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Abstract—This work addresses the coordination issue in dis-
tributed optimization problem (DOP) where multiple distinct and
time-critical tasks are performed to satisfy a global objective
function. The performance of these tasks has to be coordinated
due to the sharing of consumable resources and the dependency
on non-consumable resources. Knowing that it can be sub-
optimal to predefine the performance of the tasks for large DOPs,
the multi-agent reinforcement learning (MARL) framework is
adopted wherein an agent is used to learn the performance of each
distinct task using reinforcement learning. To coordinate MARL,
we propose a novel coordination strategy integrating Motivated
Learning (ML) and the k-Winner-Take-All (k-WTA) approach.
The priority of the agents to the shared resources is determined
using Motivated Learning in real time. Due to the finite amount
of the shared resources, the k-WTA approach is used to allow for
the maximum number of the most urgent tasks to execute. Agents
performing tasks dependent on resources produced by other
agents are coordinated using domain knowledge. Comparing our
proposed contribution to the existing approaches, results from
our experiments based on a 16-task DOP and a 68-task DOP
show our proposed approach to be most effective in coordinating
multi-agent reinforcement learning.

I. INTRODUCTION

Global objective function of distributed optimization prob-
lem (DOP) is typically satisfied by performing multiple distinct
and time-critical tasks in a distributed but coordinated manner.
In such DOPs, coordination is required due to the sharing of
consumable resources and the dependency on non-consumable
resources. Consumable resources are replenished by some
other tasks and have to be shared among the consuming
tasks in an equitable manner. Non-consumable resources are
produced by tasks using the consumable resources. Team-
based activities such as distributed control, robotic teams,
automated trading and resource management [1] are examples
of real-world problems with such issues.

This work addresses a DOP with multiple single objective
tasks. Each task has their own set of discrete states and discrete
actions. Due to the adversarial character of the DOP, the per-
formance of the tasks is time-critical and is learned using the
multi-agent reinforcement learning (MARL) framework [1].
The task of coordinating the activities of the agents [2] is
one of the main issues in MARL. Drawing inspirations from
the Motivated Learning (ML) paradigm [3] and the k-Winner-
Take-All (k-WTA) approach [4], we aim to propose a novel
coordination strategy for coordinating MARL in such DOP.

Several coordination strategies were proposed for apply-
ing MARL in small problems [5] [6] [7] and large prob-
lems [8] [9] [10]. The solutions for small problems are not
known to be scalable to the large problems whereas the large

problems seen in earlier works do not comprise tasks with
same kind of interaction seen in this work. In addition, none
of these works seek to prioritise the allocation of consumable
resources to the most urgent tasks. In contrast, this work
coordinates MARL in DOPs using the concept of the pain
signal and the k-WTA approach.

In this work, we approach the above-mentioned DOPs at
two levels. At the problem level, we consider it as DOP [11]
where multiple tasks are coordinated to satisfy a global ob-
jective. At the task level, the performance of each task is
learned using reinforcement learning with a self-organizing
neural network known as FALCON [12] used as the function
approximator. A temporal difference method known as Q-
Learning estimates the long-term value of performing the
actions in the states. Partitioning the solution of the DOP into
multiple stages, each stage is characterised by a specific set of
declarative goals [13]. The declarative goal of a task is satisfied
by performing the task.

We illustrate such a DOP using a popular computer game
known as Starcraft Broodwar (SCBW). Experiments were
conducted using a virtual player to solve a DOP simulated
using 16-task and 68-task SCBW scenarios. The aim of
the experiments is to identify an approach most effective at
building up own forces by satisfying the goals of the tasks at
each stage using a common set of resources in limited amount
of time. In the 16-task scenario, comparisons are made to
illustrate the different approaches of implementing the virtual
player. In the 68-task scenario, different strategies for selecting
the winning tasks are compared.

The presentation of this work continues in Section II with
a survey of the related works. The problem formulation is
provided in Section III. An overview of the pain-based coor-
dination strategy for MARL is provided in Section IV. The use
of k-WTA to optimise the use of existing resources is detailed
in Section V. An overview of the function approximator is
provided in Section VII. The SCBW game is briefly introduced
in Section VIII. The experiments and the results are presented
in Section IX. Last but not least, Section X contains the
conclusion.

II. RELATED WORK

Different approaches were proposed for coordinating multi-
agent reinforcement learning (MARL) in small problems com-
prising cooperative, competitive or cooperative-competitive
tasks [1]. WoLF-PHC [6], GIGA-WoLF [5] and Team Q-
Learning [7] were illustrated using multiple small problems
such as matching pennies, rock-paper-scissors, grid world and
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soccer game. Without the complexity of larger problems, issues
such as learning stability and co-adaptation among the learning
agents can be addressed more easily.

Several approaches were also known for coordinating
MARL in larger problems [1]. MARL was coordinated in prob-
lems with large number of discrete states and actions using the
Perceptual Coordination Mechanism and the Observing Coor-
dination Mechanism [8]. Using such an approach, the agents
cooperated with each other to maximize their own and system-
wide utilities. Cooperative behaviour in a pursuit problem
comprising four hunter agents and a target agent was learned
using a heterogeneous multi-agent architecture [9]. Multi-
objective optimization problem in sequential stage games was
addressed using distributed stateless learning coupled with dif-
ferent coordination techniques [10]. Using such an approach,
the agents learn how to spread themselves to randomly-placed
target locations to improve the average partitioning quality.
MARL is coordinated in these large problems with agents
performing the same types of tasks. In contrast, the MARL
framework is used here on large discrete state-action problems
with distinct goal-oriented tasks that may either be cooperative
or competitive at different times.

Based on the competitive learning (CL) paradigm [14], the
Winner-Take-All (WTA) approach finds a winning neuron [15]
as it adapts to the input patterns. Popular techniques such as
the Self-Organizing Map [16] and the Adaptive Resonance
Theory [17] are based on the WTA approach. The k-Winner-
Take-All (k-WTA) neural network generalizes the WTA ap-
proach to allow for multiple winners and was used in mutually
inhibitory networks [18]. Hardware implementation of the
k-WTA approach was also considered for real-time signal
processing tasks [4]. Motivated by these works, we adopt the
k-Winner-Take-All approach and propose a novel strategy for
selecting the winning tasks. Unlike known solutions to the
knapsack problem [19], our proposed strategy prioritises the
allocation of the resources to the most urgent tasks.

Known works using the SCBW game include a bayesian
tactician [20] that makes tactical decisions and predicts at-
tacks under constraints and uncertainty. An optimization strat-
egy [21] was proposed to address the build order problem.
Reinforcement learning was used to learn the micro-managing
of combat units to win against the built-in game AI [22]. A
reactive planning agent known as the EISBot [23] and an agent
with a task-based architecture known as SCAIL [24] are also
known. In particular, the EISBot and the SCAIL are known
to play the game well. As the performance of the tasks is not
learned, the game is played in a deterministic manner in many
of these works. In contrast, this work implements a virtual
player where the performance of the tasks is learned using
reinforcement learning and coordinated using a strategy that
integrates Motivated Learning and k-WTA.

III. THE PROBLEM FORMULATION

In this section, we precede the formulation of our dis-
tributed optimization problem (DOP) with a motivating DOP
in Section III-A. This is followed by the problem statement in
Section III-B.

A. A Motivating Distributed Optimization Problem

Computer game engages human players cognitively by
simulating multiple tasks in reduced amount of time. In
particular, we find the Starcraft Broodwar (SCBW) game
suitable for illustrating our research issues. In this section,
we illustrate our work using a motivating DOP comprising

four distinct tasks, four types of resources and two types of
relations (see Figure 1). The objective here is to produce the
Marine and FireBat combat units using the ProduceMarine
task and ProduceFireBat task respectively. However, due to
the various dependencies these tasks have with the other tasks,
several other tasks have to be performed before producing
these combat units.

Fig. 1. The complex interaction among the sample tasks

From Figure 1, the performance of BuildBarrack task
is seen depending only on resources such as mineral, gas
and the Space Construction Vehicle (SCV). However, the
BuildAcademy, ProduceMarine and ProduceFireBat tasks are
also waiting for the BuildBarrack task to be performed. After
the BuildBarrack task has performed, the ProduceMarine and
the BuildAcademy tasks can be performed when there are suf-
ficient resources. Likewise, the ProduceFireBat task is waiting
on the BuildAcademy task to perform. The performance of the
BuildAcademy task leads to the state where the ProduceFire-
Bat task can be performed when the required resources are
available.

B. The Problem Statement

The motivating DOP seen in Section III-A illustrates a
small distributed optimization problem (DOP). This is where
multiple tasks have to be performed in a coordinated manner
to satisfy a global objective function. The performance of
each task is learned using the standard reinforcement learning.
Knowing that the optimal action policy can be learned [25],
this work is focused on the task of coordinating the activities
of the tasks such that the global objective function is satisfied.

In this work, multiple agents are used to perform the tasks
in a coordinated and self-organizing manner. Specifically, agent
h ∈ N performs Task τh ∈ Γ to build up an aspect of the
solution for satisfying the global objective function. To perform
Task τh, agent h is dependent on a set of consumable resources
Λτ ⊂ Λ known as resources and a set of non-consumable
resources Ωτ ⊂ Ω known as technology, where Λ is the set of
all resources and Ω is the set of all technologies.

Due to the dependencies existing among the tasks on the
resources Λ and the technologies Ω, the DOP can be solved
as a coordination problem. Coordination is required due to
the dependency on resource Λ because the existing amount of
resources W is unlikely to satisfy the resource requirements
wh of task τh for all tasks τh ∈ ΓΛ where ΓΛ is the set of
tasks competing for resource Λ.

There is no competition for shared resource Λ when there
is sufficient amount of it. Therefore, the SR-condition defined
below negates the resource competition issue.

Definition 1 (Sufficient Resource SR): Given that Task τ1
consumes λτ1 amount of resource Λ and Task τ2 consumes
λτ2 amount of resource Λ.
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The SR-condition exists between τ1 and τ2 when λ amount
of shared resource Λ is available such that λ ≥ λτ1 + λτ2 .

Also, there is no competition for resource Λ when no
resource is shared. Therefore, the NS-condition defined below
negates the resource competition issue.

Definition 2 (No Resource Sharing NS): Given that Task
τ1 consumes λτ1 amount of resource Λ1 and Task τ2 consumes
λτ2 amount of resource Λ2.

The NS-condition exists between τ1 and τ2 when Λ1 �= Λ2

Coordination is also required due to the dependency on
technologies Ω because task τh needs to be performed to
produce technology Ωτh which is needed by task τi to perform.
Such a dependency inhibits the concurrent execution of task
τh and task τi. On the other hand, there may exist task τj that
is not dependent on task τh for technology Ωτh to perform.

There is no dependency among the tasks when the tech-
nologies needed by the tasks to perform are available. There-
fore, the TI-condition defined below negates the task depen-
dency issue.

Definition 3 (Task Independence TI): Let us consider
Ωm ∈ Ω to be the set of missing technologies and Ωe ∈ Ω
to be the set of existing technologies such that Ωm ∩ Ωe ≡ ∅
and Ωm ∪ Ωe ≡ Ω.

Task τ1 needs technology Ωτ1 ∈ Ωe to perform.

Task τ2 performs to advance technology Ωτ2 ∈ Ωm.

The TI-condition exists between τ1 and τ2 when Ωτ1 ∩
Ωτ2 ≡ ∅.

A set of tasks Γ1 ∈ Γ sharing limited amount of a set
of resources Λ1 result in resource competition within Γ1. A
set of tasks Γ2 ∈ Γ is dependent on a set of technologies
Ω1 ∈ Ω advanced by performing a set of tasks Γ3 ∈ Γ and
Γ2 ∩ Γ3 ≡ ∅ result in task dependency between Γ2 and Γ3.
Though these two issues hinder concurrent execution of tasks,
such concurrent execution of the tasks is still possible when
the following necessary and sufficient condition exists.

Definition 4 (Concurrent Execution of Tasks): Let us use
SR to denote the Sufficient Resource condition, NS to denote
the No Resource Sharing condition, TI to denote the Task
Independence condition and CE to denote the condition where
concurrent execution of tasks is performed.

The necessary and sufficient condition for CE is when
there is sufficient resource (SR) or (∨) there is no sharing
(NS) of resources and (∧) the tasks are independent of each
other (TI), i.e., (SR ∨NS) ∧TI ⇐⇒ CE.

IV. COORDINATED MULTIAGENT REINFORCEMENT
LEARNING

This section presents an overview of the pain-based MARL
coordination strategy [25] used in this work. A naı̈ve WTA
approach where a winning task is selected to execute is
employed in this MARL coordination strategy.

A. The Pain Signal

The concept of pain from motivated learning [3] is used
to coordinate MARL and guide reinforcement learning. In this
work, pain is defined as follows

Definition 5: Pain is defined as a task deficiency known to
the agent for the failure to meet its task goal.

From Definition 5, we correlate the pain signal pτ to the
task goal ζτ using

pτ =
ζτ − γτ

ζτ
, (1)

where γτ is the current reading of Task τ .

Action policies that recommend effective actions to reduce
pain signal pτ are discovered using reinforcement learning. At
training iteration n, reward rτ (n) of Task τ is derived using

rτ (n) = στH1(|pτ (n− 1)| − |pτ (n)|), (2)

where στ is the reward factor, pτ (n) is the pain signal and
H1(c) is a Heaviside step function defined as

H1(c) =

{
1 c > 0,
0 c ≤ 0.

From (2), a reward of στ is given for reducing the pain
signal pτ of Task τ .

B. The Coordination Strategy

The performance of the tasks is coordinated by identifying
a winning task τ∗. The tasks are organized into |Γ| categories
of sub-tasks where Γ is the set of main tasks. From a set of
sub-tasks Γq of main task q, a winning Subtask τ∗q is identified
using

τ∗q = max
τi∈Γq

H2(ϕτi)pτi , (3)

where Γq ∈ Γ and H2(c) is a Heaviside step function defined
as below

H2(c) =

{
1 c ≡ true,
0 c ≡ false,

and the conditional qualifier ϕτi checks the TI-condition using
propositional rule set Rτi ≡ {rτi1 , . . . , rτi|Rτi

|}. Propositional
rule rτim is defined as

Rule rτim : IF Xr
τi
m THEN Yr

τi
m ( REWARD Rr

τi
m ),

where Xr
τi
m is the antecedent, Yr

τi
m is the consequent and

Rr
τi
m ∈ [0, 1] is the Q-value estimated using (4).

At training iteration n, Subtask τq is permissible when
H2(ϕτq ) = 1.0. Given that ϕτi is true iff ∀m ∈ {1, |Rτi|}rτim,
there can be no winning Subtask τ∗q when ∀τqH2(ϕτq ) = 0 or
when ∀τqpτq = 0.

After selecting a winning Subtask τ∗q for main task q, a
winning main task q∗ is identified using max

q∈Γ
pτ∗

q
where pτ∗

q

is the pain signal of winning Subtask τ∗q of main task q.

C. Staging of Task Goals

The distributed optimization problem (DOP) is segmented
into several stages to focus on the performance of specific
tasks. Stage e of the gameplay is attained using a set of task
goals Ge = {ζeτ} for τ ∈ Γ and e ∈ E for E is the set of all
stages of the gameplay.

A forward transition e→ f from stage e to stage f where
e < f (semantically) is made when

e→ f when ∀τ ∈ Γ(γτ ≥ ζeτ ),
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where γτ is the current reading of Task τ and ζeτ is the task
goal of Task τ based on the active task goal set Ge.

A backward transition f → e from stage f to stage e is
made when

f → e when ∃τ ∈ Γ(γτ < ζeτ ).

Using the above approach, the gameplay is segmented into
stages to phase in multiple sets of task goals during runtime.

V. STRATEGY FOR SELECTING k WINNERS

As a contribution of this work, we propose a k-WTA
approach for selecting k winning tasks based on the necessary
and sufficient conditions (presented in Section III-B) for con-
current execution of tasks. The proposed strategy is a two-step
solution to a knapsack problem [19] comprising (1) identifying
the most urgent tasks (described in Section V-A) and (2)
selecting the better fitting tasks (described in Section V-B).

A. Selecting the more urgent tasks

From (1), the pain signal pτ of Task τ is derived using
the current reading γτ and the goal task ζτ . Over here, we
consider Task τ1 to be more urgent than Task τ2 based on the
following definition.

Definition 6 (Task Urgency): Consider a DOP where there
is Task τ1 with pain signal pτ1 and Task τ2 with pain signal
pτ2 .

Let us denote the state where only Task τ1 performs using
s1 and the state where only Task τ2 performs using s2.

Assuming agent h has payoff rh(s1) for getting to state s1
and payoff rh(s2) for getting to state s2.

Given that pτ1 > pτ2 , we have rh(s1) > rh(s2)

And we consider Task τ1 to be more urgent than Task τ2
and denote this relation using τ1 � τ2

For a set of all sub-tasks Γq of main task q, Definition 6
is implemented using (3).

B. Selecting the better-fitting tasks

Individually, the most urgent task may be satisfied by the
existing resources. However, the SR-condition may not exist
for multiple tasks. Therefore, it is necessary to determine the
most urgent tasks that are better fit to the existing resources.

Using a DOP with three tasks τ1, τ2 and τ3, we consider
Task τ3 to be a better fit than Task τ2 to the existing resources
based on the following definition.

Definition 7 (Better-Fitting Task): Consider a DOP where
there are Task τ1, τ2 and τ3 with pain signal pτ1 , pτ2 and pτ3
and, with no NS-condition, consume λτ1 , λτ2 and λτ3 amount
of shared resource Λ respectively.

Given pτ1 > pτ2 > pτ3 , we have Qp = {τ1, τ2, τ3}.
Assuming λ amount of resource Λ and λτ1 > λτ2 > λτ3

such that λτ1 < λ < (λτ1 + λτ2 + λτ3), we consider Task τ3
to be a better fit than Task τ2 when SR-condition exists for τ1
and τ3, i.e, λτ3 ≤ (λ− λτ1) < λτ2 .

From Definition 6 and Definition 7, we propose our k-WTA
approach for coordinating MARL as outlined in Algorithm 1.

Algorithm 1 Our proposed k-WTA approach
Require: λ amount of resource Λ

1: while Γq �= ∅ do
2: Select τ∗q using (3)
3: if λ− λτ∗

q
≥ 0 then

4: add τ∗q to Γsr (SR-condition exists)
5: λ′ = λ− λτ∗

q

6: λ = λ′
7: end if
8: Remove τ∗q from Γq

9: end while
10: Return Γsr

In Algorithm 1, a winning task τ∗q is selected using (3) at
Line 2. After that, the resource requirement λτ∗

q
is determined

at Line 3 against the current amount λ of resource Λ. Task
τ∗q is added to Γsr when it satisfies these two necessary and
sufficient conditions for concurrent execution of tasks. In this
way, MARL is coordinated in a self-organizing manner.

VI. SELF-ORGANIZING PROPERTY OF OUR k-WTA
APPROACH

We focus our analysis of the self-organizing property
of Algorithm 1 on the consumption of resources and the
attainment of task goals.

A. Resource Consumption

We present the self-organizing property of k-WTA by first
considering the consumption of resources using the following
lemma.

Lemma 1: For a DOP with a set of tasks Γq where the
NS-condition does not exist, the TI-condition exists among
the tasks in Γ and λ amount of resource Λ, Algorithm 1 is
able to select a set of tasks Γsr such that the SR-condition
exists for task τ ∈ Γsr .

Proof 1: Given a set of tasks Γq defined as above exists,

we assume ∃ τ ∈ Γq{λτ ≤ λ} and

⎧⎨
⎩

|Γq|∑
τ∈Γq

λτ

⎫⎬
⎭ > λ.

In this case, there exists a set of tasks Γsr such that∑|Γsr|
τ∈Γsr

λτ ≤ λ and Γsr ⊂ Γq .

From Algorithm 1, a winning task τ∗ is identified using
(3) and removed from Γq

Winning task τ∗ is added into Γsr when λ−λτ∗ ≥ 0, i.e.,
the SR-condition exists.�

B. Task Goal Attainment

We consider the self-organizing attainment of task goals of
task τ ∈ Γq using the following lemma.

Lemma 2: For the DOP seen in Lemma 1, the goals of
tasks in Γq can be attained in a self-organizing manner using
Algorithm 1.

Proof 2: From Lemma 1, all the tasks are returned to Γq
after all tasks in Γsr executes.

According Definition 6, the performance of tasks in Γsr
changes the urgency of these tasks as they are returned to Γq.
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Using Algorithm 1, we asssume the SR-condition always
exist after time Δt such that Γsr �= ∅.

∴ the number of tasks with zero pain signal derived using
(1) is increased to |Γq|, i.e., all task goals are attained, in time
t <∞.�

Using Lemma 1 and Lemma 2, we have provided an
analytical foundation of our proposed k-WTA approach for
coordinating MARL.

VII. THE SELF-ORGANIZING NEURAL NETWORK

A self-organizing neural network [12] that derives from
FALCON [26] is used for learning the performance of Task
τ . Capable of learning incrementally in real time, FALCON
generalizes on the vector patterns without compromising on
its prediction accuracy. Action policies are discovered using
reinforcement learning in real time. The value of applying the
action choices on the states is estimated using Q-Learning.

A. Structure and Operating Modes

Structurally, the FALCON network [26] has a two-layer
architecture (see Figure 2), comprising an input/output (IO)
layer and a knowledge layer. The IO layer has a sensory
field F c1

1 for accepting state vector S, an action field F c2
1 for

accepting action vector A, and a reward field F c3
1 for accepting

reward vector R. The category field F c
2 in the knowledge layer

stores the committed and uncommitted cognitive nodes. Each
cognitive node j has three fields of template weights wck for
k = {1, 2, 3}.

Fig. 2. The FALCON Architecture.

FALCON has three modes of operation - INSERT, PER-
FORM and LEARN. The Fusion ART algorithm is used to find
a winning cognitive node J in these three modes of operation.
FALCON operates in the PERFORM mode to select action
choices for the states, in the LEARN mode to learn the effect
of these action choices on the states and in the INSERT mode
to assimilate domain knowledge into itself [27].

B. Value Function Estimation

A temporal difference (TD) method is used to estimate the
Q-value of state-action pairs Q(s, a) using feedback from the
environment on the performed action a selected using Bounded
Q-Learning [28]. At state s′, this estimated Q-value is used as
the teaching signal to learn the association of state s and the
performed action a.

Iterative Value Estimation: The temporal difference
method incorporated into FALCON is known as Bounded
Q-Learning [28]. It estimates the value of applying action
choice a to state s iteratively. The updated Q-value function
Q(s, a)(new) is estimated using

Q(s, a)(new) = Q(s, a)(old) + αTDerr(1−Q(s, a)), (4)

where α ∈ [0, 1] is the learning parameter and the TDerr is
the temporal error term derived using

TDerr = r + γmax
a′

Q(s′, a′)−Q(s, a),

where γ ∈ [0, 1] is the discount parameter and the
maxa′ Q(s′, a′) is the maximum estimated value of the next
state s′ and r is the immediate reward value derived using (2)

C. Knowledge Pruning

Ineffective learned knowledge is pruned to facilitate more
efficient operation. A confidence-based pruning strategy simi-
lar to [26] is adapted to prune the cognitive nodes that encode
the ineffective knowledge.

Specifically, cognitive node j has a confidence level cj
where cj ∈ [0.0, 1.0]and an age σj where σj ∈ [0,R]. A
newly committed cognitive node j has an initial confidence
level cj(0) and an initial age σj(0). The confidence level cJ
of winning cognitive node J is reinforced using

cnewJ = coldJ + η(1− coldJ ),

where η is the reinforcement rate of the confidence level.
After each training iteration, the age σj of cognitive node j is
incremented and its confidence level cj is decayed using

cnewj = coldj − ζcoldj ,

where ζ is the decay rate of the confidence level. The age
attribute σj of cognitive node j prevents pre-mature pruning.
Cognitive node j is pruned only when cj < crec where crec is
the recommended confidence threshold and σj ≥ σold where
σold is the old age threshold.

VIII. THE SIMULATION PLATFORM

The distributed optimization problem (DOP) is illustrated
using a PC-based game known as Starcraft Broodwar (SCBW)
seen in Figure 3. Due to the rich body of knowledge and non-
trivial gameplay, several groups [23], [24] have used it for
their work. Since year 2009, AI competitions using SCBW
are organized online and at conferences.

The players can be controlled by either a human player
or the built-in AI. Regardless of the type of player, the game
is won by eliminating the opponents. There is a selection of
three races - terran, zerg or protoss - for the player. The race
can either be chosen or randomly assigned to the players. In
this work, the players are controlled using the built-in AI and
an implementation of our proposed approach.

Fig. 3. A screenshot of the SCBW game.

The SCBW game is played at the macro and micro levels.
At the macro gameplay, auxiliary but essential tasks such as

194194



the resource gathering, building construction, unit production
and advancement of technology are performed. The micro
gameplay involves the tasks of commanding the units to
perform reconnaissance, defend own bases and own units,
attack enemy units and to raze the enemy bases.

IX. PERFORMANCE EVALUATION

Experiments were conducted to evaluate the various ap-
proaches to coordinate multi-agent reinforcement learning
(MARL) for solving distributed optimization problem (DOP).
Experiment results from a 16-task DOP (see Section IX-B) and
a 68-task DOP (see Section IX-C) are presented. Comparisons
made in the 16-task DOP focus on the performance gain from
integrating k-WTA and motivated learning. Comparisons made
in the 68-task DOP focus on the performance of the strategies
for selecting the winning tasks.

A number of parameters and configurations are common
to the experiments conducted using these two DOPs. The
FALCON parameters as well as the TD-Learning parameters
are presented in Table I. The experiments were conducted for
100 game trials. Decisions on the action choices are made
at 100 frames interval. The experiment results are the mean
values derived using 20 runs of the same experiments and a
10-point sliding window.

TABLE I. PARAMETERS OF FALCON AND TD LEARNING

FALCON for k = {1, 2, 3}
Choice Parameters αck {0.1, 0.1, 0.1}
Learning Rates βck {1.0, 1.0, 1.0}
Contribution Parameters γck {0.33, 0.33, 0.33}
Vigilance ρck {0.95, 0.0/1.0, ρc3}
ρc3 Adaptation Rate ν 0.95
Confidence (cj(0), ζ, η) 0.5, 0.0005, 0.5
Pruning - Age threshold σold 50 iterations
Pruning - Confidence Level crec 0.65
TD-Learning
Learning Rate α 0.5
Discount Factor γ 0.1
Initial Q-Value 0.5

A. Evaluation Method

For addressing the distributed optimization problem (DOP),
the goal attainment status of the tasks is most suitably il-
lustrated using asset scores derived using the Asset Scoring
Methodology (ASM). An asset score μτ for Subtask τ is
derived using

μτ = 1.0−min

{ |ζτ − γτ |
ζτ

, 1.0

}
, (5)

where ζτ is the target level and γτ is the current reading of
Task τ .

From (5), the asset score μq of main task q is derived using

μq =
1∑|Γq|

i ωτi

|Γq|∑
i

ωτiμτi , (6)

where ωτ indicates the relative significance of Subtask τ1 over
Subtask τ2 where {τ1, τ2} ∈ Γq and Γq is the set of subtasks
for main task q.

From (6), the final asset score ϕ is then derived using

ϕ =
1∑|Γ|

q ωq

|Γ|∑
q

ωqμq,

where Γ is the set of main tasks. In this work, the asset score
ϕ is the main task performance indicator.

B. A 16-task Distributed Optimization Problem

In this 16-task DOP, we compare our proposed method
(denoted using DWTA) with the k = 1 WTA (denoted
using WTA) approach, an uncoordinated approach (denoted
using UC) and a Monte-Carlo Simulation (denoted using RR).
The performance of these approaches is illustrated using the
Asset Scores, Active Stages, Number of Active Tasks, Node
Population and Decision-Making (DM) time. The task goals
of three stages - opening, post-opening and mid-game - and
weights of the tasks are presented in Table II. Each game trial
is conducted for 10, 000 frames. The asset scores of the UC
and RR approaches are based on the mid-game stage while
those of the WTA and DWTA approaches are based on the
active stages.

TABLE II. WEIGHTS AND GOALS OF THE TASKS

Main Task q Sub-Task p Target ζτ Weight ωτ

Resource Mine Mineral 250, 250, 500 0.95
Management Gather Gas 100, 100, 200 0.75
ωrsc = 1.0 Increase Supply 26, 26, 48 0.80

Unit Produce SCV 12, 12, 16 0.50
Production Produce Marine 0, 6, 18 0.75

ωunit = 1.0 Produce FireBat 0, 2, 6 0.75
Produce Medic 0, 2, 6 0.75

Building Refinery 1, 1, 1 0.50
Construction Supply Depot 2, 2, 6 0.65
ωbldg = 1.0 Barrack 0, 2, 2 0.85

Bunker 0, 2, 6 0.75
Academy 0, 1, 1 0.65

Engineering Bay 0, 0, 1 0.65

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
ss

et
S

co
re

 

 

WTA:1−WTA−MultiStrategy
DWTA:DYN−WTA−MultiStrategy
UC:Uncoordinated−MARL
RR:Random−Response

0 20 40 60 80 100
0

1

2

A
ct

iv
e 

S
ta

ge

Decision

Fig. 4. Comparison of Asset Scores and Active Stages of the different
approaches in the 16-task DOP.

Task Performance: Task performance is illustrated using
plots of Asset Scores and Active Stage in Figure 4. From
Figure 4, the Asset Scores of the UC and RR approach are
observed below 0.4 for most decisions. In contrast, the Asset
Scores of the WTA and DWTA approaches improve over the
decisions. The DWTA approach is observed transiting to the
more advanced stages earlier than the WTA approach. Con-
sequentially, the Asset Scores of DWTA approach rise above
the WTA approach at around the 50th decision. Therefore, the
DWTA approach is considered more efficient than the WTA
approach.

Improved Coordination: The top plots in Figure 5 illustrate
the number of active tasks. Due to the lack of coordination, the
UC and RR approaches are observed with all 16 tasks active.
In contrast, the WTA approach has at most one active tasks
while the DWTA approach has between 0.55 and 4.72 active
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Fig. 5. Comparison of Active Tasks and Active Stages of the different
approaches in the 16-task DOP.

tasks. With more active tasks, the DWTA approach reaches the
more advanced stages more efficiently than the WTA approach.
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Fig. 6. Comparison of Node Population and Decision-Making Time of the
different approaches in the 16-task DOP.

Time and Space Complexity: Figure 6 Top Plot illustrates
the node population while Figure 6 Bottom Plot illustrates the
decision-making (DM) time. From Figure 6, the UC approach
is observed with the largest node population and highest DM
time. With zero node population, the RR approach has the least
amount of DM time. The DWTA approach is observed with
larger node population and higher DM time than the WTA
approach. This is due to the higher number of active tasks for
the DWTA approach.

C. A 68-task Distributed Optimization Problem

Using a 68-task DOP, our proposed DWTA approach
is compared with the Greedy (denoted using Greedy) and
the Naive (denoted using Naive) methods of the Knapsack
problem [19] and a Monte-Carlo Simulation (denoted using
RR) . Unlike the Greedy approach, the Naive approach does
not consider the remaining tasks when it encounters a task
whose resource requirement exceeds the remaining resources.
Unlike these two methods, our DWTA approach is a two-step
process that prioritises the allocation of the limited resources
to the most urgent tasks. The WTA approach is also included
as a benchmark comparison in this 68-task DOP.

Specific to this 68-task DOP, each game trial is conducted
for 30, 000 frames. Five stages of task goals are used for the

68 tasks. The asset scores are computed using the task goals
at the final stage. The same set of parameters of FALCON and
TD learning seen in Table I are used. Not shown due to lack
of space, the weights and task goals are specified in a similar
manner seen in Table II.

Asset Scores: From Figure 7, plots of the asset scores from
300 decisions show our DWTA approach having higher asset
scores from around 80th decision. Using the same coordination
strategy [25] but different winning task selection strategies,
the Naive and Greedy approaches are seen less effective than
our DWTA approach. Though effective for the smaller 16-task
DOP, the WTA approach is seen with lower asset scores in this
larger 68-task DOP. The flat extrapolation of the asset scores
of the WTA and RR approaches indicate earlier termination of
the game trials as it is eliminated by the opponent.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
ss

et
S

co
re

Decision

 

 

DWTA:Prioritised−Dynamic−kWTA
Greedy:Greedy−kWTA
Naive:Naive−kWTA
WTA:Prioritised−1WTA
RR:Monte−Carlo−SIM

Fig. 7. Comparison of the Asset Scores and Active Stages of the different
approaches in the 68-task DOP.

Final Outcome: So far, we concentrated on the asset score
as the main performance measure. To demonstrate that this
measure indeed indicates better performance, we checked the
final outcomes of the game. Playing against the built-in AI
opponent, each game trial has a final outcome of loss (0),
draw (1) or win (2). From Figure 8, the plots of the final
game outcome of 100 game trials show our DWTA approach
has the highest mean score of around 0.75. In sharp contrast,
the WTA and the RR approaches have the lowest mean score
of almost 0.0. Less effective than our DTWA approach, the
Naive approach is seen having a higher mean score than the
Greedy approach. Such observations affirm the observations
made on the plots of the Asset Scores and the Active Stages
seen in the top and bottom plots of Figure 7 respectively.

X. CONCLUSION

We have proposed the integration of k-Winner-Take-All
approach (k-WTA) to a ML-based coordination strategy [25]
of multiagent reinforcement learning (MARL) for solving
distributed optimization problem (DOP). In this work, given
the existing resources, we aim to get the maximum number
of the most urgent tasks to execute. Using our definition of
Task Urgency and Better-Fitting Task, we proposed the DWTA
approach and provided an analytical illustration of its self-
organizing property. This is to give the confidence that the
various task goals can be attained in time t <∞.

We evaluate the proposed approach by conducting exper-
iments using a 16-task DOP and a 68-task DOP simulated
using the Starcraft Broodwar (SCBW) game. Using the 16-
task DOP, we compare our proposed DWTA approach with a
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Fig. 8. Comparison of the final game outcome of the different approaches
in the 68-task DOP.

single-winner WTA approach, an uncoordinated approach and
a random response approach. Task performance is evaluated
using the Asset Score, Active Stages, Number of Active Tasks,
Node Population and Decision-Making Time. Comparing to
the other approaches, the experimental results show our pro-
posed approach is better at getting more tasks to execute. The
advanced stages are reached earlier using such an approach.
However, due to the higher number of active tasks, our
proposed approach has slightly larger node population than
the single-winner WTA approach.

Using the 68-task DOP, we compare our proposed strategy
for selecting the winning tasks to the Greedy and the Naive
approaches for solving the knapsack problem [19]. Plots of the
asset scores and the final outcome show our proposed DWTA
approach to be more effective when compared to the Greedy
and Naive approaches. In addition, the WTA approach effective
for the smaller 16-task DOP has not performed as well in the
larger 68-task DOP.

In this work, we have illustrated our proposed contributions
by implementing a virtual player to a simulated 16-task DOP
and a simulated 68-task DOP. The 16-task and 68-task DOPs
are simulated for a fixed duration of 10, 000 and 30, 000 frames
respectively. In our subsequent work, we will include more
tasks to build up to the capability of playing the SCBW
game. We shall then evaluate the strength of our work by
playing against the built-in AI and against the human players.
In addition, we will apply our work to real-world problem
domains with similar or higher level of complexity.
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