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Knowledge-based Exploration for Reinforcement
Learning in Self-Organizing Neural Networks

Teck-Hou Teng, Ah-Hwee Tan
School of Computer Engineering, Nanyang Technological University, Singapore 639798

Email: thteng, asahtan@ntu.edu.sg

Abstract—Exploration is necessary during reinforcement
learning to discover new solutions in a given problem space.
Most reinforcement learning systems, however, adopt a simple
strategy, by randomly selecting an action among all the available
actions. This paper proposes a novel exploration strategy,known
as Knowledge-based Exploration, for guiding the exploration of
a family of self-organizing neural networks in reinforcement
learning. Specifically, exploration is directed towards unexplored
and favorable action choices while steering away from those
negative action choices that are likely to fail. This is achieved
by using the learned knowledge of the agent to identify prior
action choices leading to lowQ-values in similar situations.
Consequently, the agent is expected to learn the right solutions
in a shorter time, improving overall learning efficiency. Using
a Pursuit-Evasion problem domain, we evaluate the efficacy
of the knowledge-based exploration strategy, in terms of task
performance, rate of learning and model complexity. Comparison
with random exploration and three other heuristic-based directed
exploration strategies show that Knowledge-based Exploration is
significantly more effective and robust for reinforcement learning
in real time.

Keywords-Reinforcement Learning, Self-Organizing Neural
Network, Directed Exploration, Rule-Based System

I. I NTRODUCTION

Exploration is a necessary step during reinforcement learn-
ing (RL) for the discovery of new solutions in a given problem
space [1]. During RL, an action choice is picked to explore
its effect on a given situation. Therefore, for a given problem
domain, the choice of exploration strategy has a role in the
learning efficiency of the agent.

There are undirected and directed exploration strategies [2].
Exploration is undirected when knowledge is not used for
the selection of action choices for exploration. Theǫ-greedy,
Boltzmann distribution and softmax are some examples of
undirected exploration strategies. Directed explorationuses
some knowledge to direct subsequent exploration. Examples
of recent directed exploration strategies are the BIMM mod-
els [3], the reuse of policy [4] and the heuristics exploration
strategies [5]. These methods direct exploration by tracking
recently explored actions in their own ways. However, they
do not make use of learned knowledge of the learning agents.

Taking a different view from the other directed exploration
strategies, this paper proposes a novel exploration strategy
known asKnowledge-Based Exploration. Specifically, it aims
to improve the efficiency of learning by making use of
the learned knowledge to avoid re-exploration of the action
choices known to lead to undesirable outcome in similar

situations. To this end, the learned knowledge is dichotomized
into positive and negative chunks. Whilepositive chunksrefer
to the knowledge of action choices that lead to desirable
outcomes,negative chunksrefer to the knowledge of action
choices known to produce undesirable outcomes (indicated by
low Q-values) for a given situation [6]. Consequentially, the
Knowledge-Based Exploration strategy directs the exploration
of new action choices away from those action choices encoded
by negative chunks for similar situations.

In this paper, the Knowledge-based Exploration Strategy
is illustrated using a self-organizing neural network known
as Temporal Difference - Fusion Architecture for Learning
and Cognition (TD-FALCON) [7]. It is a3-channel fusion
Adaptive Resonance Theory (ART) network [8] that incor-
porates temporal difference methods [9] into the ART mod-
els [10] for RL. Using the knowledge encoded by the cognitive
nodes in TD-FALCON, positive and negative chunks can be
identified readily. Working in tandem, the Knowledge-Based
Exploration strategy leverages on the learned knowledge for
guiding the exploration during RL. Experiments are conducted
using a complex pursuit-evasion (PE) problem domain [11]
to evaluate the efficacy of the proposed Knowledge-based
Exploration Strategy in terms of task performance, learning
speed and resource utilization. Comparison with the baseline
random exploration and three other heuristic-based exploration
strategies have shown that the Knowledge-based Exploration
is significantly more effective and robust for RL in real time.

Having introduced and motivated our work, we shall then
provide a survey of the related work in Section II. This is
followed by a summarized presentation of TD-FALCON in
Section III. Details on how knowledge can be inserted and
pruned are presented in Section IV. The proposed Knowledge-
Based Exploration strategy is detailed in Section V. The PE
problem domain and the performance measures are introduced
in Section VI. The experiments and the results are presented
and analysed in Section VII. The final section concludes with
a discussion of the key results and provides a brief description
of the future work.

II. RELATED WORK

During reinforcement learning, knowledge is discovered
and used through exploration and exploitation respectively.
The balance between these two phases is managed using an
action selection policy such as theǫ-greedy and Boltzmann
distribution. However, the selection of action choices during



exploitation and exploration is independent of the action
selection policy.

Exploration of action choices during RL can either be undi-
rected or directed [2]. The absence of the use of exploration-
specific information characterizes the undirected exploration
strategy where action choices are randomly selected with uni-
form probability for exploration. The choice of different action
selection policies result in different probability distribution of
picking random action choices for exploration. Such a random
exploration strategy with theǫ-greedy method is compared
with our proposed strategy in the experiments.

In contrast, directed exploration makes use of exploration-
specific information to select action choices for exploration.
Recent works on directed exploration includes the BIMM
model that uses neural network to learn pre-existing knowl-
edge to direct exploration of state space [3]. However, their
choice of pre-existing knowledge is specified externally. In
another work, policies learned from different tasks are re-used
for the learning of new task in the same domain [4]. The
presence of learned policies is assumed and a supervisor is
required to identify similar policies for reuse. Without any
of these assumptions, the proposed Knowledge-based Explo-
ration Strategy directs exploration using knowledge learned
continuously.

Three heuristic search-based exploration strategies are pro-
posed for RL [5]. All three strategies, namely the Neigh-
borhood Search-based Exploration, the Simulated Annealing-
based Exploration and the Tabu Search-based Exploration
track the use of action choices for each state and directs
exploration towards the most unvisited actions for the state.
These exploration strategies differ in the tracking and selection
of the action choices. Comparisons are made with these
exploration strategies because they are most compatible tothe
general approach adopted in this work.

Well suited to the agent-based approach, FALCON inte-
grated with rules is used to implement cognitive agent to pro-
vide context-aware decision support [12]. Collaborating with
a world-renowned simulator manufacturer, FALCON is used
to implement computer-generated force (CGF) to evolve 1-v-1
air combat maneuvering strategies against another CGF [13]
and also the human pilots [14] separately.

III. T HE REINFORCEMENTLEARNING MODEL

Although the proposed Knowledge-Based Exploration may
be applicable to the other RL systems, this paper illustrates
its use through a self-organizing neural network model, called
TD-FALCON [7]. By learning multi-dimensional mappings
across states, actions and values in an online and incremental
manner, TD-FALCON enables RL of both value and action
polices in real time.

A. Structure and Operating Modes

Structurally, the FALCON network [15] employs a3-
channel architecture (Fig. 1), comprising of an input/output
(IO) layer and a knowledge layer. The IO layer has three
input fields, namely a sensory fieldF c1

1 for accepting state

vectorS, an action fieldF c2
1 for accepting action vectorA,

and a reward fieldF c3
1 for accepting reward vectorR. The

knowledge layer has the category fieldF c
2 for storing the

committed and uncommitted cognitive nodes. Each cognitive
nodej has three fields of weightswck

j for k = 1, . . . , 3.

Fig. 1. The FALCON Architecture.

The FALCON network has three modes of operations -
INSERT, PERFORM and LEARN. The modes of operation
determine how the various parameters should be used. Rele-
vant to this work, some details on howprior knowledge can be
inserted and prune are provided in Section IV. In the contextof
this work, it is sufficient to just outline the FALCON generic
network dynamics using Algorithm 1.

Algorithm 1 FALCON Generic Network Dynamics
Require: Activity vectorsxck and all weights vectorwck

j
1: for eachF c

2 nodej do
2: Code Activation: Derive choice functionT c

j using

T c
j =

3∑

k=1

γck
|xck ∧wck

j |

αck + |wck
j |

where the fuzzy AND operation(p ∧ q)i ≡ min(pi, qi), the norm
|.| is defined by|p| ≡

∑
i pi for vectorsp and q, αck ∈ [0, 1] is

the choice parameters,γck ∈ [0, 1] is the contribution parameters and
k = 1, . . . , 3

3: end for
4: repeat
5: Code Competition: Index of winning cognitive nodeJ is found using

J = argmax
j
{T c

j : for all F c
2 nodej}

6: Template Matching: Check whether the match functionsmck
J

of
cognitive nodeJ meet the vigilance criterion

mck
J =

|xck ∧wck
J
|

|xck|
≥ ρck

whereρck ∈ [0, 1] for k = 1, . . . , 3 are the vigilance parameters
7: if vigilance criterion is satisfiedthen
8: Resonance Stateis attained
9: else

10: Match Tracking : Modify state vigilanceρc1 using

ρc1 = min{mck
J + ψ, 1.0}

whereψ is a very small step increment to match functionmck
J

11: Reset: mck
J = 0.0

12: end if
13: until Resonance Stateis attained
14: if operating in LEARN/INSERT modethen
15: Template Learning: modify weight vectorwck

J
using

w
ck(new)
J

= (1− βck)w
ck(old)
J

+ βck(xck ∧w
ck(old)
J

)

whereβck ∈ [0, 1] is the learning rate
16: else if operating in PERFORM modethen
17: Activity Readout: Read out the action vectorA of cognitive nodeJ

using
xc2(new) = xc2(old) ∧wc2

J

Decodexc2(new) to derive recommended action choicea
18: end if



B. Incorporating Temporal Difference Method

Outlined in Algorithm 2, TD-FALCON [7] incorporates
Temporal Difference (TD) methods to estimate and learn
value functionQ(s, a) of state-action pair that indicates the
goodness of taking action choicea in states. Upon receiving
a feedback from the environment after performing the action,
a TD formula is used to estimate theQ-value for performing
the chosen action in the previous state. The estimatedQ-value
is used as the teaching signal to TD-FALCON to learn the
association of states and action choicea.

Algorithm 2 The TD-FALCON Algorithm
1: Initialize FALCON
2: Sense the environment and formulate a state representation s
3: UseAction Selection Policyto decide betweenExploration andExploita-

tion
4: if Exploration then
5: UseExploration Strategyto select an action choice from action space
6: else if Exploitation then
7: UseDirect Code Access[16] to select an action choice from existing

knowledge
8: end if
9: Use action choicea on states for states′

10: Evaluate effect of action choicea to derive a rewardr from the
environment

11: Estimate theQ-value functionQ(s, a) following a temporal difference
formula given by∆Q(s, a) = αTDerr

12: PresentS, A andR for Learning
13: Update the current states = s′

14: Repeat from Step 2 untils is a terminal state

Iterative Value Estimation: A value function based on a tem-
poral difference method known as BoundedQ-Learning [9] is
used to iteratively estimate the value of applying action choice
a to situations. The estimatedQ-valueQ(s, a) is learned by
TD-FALCON during RL. The temporal difference of the value
function is iteratively estimated using

∆Q(s, a) = αTDerr(1−Q(s, a))

where α ∈ [0, 1] is the learning parameter, the term(1 −
Q(s, a)) allows the adjustment ofQ-values to be self-scaling
in such a way that it will not be increased beyond1.0 and
TDerr is the temporal error term derived using

TDerr = r + γmax
a′

Q(s′, a′)−Q(s, a)

where γ ∈ [0, 1] is the discount parameter and the
maxa′ Q(s′, a′) is the maximum estimated value of the next
states′ andr is either the intermediate or terminal reward.

C. Action Selection Policy

During RL, an agent alternates between exploitation of
learned knowledge and the exploration of solution space
for more effective knowledge. In this work, TD-FALCON
employs theǫ-greedy method, which selects action choices
with the highest value with a probability of1 − ǫ and takes
a random action with a probability ofǫ [17]. In practice,
it is beneficial to have a higherǫ value to encourage more
exploration in the initial stage and a lowerǫ value to optimize
the performance by exploiting the learned knowledge in the
later stage. Therefore, a linearǫ-decay policy is adopted to
gradually decayǫ by a fixed decay rateθ over time.

IV. K NOWLEDGE INSERTION AND PRUNING

Symbol-based propositional rules are inserted into TD-
FALCON as an initial set of knowledge. The learned knowl-
edge found to be ineffective for the task is pruned from TD-
FALCON. The mechanism for inserting and pruning knowl-
edge in TD-FALCON are presented in this section.

A. Knowledge Insertion

As the knowledge structure of TD-FALCON is compatible
with the structure of generalized modus ponens,prior knowl-
edge in the form of propositional rules can be inserted into
TD-FALCON [18] before learning. Given a rule of the form

IF antecedents THEN consequents FOR reward,
the antecedents are translated into state vectorS and the
consequents are translated into action vectorA. The reward
vector R = {r, 1 − r} encodes an estimatedQ-value of
the inserted rule. The state vectorS, action vectorA and
reward vectorR are then inserted into TD-FALCON using
the Generic Network Dynamics outlined in Algorithm 1.
Algorithm 3 The Rule Insertion Algorithm
1: Initialize TD-FALCON
2: Initialize ρck ← 1.0
3: for each propositional ruledo
4: Translate each component of the propositional rule into the vector

format
5: antecedentsis translated as state vectorS
6: consequentsis translated as action vectorA
7: reward is translated as reward vectorR
8: PresentS, A andR to TD-FALCON for learning
9: end for

Indicated in Algorithm 3, rules are inserted using vigilance
parametersρck = 1.0 for k = {1, 2, 3}. This is to ensure
that only identical set of state, action and reward vectors are
grouped into the same cognitive node. Thus, each inserted rule
leads to a committed cognitive node encoding the{S,A,R}
tuple as its weight templates. Hence, there can be as many
cognitive nodes as the number of inserted rules. The TD
method is used to refine these inserted rules during RL.

B. Knowledge Pruning

During RL, the residual effect of exploration is the learning
of knowledge that turns out to be ineffective or spurious pat-
terns. Action selection and learning become inefficient when
these irrelevant cognitive nodes are not pruned. Therefore,
such knowledge needs to be pruned for more efficient op-
eration of TD-FALCON. A confidence-based pruning strategy
similar to the one proposed in [15] is adopted to prune these
irrelevant cognitive nodes.

Specifically, each cognitive nodej has a confidence level
cj wherecj ∈ [0.0, 1.0]and an ageσj whereσj ∈ [0,R]. A
newly committed cognitive nodej has an initial confidence
level cj(0) and an initial ageσj(0). The confidence levelcj
of cognitive nodej picked for action selection and updating
is reinforced using

cnewj = coldj + η(1− coldj ),

whereη is the reinforcement rate of the confidence level for all
cognitive nodes. After each training iteration, the confidence
level of all cognitive nodes are decayed using

cnewj = coldj − ζcoldj



where ζ is the decay rate of the confidence level for all
cognitive nodes. At the same time, the ageσj of cognitive
nodej is also incremented.

The age attributeσj of cognitive nodej prevents it from
being pruned whenσj = σj(0), cj = cj(0) and cj < crec

wherecrec is the recommended confidence threshold. A cog-
nitive nodej is pruned only whencj < crec andσj ≥ σold

whereσold is the old age threshold.

V. K NOWLEDGE-BASED EXPLORATION

Prior to this work, TD-FALCON adopts a random ex-
ploration strategy, which randomly selects an action choice
from the pool of available actions. The key limitation of
such undirected exploration strategy is that it excludes any
consideration of the action choice during exploration. While
the assumption that a suitable action choice will show up
eventually is statistically valid, repeatedly selecting action
choices known to be ineffective is highly inefficient and a
waste of exploration opportunities.

To address these shortcomings, this paper proposes a di-
rected exploration strategy known as Knowledge-Based Explo-
ration. It leverages on the learned knowledge of the agent to
screen action choices for exploration. As a result, the efficiency
of exploration can be improved by selecting action choices
from the reduced action space. The details of the proposed
strategy are presented in the following sections.

A. Knowledge Representation in TD-FALCON

Each cognitive node in TD-FALCON represents an associa-
tive mapping across the state, action, and reward spaces. Given
a cognitive nodej, the encoded weight template vectors for
the three pattern channels, namely{wc1

j ,wc2
j ,wc3

j } can be
interpreted as achunk C(Sj ,Aj ,Rj), whereSj represents
a set of states characterized by the weight template vector
w

c1
j , Aj represents a set of actions characterized by the

weight template vectorwc2
j , and Rj represents a range of

Q-values characterized by the weight template vectorw
c3
j .

Specifically, through the learning of complement-coded input
reward vectors,Rj = {Lj, Uj}, whereLj = 1 − w

c3
j1 and

Uj = w
c3
j1 are the lower and upper bounds of theQ-values.

Based on theQ-values encoded in the chunks, each such
learned knowledge chunkC(Sj ,Aj ,Rj) can be dichotomized
into either positive or negative chunks using thedesirability
discriminantparameters{µ−, µ+} as follows.
Definition: A chunk C(Sj ,Aj ,Rj) is a positive chunkif the
lower bound of itsQ-values (for performing an actiona ∈ Aj

in situations ∈ Sj) Lj is aboveµ+.
Definition: A chunkC(Sj ,Aj ,Rj) is a negative chunkif the
upper bound of itsQ-values (for performing an actiona ∈ Aj

in situations ∈ Sj) Uj is belowµ−.
For a given situation, TD-FALCON knows the likely out-

come from performing an action choice by differentiating
between positive and negative chunks. Specifically, the identi-
fication of a negative chunk encoding the given pair of current
state and action allows the agent to keep specific action choice
out of the pool of available actions. This will help to avoid
applying an action choicea already known to be undesirable.

B. Searching for Positive/Negative Chunks

For state s and action choicea, a parallel search of
applicable chunks can be performed across all the cognitive
nodes. Specifically, the state vectorS and the action vectorA
representing the states and actiona respectively are used
to search for the most similar chunk. The search process
is implemented using Line 1-13 of the FALCON Generic
Networks Dynamics.

High state and action vigilance parameters are used to
search for a chunk that encodes a similar states′ with the
specific actiona. The Q-value is not considered during the
search by using zero reward vigilance parameter. TheQ-
value of the selected chunk is then evaluated to determine
its polarity. Specifically, a selected chunk with a range ofQ-
values aboveµ+ is a positive chunk while one with a range of
Q-value belowµ− is a negative chunk. The following lemma
shows that the fuzzy ART search procedure is guaranteed to
find the positive or negative chunk if there exists one.
Lemma 1- Guaranteed Search of Chunks:Suppose a chunk
C(Sj∗ ,Aj∗ ,Rj∗) exists for a given action choicea in state
s, the fuzzy ART code search procedure will enter into a
resonance state with the input state vectorS and action vector
A encoding the states and action choicea respectively.

Proof - Assuming a chunkC(Sj∗ ,Aj∗ ,Rj∗) exists for a
given action choicea in states. And suppose the winning
cognitive nodeJ1 selected by the fuzzy ART code activation
and competition processes is not a chunk for states and action
a, i.e., J1 6= j∗.

This means, eithers is dissimilar towc1
J1

such thatmc1
J1

<

ρc1 and0.75 ≤ ρc1 ≤ 1.0 or a is dissimilar towc2
J1

such that
mc2

J1
< ρc2 andρc2 = 1.0

Any of such situation will result in the failure of template
matching, leading to a reset of winning cognitive codeJ1, i.e.,
T c
J1

= 0. Consequently, a new search for another cognitive
node ensues until a resonance state, i.e.,mck ≥ ρck, is
achieved using another committed cognitive nodeJ2 such that
J2 6= J1 andJ2 = j∗. �

C. The Knowledge-Based Exploration Algorithm

The Knowledge-Based Exploration strategy outlined in Al-
gorithm 4 limits the action choice during exploration to theset
of unexplored action choicesAu and the set of positive action
choicesA+. While unexplored actionsrefers to those not
encoded by any existing chunks in TD-FALCON for a given
state,positive actionsare those encoded by positive chunks
with similar states. The choice of anunexplored actionshas
the potential benefit of discovering new positive action choices
but at a potential cost of discovering negative action choices.
The choice of apositive actionhas the potential benefit
of reaffirming its effectiveness but sacrifices the chance of
trying out new actions. Both operations are considered to be
beneficial for fulfilling the goals of RL.

Given the current states, the Knowledge-Based Exploration
strategy loops through all possible actions in the action space
A and partitions them into the set of positive actionsA+,
the set of negative actionsA− and the set of unexplored



actionsAu. Thereafter, Knowledge-Based Exploration selects
an action choice randomly from the reduced action spaceAr

given byA+∪Au for exploration. This means the probability
of selecting an unexplored action choice or a positive action
choice is in direct proportion to the number of unexplored
action choices and the positive action choices.
Algorithm 4 Knowledge-based Exploration of Action Space
Require: State vectorS representing the states
Require: Reward vectorR = {1, 1}
1: for each action choicea in the action spaceA do
2: Encode action choicea as an action vectorA
3: PresentS andA to TD-FALCON for searching of chunks
4: if a positive chunk is foundthen
5: actiona is a positive action, i.e., a ∈ A+

6: else if a negative chunk is foundthen
7: actiona is a negative action, i.e., a ∈ A−

8: else
9: actiona is unexplored, i.e., a ∈ Au

10: end if
11: end for
12: Create a reduced action spaceAr ≡ A+ ∪ Au

13: Randomly select an action choicea from Ar for exploration
14: return action choicea

VI. T HE PURSUIT-EVASION PROBLEM DOMAIN

The PE problem domain is a popular choice in the field
of game theory as well as machine learning [19]. There are
works just on evolving either the pursuer [13], [20] or the
evaders [21] as well as the co-evolution of strategies for both
types of agent [22]. The PE problem in this work is designed
to be complex such that the learning task is non-trivial. Hence,
the complexity of this problem domain necessitates the use of a
Situation-Awareness Model and a combinative reward scheme
with multiple reward attributes.

Fig. 2. The2D Grid-Based Environment for the PE problem domain.

As illustrated in Fig. 2, there are two autonomous agents
known as the Blue entity agent and the Red entity agent. The
Red entity agent is hostile towards the Blue entity agent. The
two-dimensional environment has two safe areas where the
Blue entity agent will be safe from the Red entity agent. The
Red entity agent is constantly searching for the Blue entity
agent. It eliminates the Blue entity agent by contacting it.The
Blue entity agent is tasked with a search mission of the areas.
Therefore, it is also moving constantly. It will have to evade
the Red entity agent to avoid elimination.

The pursuit strategy of the Red entity agent is deterministic
while the Blue entity agent learns the evasive strategies to
improve on its chance of evading the Red entity agent progres-
sively. Knowledge on the desired response is implicitly com-
municated to the entity agent using the Situation-Awareness
Model and the evaluated effect of the action choices.

A. The State Space

The Blue entity agent depends on a Situation-Awareness
Model as defined by Endsley [23] for interacting with its
operating environment. In this problem domain, the situation-
awareness model is designed to have29 multi-valued attributes
which are based on the information of theenemyand the
terrain for around3.2876× 104 possible situations.
Perception Layer: Information about the environment gath-
ered using the primary sensory apparatus is represented at
the perception layer. There are nine values each forEnemy-
Direction and SafeArea-Directionattributes, eight values for
the Enemy-Orientationattribute and two values for each of
the Adjacent-Locationattribute in each compass direction.
Together, there is a total of90 possible combinations from
11 types of attributes.
Comprehension Layer: Information at this layer is derived
using information from the perception layer using hard-coded
domain-specific knowledge. There are ten attributes for the
comprehension layer. Among the ten attributes, there are
three values forEnemy-Locationattribute, seven values for
Enemy-Proximityattribute and five values for theTraversabil-
ity attribute in each compass direction. These three types of
attributes gives a total of3.2778× 104 possible combinations
at the comprehension layer.
Projection Layer: The projection of the situation is derived
using information from the perception and comprehension
layer. In this work, there is only one projection attribute on
the presence of threat using the orientation and position ofthe
adversary. This projection of threat is evaluated for each of
the eight compass directions. For a single adversary, this give
a total of8 combinations for thisprojection of threat.

B. The Action Space

The Blue entity agent evades the pursuit of the Red entity
agent by moving in a particular compass direction. Therefore,
the action space is comprised of the eight compass directions
- north, northeast, east, southeast, south, southwest, west and
northwest - as the consequent of the decision-making task. The
effect of the evade directions to the situation is learned and
may be exploited for subsequent decision-making instances.

C. The Reward Space

The reward attributes refer to the sensory information used
to quantify the effect of an action choice on a situation. Trends
of these reward attributes are used to derive the immediate
reward factor of the action choice. The reward attributes
specific to this problem domain are presented in Table I.

TABLE I
REWARD ATTRIBUTES FORPE PROBLEM DOMAIN

Reward Attribute Positive Negative
Proximity with Adver-
sary

Increase in proximity with
adversary

Decrease in proximity
with adversary

Orientation w.r.t. Di-
rection of Adversary

Facing in the direction of
the adversary

Facing away from the di-
rection of the adversary

Spaciousness of resul-
tant Destination

Move into a more spacious
location

Move into a more con-
strained location

Proximity to Safe
Area

Move closer to a safe area Move further away from
a safe area

Presence of Obstacle Move to an obstacle-free
location

Move to a blocked loca-
tion

Attacked by Adver-
sary

Not attacked by adversary Is attacked by adversary



VII. E XPERIMENTAL RESULTS

Experiments are conducted using the complex PE problem
to evaluate the efficacy of the proposed Knowledge-based Ex-
ploration Strategy. For the PE problem domain, TD-FALCON
coupled with the relevant exploration strategy is tasked to
learn the effective evasive maneuvers efficiently. The main
performance indicators are the mission completion rateΩmc

and the code populationΩcp.
Mission Completion Ωmc: Each training iterationi lasts for
the duration the Blue entity agent requires to complete the
search mission or till it is being eliminated by its adversary.
No time-out is included in this PE problem domain. For each
training iterationi, the Blue entity agent fails to complete the
search mission when it is eliminated by the Red entity agent.
In this sense,Ωmc is the percentage of the number of times
the Blue entity agent completes the search missionκ over ι
training iterations, implyingκ ≤ ι.
Code PopulationΩcp: The number of cognitive nodes at each
training iterationi is termed as the Code PopulationΩcp. TD-
FALCON always has an uncommitted cognitive node to learn
an adequately distinct state-action pair. Without pruning, the
growth of the code population is proportionally correlatedto
the rate of exploration. It is expected to saturate when the
effective evasive strategies are learned.

Five different exploration strategies are used with TD-
FALCON in three different configurations. TD-FALCON is
used with and withoutprior knowledge and pruning to give
three different configurations. Each experiment is conducted
for 2000 training iterations. Each set of experimental result is
averaged using20 runs of the same experiment. In addition,
for trending purpose only and to minimize non-essential
fluctuations, every100 data points are averaged to give20
representative data points. The controlled parameters used for
the experiments are presented in Table II.

TABLE II
PARAMETERS OFTD-FALCON AND ACTION SELECTION POLICY

FALCON Parameters for k = {1, 2, 3} TD Learning Parameters
Choice Parametersαck 0.1,0.1,0.1 Learning Rateα 0.5
Learning Ratesβck 1.0,1.0,1.0 InitialQ-Value 0.5
Learn Vigilanceρck

l 0.85,1.0,0.45 Discount Factorγ 0.1
Perform Vigilanceρck

p 0.85,0.0,0.45
Contribution Parametersγck 0.5,0.5,0.0
ǫ-Greedy Policy Parameters
Initial ǫ Value 0.8 ǫ Decay Rate 0.0005

The desirability discriminant parametersµ+ andµ− are set
to 0.55 and0.45 respectively. The temperatureT for Simulated
Annealing-based Exploration Strategy is set to1.0 while the
cooling factorα is set to 0.9. For the Tabu Search-based
Exploration strategy, the duration at which an action choice
remains tabu is set at10 exploration cycles. This tabu duration
is reduced at a step size of1. The Neighborhood Search-based
Exploration Strategy has no external parameter. Theǫ-greedy
method is used all configurations.

IF EnemyDirection = South
THEN EvadeDirection = North
Statistics Reward = 0.75

Confidence = 1.0

Fig. 3. A trivial sample of aninsertedPropositional Rule. Reward indicates
effectiveness of the rule while Confidence indicates the usefulness of the rule.

A. Effect of TD-FALCON on Exploration Strategies

TD-FALCON withoutprior knowledge and pruning is used
in this set of experiments. It uses five different exploration
strategies for learning evasive strategies in the PE problem do-
main. The learning efficiency due to the proposed Knowledge-
based exploration strategy is benchmarked against four other
exploration strategies in this experiment.
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Fig. 4. Mission completion ratesΩmc of TD-FALCON using various
exploration strategies.

As shown in Fig. 4, the KnowledgeBased configuration is
shown to have the bestΩmc among the exploration strategies
throughout the training process. It is also the only exploration
strategy to saturate to100% Ωmc. Random, TabuSearch and
NeighborSearch configurations saturates at95% Ωmc while
SimulatedAnnealing fluctuates at about92% Ωmc.
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Fig. 5. Code populationΩcp of TD-FALCON using various exploration
strategies.

Plots of Ωcp in Fig. 5 show KnowledgeBased configura-
tion having similarΩcp with SimulatedAnnealing and Neigh-
borSearch configurations while attaining higherΩmc than
these two configurations. The TabuSearch configuration has
the highestΩcp but the second lowestΩmc among the five
configurations. Such an observation highlights the effective-
ness of the proposed Knowledge-based Exploration Strategy



in learning more effective knowledge. This is because the neg-
ative chunks are used to prevent further exploration of actions
known to be ineffective. This has helped KnowledgeBased to
attain higherΩmc than all other exploration strategies.

B. Effect ofPrior Knowledge on Exploration Strategies

Further experiments are conducted using TD-FALCON (de-
noted using PriorKB) inserted withprior knowledge using the
technique described in Section IV-A. The effect of inserting
prior knowledge such as the one illustrated in Fig. 3 into TD-
FALCON on the exploration strategies is studied here. The
same five exploration strategies are used with PriorKB version
of TD-FALCON.
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Fig. 6. Mission completion ratesΩmc of TD-FALCON with prior knowledge
using various exploration strategies.

From Fig. 6, the KnowledgeBasedPriorKB configura-
tion already has close to70% Ωmc in the first 100
training iterations. It stays above all the other configura-
tions right up to its100% Ωmc saturation at around the
1400th training iteration. Beginning at the lowestΩmc level,
the RandomPriorKB configuration is the only other con-
figuration to attain100% Ωmc. TabuSearchPriorKB and
SimulatedAnnealingPriorKB saturate to the next highestΩmc

level while NeighborSearchPriorKB converges to the lowest
Ωmc level.
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Fig. 7. Code populationΩcp of TD-FALCON with prior knowledge using
various exploration strategies.

From Fig. 7, KnowledgeBasedPriorKB is observed
with the highest Ωcp among the five configurations.
This is followed closely by TabuSearchPriorKB.
SimulatedAnnealingPriorKB and NeighborSearchPriorKB
saturate to similarΩcp while RandomPriorKB has quite
expectedly saturate to the lowestΩcp. Therefore, it is clear
from Fig. 6 and Fig. 7 that insertingprior knowledge has a
positive impact on the proposed Knowledge-based Exploration
Strategy. Combining the use ofprior knowledge and learned
knowledge to direct exploration has resulted in the discovery
of more effective knowledge. Unlike the Knowledge-based
Exploration Strategy, the other exploration strategies are
unable to benefit as much from theprior knowledge because
they do not make use of the learned and inserted knowledge
during exploration.

C. Effect of Pruning on Exploration Strategies

This round of experiments are conducted using TD-
FALCON (denoted using Prune) with the pruning ability de-
scribed in Section IV-B. The effect of pruning away ineffective
knowledge chunks on the exploration strategies is studied
here. In the experiments, cognitive nodes with confidence
level below35% of the average confidence level are pruned.
The same five exploration strategies are used with the Prune
version of TD-FALCON.
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Fig. 8. Mission completion ratesΩmc of TD-FALCON with pruning using
various various exploration strategies.

With reference to Fig. 8, the KnowledgeBasedPrune con-
figuration has the most efficientΩmc profile than the other
configurations. Though TabuSearchPrune has also converged
to 100% Ωmc, it has larger fluctuations prior to satura-
tion. All the other exploration strategies have quite similar
profile during training. On saturation, NeighborSearchPrune
has the next highestΩmc while RandomPrune and
SimulatedAnnealingPrune saturate to the sameΩmc level.

From Fig. 9, due to the effect of pruning, there is a
downward shift of the saturation levels ofΩcp for all five
configurations when compared with the saturation levels of
Ωcp seen in Fig. 5 and Fig. 7. However, the correlations of
Ωcp among the configurations remains unchanged from what
are observed in Fig. 7. From the experimental results, the
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Fig. 9. Code populationΩcp of TD-FALCON with pruning using various
exploration strategies.

proposed Knowledge-based Exploration Strategy remains as
robust as it has in the earlier two experiments. On the other
hand, there appears to be some significant impact on how the
other exploration strategies performs.

VIII. C ONCLUSION

This paper has proposed the Knowledge-based Exploration
strategy, which leverages the learned knowledge of a learning
agent to direct exploration during RL. Specifically, the strategy
searches for knowledge chunks in the learning agent encoding
the outcome of a given action in similar situations and filters
away those actions known to lead to negative outcomes from
the list of possible actions for exploration. This has led toa
more targeted and efficient exploration of the action space.

Using several experiments based on a complex PE prob-
lem, the proposed Knowledge-Based Exploration strategy
was compared to the baseline random exploration and three
other directed exploration strategies, namely the Neigh-
borhood Search-based Exploration Strategy, the Simulated
Annealing-based Exploration Strategy and the Tabu Search-
based Strategy, in terms of success rates (mission completion)
and model complexity (code population). Our experiments
show the Knowledge-based Exploration Strategy to be robust
and consistent when used with TD-FALCON without and
with the use of knowledge insertion and pruning. Specifi-
cally, the Knowledge-based Exploration Strategy converged to
100% mission completion rates for all configurations of TD-
FALCON. In contrast, none of the configurations of the same
TD-FALCON using all the other exploration strategies saturate
to 100% mission completion rates.

The Knowledge-based Exploration Strategy retains knowl-
edge of the ineffective action choices to direct exploration
towards the discovery of the effective action choices. The
impact of such an approach is in the higher code population as
compared to the other directed exploration strategies. TheTabu
Search-based Exploration Strategy, being the most aggressive
of the alternative exploration strategies, has the next highest
code population. On the other hand, the least aggressive
Random Exploration Strategy has, expectedly, the lowest code
population. In view of the current limitation, our subsequent

work may focus on better management of the cognitive node
population by not exploring unnecessarily while maintaining
the performance level. The duration of the training process
may also need to be reduced significantly by having a faster
saturation rate for a quicker turnaround time.
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