper, but can be considered as a future extension to AM-ART.

According to the collected data set, we define eight types of rela-
tionship among people, namely family, neighbors, spouse, friends,
classmates, colleagues, acquaintances, and strangers. Moreover,
we define fifteen classes of activities, namely meal, leisure, travel,
holiday, shopping, night-out, recreation, sports, exercise, work, gath-
ering, party, celebration, wedding, and school. After formalizing
the input vectors, we present the data samples to AM-ART to en-
code the 53 events in F2 and the 12 episodes in F3 (see Algo-
rithms 1 and 2, respectively).

The parameters of AM-ART used in all experiments are listed in
Table 2. Most such parameters take on a standard set of parameter
values and all do not require tuning in the experiments.

1URL: http://www.zimbio.com/Barack+Obama/pictures/pro



Figure 4: Success rates of memory retrievals by AM-ART and the keyword-based query method in response to noisy cues with
different cue completeness percentile P and different noisy cue level L′.

6.1 Autobiographical Memory Retrieval Us-
ing Exact, Partial, and Noisy Cues

After AM-ART encodes the memories, we first test its perfor-
mance in memory retrieval using the following three types of cues:

Exact cues: We randomly select an event from the data set and
use its representation vector x = {x1,x2, . . . ,x5} (except the im-
agery path) as the exact retrieval cue.

Partial cues: Given an exact cue x and a cue completeness
percentile P , in the partial cue xP , for each field k, where k =
1, 2, . . . , 5, if rand() ≤ P/100, xk

P = xk. Otherwise, xk
P =

{1, . . . , 1}. In ART models, a vector consisting of all 1s (including
the complements) signifies do-not-care. When P = 100, xP = x.

Noisy cues: Given a partial cue xP and a noisy cue level L′, in
the selected fields of xP , where xk

P 6= {1, . . . , 1}, we introduce
noise to obtain the noisy cue xN . The process of introducing noise
to a retrieval cue exactly follows the process from Step 4 to Step 13
described in Algorithm 3, wherein L = L′.

For the benchmarking method, we select the keyword-based query
method, which is employed by many existing photo or memory
repositories and the recently proposed computational AM mod-
els [12]. Its retrieval criterion is based on whether the given re-
trieval cues exactly match the corresponding portions of the stored
records. In the context of this paper, a set of events will be retrieved
after performing the keyword-based query in response to the given
retrieval cue. If the event initially being used to generate the given
cue can be found in the retrieved set, we consider the retrieval as a
success. Otherwise, we consider it as a failure.

For AM-ART to handle the noisy cues, we can lower the vigi-
lance parameters ρk. Actually, in the front-end of our online AM
agent [29], we allow users to define the confidence level (which
refers to ρk in the back-end) associated with any field of the re-

trieval cue they provide. In such a way, the users can retrieve cer-
tain memories even by providing imperfect cues. This feature is
the major advantage of our agent over many other existing photo or
memory repository type of applications. In response to the given
retrieval cue, our AM-ART agent retrieves a set of memories and
plays them back to the users. For fair comparisons, the judging
criterion between a successful retrieval and a failure is the same as
that of the keyword-based query method.

For each experiment, we repeat for ten times, wherein the re-
trieval cue is randomly selected or generated at each time, and we
aggregate the results for further analysis.

Due to the way we use to generate partial cues and the crite-
rion we adopt to count successful retrievals, both AM-ART and
the keyword-based query method achieve 100% success rate in re-
sponse to exact and partial retrieval cues. However, dealing with
noisy cues is challenging because uncertainties can be well han-
dled by our human brains but not by many computational models.
The experimental results on memory retrievals in response to noisy
cues are visualized in Figure 4. Please note that when ρk = 1,
which means AM-ART requires exact matches, the performance of
AM-ART is equivalent to that of the keyword-based query method.

The six sub-figures of Figure 4 show the success rates according
to different values of the cue completeness percentile P . When
P = 0, all models essentially retrieve all the events in the data set.
Therefore, in Figure 4(a), all models achieve 100% success rate. As
the value of P increases, the retrieval cue consists of an increasing
number of input fields. Therefore, as expected, we observe that the
performance of all models generally decline as the values of the cue
completeness percentile P and the noisy cue level L′ increase.

By comparing the performance of the AM-ART models against
that of the keyword-based query as shown in Figure 4, AM-ART



Table 4: A partial subsequence of the autobiographical memories retrieved by AM-ART (W22) during wandering.
# Time (when) Location (where) People (who) Activity (what) Emotion (how) Event # of Episode #
Cue 08-Jul-2014 Honolulu, United States friends night-out happy randomly initialized
1 08-Jul-2014 Wynkoop Brewing Co. friends & acquaintances night-out happy Event #1 of Episode #5
2 10-Dec-2014 Joint Base Anacostia-Bolling friends & acquaintances & strangers party happy Event #3 of Episode #10
3 10-Dec-2014 Joint Base Anacostia-Bolling friends & acquaintances & strangers party astonished Event #1 of Episode #10
4 08-Jul-2014 Wynkoop Brewing Co. friends & acquaintances night-out happy Event #2 of Episode #5

*Associated values across consecutive retrievals are highlighted in bold. **Retrieved events #1 and #4 differ in their event imagery.

Figure 5: The imagery playback of the retrieved events follow-
ing the order presented in Table 4.

Table 3: Naming conventions on the parameter settings.
Name Setting (T,L) Name Setting (T,L)
S Sequential retrieval R Random retrieval
WSS Wandering (0.0, 0.0) WRR Wandering (1.0, 1.0)
W11 Wandering (0.2, 0.1) W12 Wandering (0.2, 0.2)
W21 Wandering (0.4, 0.1) W22 Wandering (0.4, 0.2)

clearly performs better in terms of the successful retrieval rate in
response to noisy cues. This finding is encouraging because it sug-
gests that by lowering its vigilance when handling the noisy cues,
AM-ART can better deal with the uncertainty involved in the re-
trieval process, which is more towards the pursuit of human-like
intelligence in terms of handling imperfect information.

6.2 Wandering in Reminiscence
As listed in Table 3, different value combinations of the mutation

rate T and the noise level L (see Algorithm 3) are used in differ-
ent settings for performance comparisons on wandering in reminis-
cence. We choose T = 0.2 or 0.4 such that during mutation, we
can expect one or two fields of the cue to be mutated on average,
respectively. We choose L = 0.1 or 0.2 to generate a reasonably
small amount of noise during wandering. We also test the extreme
cases (WSS and WRR), wherein T and L are set to the boundary
values. The experimental results obtained using these parameter
settings are compared against each other and against the two base-
lines, namely sequential retrieval by strictly retrieving memories
according to the event encoding order during learning and random
retrieval, wherein all (unique) memories are retrieved randomly.

In Table 4, we present a partial sequence of the memories (see
Figure 5) retrieved by AM-ART during wandering in the W22 con-
figuration. Table 4 well demonstrates that AM-ART wanders off

Episode #5 (consisting of five events) to Episode #10 (consisting
of seven events), but wanders back to Episode #5 after two steps.

We conducted series of experiments and in each run we retrieved
N events (see Algorithm 4). In this paper, we set N = 35, which
is around 2/3 of the total number of events (53) in the data set. To
numerically evaluate the performance of AM-ART during wander-
ing, we devise the following three measurement metrics, which are
all normalized within the range of [0,1]. A higher value of each
metric only indicates a better performance in the respective aspect.

Coverage C: It measures the distribution of the retrieved events
among all the episodes. Let SC denote the number of episodes,
which have at least one event in the retrieved memory set M, and
SCmin denote the minimum value of SC , which can be determined
by N and the composition of the data set in use. Thus, C =
(SC −SCmin)/(P −SCmin), where P denotes the total number of
episodes in the data set. For this data set, P = 12 and SCmin = 8.

Diversity D: It measures the diversity of the retrieved memo-
ries. Let u = {u1, u2, . . . , uN−1} denote a binary-valued vector
to capture the relationship among the subsequently retrieved events
in M. For k = 1, 2, . . . , N − 1, if Mk and Mk+1 are retrieved
from different episodes, uk = 1. Otherwise, uk = 0. Similar
to SCmin , SDmin denoting the minimum number of 1s in u can
be determined by N and the composition of the data set. Thus,
D = (H(u)− SDmin)/(N − 1− SDmin), where H(u) computes
the Hamming weight of u. For this data set, SDmin = 7.

Relatedness R: It measures the relatedness of the subsequently
retrieved memories. Let vj = {v1

j ,v
2
j , . . . ,v

5
j} denote the jth

retrieved event in vector form (without complements), where j =
1, 2, . . . , N . Moreover, let Ek, for k = 1, 2, . . . , N − 1, denote
the Euclidean distance (dissimilarity) between vj and vj+1. Thus,
R = (SRmax −

∑
Ek)/SRmax , where SRmax denotes the maxi-

mum dissimilarity among all the retrieved memories. For this data
set, we estimate SRmax as follows. The length (without compli-
ments) of the first five input fields (see Figure 2) is 2, 3, 8, 15,
and 9, respectively. However, for activity and emotion vectors, one
and only one bit is 1. Therefore, the maximum dissimilarity be-
tween any two consequent retrievals is

√
3 ·
√
2 +
√
3 +
√
8 ≈

8.8. Thus, SRmax = 34× 8.8 = 299.2.
For fair comparisons, all experimental settings use the same ran-

domly initialized cue to retrieve the first piece of autobiographical
memory and each experiment is repeated for ten times for statisti-
cal analysis. To test whether AM-ART can simulate wandering in
reminiscence, we propose the following two null hypotheses.

H01: The performance of AM-ART during wandering is at the
same level as that of sequential memory retrieval.

H02: The performance of AM-ART during wandering is at the
same level as that of random memory retrieval.

We visualize the averaged experimental results in Figure 6. Across
the three sub-figures, it seems that the performance of typical wan-
dering settings, namely W11, W12, W21, and W22, is always in the
middle range and appears to be different from the rest. However,
we need to perform statistical analysis for further investigations.



Figure 6: Performance comparisons of various configurations in terms of (a) Coverage C; (b) Diversity D; and (c) Relatedness R.

Table 5: Statistical analysis using two-tail p-values. If p < 0.05, the value is highlighted in bold.
Model S WSS WRR R

Cover. Diver. Relat. Cover. Diver. Relat. Cover. Diver. Relat. Cover. Surpr. Relat.
W11 0.110 <0.001 <0.001 0.053 0.086 <0.001 0.006 <0.001 <0.001 <0.001 <0.001 <0.001
W12 0.279 <0.001 <0.001 0.104 0.110 0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001
W21 0.004 <0.001 <0.001 0.001 0.008 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001
W22 0.022 <0.001 <0.001 0.010 0.007 <0.001 0.006 <0.001 <0.001 <0.001 <0.001 <0.001

Table 6: Performance evaluation of the typical settings.
W11 W12 W21 W22

A-mean of C,D, and R 0.424 0.390 0.458 0.454
G-mean of C,D, and R 0.311 0.252 0.375 0.373

*The highest value in each row is highlighted in bold.

Based on the statistical analysis results shown in Table 5, we
observe that (a) all typical wandering settings behave significantly
different from that of random memory retrievals (WRR and R) and
(b) with mutation rate T = 0.4, the typical wandering settings be-
have significantly different from those of both sequential (S and
WSS) and random memory retrievals. The latter finding is further
supported in Table 6, wherein in terms of both arithmetic and geo-
metric means, W21 and W22 perform better than W11 and W12.

In summary, with a mutation rate of T = 0.4, we can reject
both H01 and H02 with a strong statistical support. Based on the
various performance comparisons, we find that W21 configuration
performs best among all the typical settings in terms of the overall
measure (see Table 6) and it is truly different from both sequen-
tial and random retrievals (see Table 5). Therefore, we show that
AM-ART in the W21 configuration effectively retrieves a moderate
subset of an individual’s autobiographical memory in a contextu-
ally connected sequence across multiple episodes and can simulate
the phenomenon of wandering in reminiscence.

7. CONCLUSION
This paper has presented a computational model, named AM-

ART, for the encoding and retrieval of autobiographical memo-
ries in online autonomous agents modeling users’ life experiences.
To the best of our knowledge, AM-ART is the first computational
model simulating the mind wandering phenomenon in human auto-
biographical memories. The network structure and the dynamics of
AM-ART follow the AM model established by psychologists [7],
which has been supported by neural imaging evidence [1]. Specifi-
cally, the three-layer AM-ART structure coincides with the hierar-

chy of the AM model presented in [7] and the operations of AM-
ART coincide with the retrieval mechanisms presented in [7]. In
terms of memory retrieval in response to noisy cues, AM-ART is
shown as performing better than the keyword-based query method,
which cannot handle noisy cues in many existing photo or memory
repositories. To evaluate the performance of AM-ART in wander-
ing in reminiscence, we devise three measurement metrics, namely
coverage, diversity, and relatedness. Statistical analysis of the ex-
perimental results shows that AM-ART can emulate mind wan-
dering in terms of recalling a sequence of contextually connected
memory across different episodes covering a moderate subset of a
person’s autobiographical memory.

One important feature of AM not discussed in this paper is that
humans partially reconstruct their memories based on their internal
mental states, such as self-intention, central concerns, or personal
characteristics [4]. Therefore, one key direction of our future work
is to introduce such factors into AM-ART to simulate the recon-
struction of AM from the personal perspective. One possible ap-
proach is to experiment with different parameter values, including
the mutation rate and the noise level, associated with each field rep-
resenting the 5W1H according to the user’s biases and preferences.

We show in this paper that AM-ART is designed in accordance
to a well-established psychological basis and it can encode and re-
trieve real-life autobiographical memory, comprising pictorial snap-
shots of one’s life experiences together with the associated context.
However, the performance of AM-ART in wandering in reminis-
cence is only shown through a statistical analysis of the experimen-
tal results. Going forward, we shall conduct user studies on the
human-likeness of the memory retrievals and whether the overall
system can deliver enjoyment and desirably health improvement
through memory playback [20].
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