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A Large-Scale Benchmark for Food Image Segmentation
Xiongwei Wu1, Xin Fu2, Ying Liu1, Ee-Peng Lim1, Steven C.H. Hoi1,3, Qianru Sun1

1 Singapore Management University, 2 Beijing Jiaotong University, 3 Salesforce Research Asia
{xwwu,eplim,chhoi,qianrusun}@smu.edu.sg,xinfu@bjtu.edu.cn,rrrainbowly@gmail.com

ABSTRACT
Food image segmentation is a critical and indispensible task for
developing health-related applications such as estimating food calo-
ries and nutrients. Existing food image segmentation models are
underperforming due to two reasons: (1) there is a lack of high
quality food image datasets with fine-grained ingredient labels and
pixel-wise location masks—the existing datasets either carry coarse
ingredient labels or are small in size; and (2) the complex appear-
ance of food makes it difficult to localize and recognize ingredients
in food images, e.g., the ingredients may overlap one another in
the same image, and the identical ingredient may appear distinctly
in different food images.

In this work, we build a new food image dataset FoodSeg103 (and
its extension FoodSeg154) containing 9,490 images. We annotate
these images with 154 ingredient classes and each image has an
average of 6 ingredient labels and pixel-wise masks. In addition,
we propose a multi-modality pre-training approach called ReLeM
that explicitly equips a segmentation model with rich and semantic
food knowledge. In experiments, we use three popular semantic
segmentation methods (i.e., Dilated Convolution based [20], Fea-
ture Pyramid based [25], and Vision Transformer based [60]) as
baselines, and evaluate them as well as ReLeM on our new datasets.
We believe that the FoodSeg103 (and its extension FoodSeg154)
and the pre-trained models using ReLeM can serve as a bench-
mark to facilitate future works on fine-grained food image un-
derstanding. We make all these datasets and methods public at
https://xiongweiwu.github.io/foodseg103.html.
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Figure 1: The first row shows a source image and its segmen-
tation masks on our FoodSeg103. The second row shows ex-
ample images to reveal the difficulties of food image segmen-
tation, e.g., the pineapples in (a) and (b) look different, while
the pineapple in (a) and the potato in (c) look quite similar.

1 INTRODUCTION
Food computing has attracted increasing public attention in recent
years, as it provides the core technologies for food and health-
related research and applications [3, 10, 35, 48]. One of the impor-
tant goals of food computing is to automatically recognize different
types of food and profile their nutrition and calorie values. In com-
puter vision, the relatedworks include dish classification [12, 55, 56],
recipe generation [17, 43, 51], and food image retrieval [8, 46].

Most of them focus on representing and analysing the food image
as a whole, and do not explicitly localize or classify its individual
ingredients—the visible components in the cooked food. We call
the former food image classification and the latter food image
segmentation. Between the two, food image segmentation is more
complex as it aims to recognize each ingredient category as well
as its pixel-wise locations in the food image. As shown in Figure 1,
given an “hamburger” example image, a good segmentation model
needs to recognize and mask out “beef”, “tomato”, “lettuce”, “onion”
and “bread roll” ingredients. Food image segmentation is convenient
and useful for food quantification, e.g., it can recognize the noodles
from different restaurants containing ONE or THREE pieces of
marinated pork (differ in calories and fats). Besides, it facilitates a
challenging computer vision task.

Compared to semantic segmentation on general object images [5,
20, 25], food image segmentation is more challenging due to the
large diversity in food appearances and the often imbalanced distri-
bution of categories of ingredients. First, an ingredient cooked dif-
ferently can vary a lot visually, e.g., “pineapples” cooked with meat
in Figure 1 (a) versus the “pineapples” in a fruit platter in Figure 1

https://xiongweiwu.github.io/foodseg103.html
https://doi.org/10.1145/3474085.3475201
https://doi.org/10.1145/3474085.3475201


(b). Different ingredients may look very similar, e.g., “pineapples”
cooked with meat cannot be easily distinguished from “potatoes”
cooked with meat, as shown in Figures 1 (a) and (c) respectively.
Second, food datasets usually suffer from imbalanced distribution—
both food classes and ingredient classes often exist in long-tailed
distributions. This is inevitable due to two reasons: 1) large number
of food images are dominated by very few popular food classes
while vast majority of food classes are unpopular; and 2) there is a
selection bias in the construction of food image collection [49]. We
will elaborate the detailed distribution analysis in Section 3.

Existing food image datasets, such as ETH Food101 [2], Recipe1M
[45], and Geo-Dish [56], mainly facilitate the research of dish clas-
sification or recipe generation. They do not have fine-grained in-
gredient masks or labels. There are a few public datasets available
for food image segmentation [35, 39]. However, their segmentation
masks are annotated at dish level only. That is, each mask covers
the region of an entire dish instead of that of food ingredients. We
elaborate more dataset comparison in Section 3.3.

Dataset contribution: To facilitate fine-grained food image seg-
mentation, we build a large-scale dataset called FoodSeg103, for
which we have defined 103 ingredient classes and annotated 7,118
western food images using these labels together with the corre-
sponding segmentation masks. Besides, we annotated an additional
set of 2,372 images of Asian food which covers more diverse set
of ingredients making these images more challenging than those
in the main set (FoodSeg103). For this set, we defined 112 ingredi-
ent classes—55% overlap with the ingredient classes of the main
set. In total, we annotated 154 classes of ingredients with around
60k masks (in the two datasets). We name the combined dataset
as FoodSeg154. During the annotation, we carried out careful data
selection, iterative refinement of labels and masks (to be further
elaborated in Section 3.2), so as to guarantee high quality labels
and masks in the dataset. Our annotation is thus expensive and
time-consuming. In experiments, we use FoodSeg103 for in-domain
training and testing, and use the additional set in FoodSeg154 for
out-domain testing.

Model contribution: The source images of FoodSeg103 are
from another existing food dataset Recipe1M [45]—millions of im-
ages and cooking recipes, used for recipe generation. Each recipe
contains not only “how to cook” but also “what ingredient to use”.
Auxiliary knowledge is proved useful in data mining [29], and in our
work, we leverage these recipe information as auxiliary information
to train semantic segmentation models. We call this multi-modality
knowledge transfer and name our training method ReLeM. Specifi-
cally, ReLeM integrates food recipe data, in the format of language
embedding, with the visual representation of the food image. In this
way, it forces the visual representation of an ingredient appearing
in different dishes to have their appearances “connected” in the
feature space through a common language embedding (extracted
from the ingredient’s label and its cooking instructions).

Experiment contribution: We validate our proposed ReLeM
model by plugging it into the state-of-the-art semantic segmenta-
tion models such as CCNet [20], Sem-FPN [25] and SeTR [60]. In
experiments, we compare ReLeM-variants with these baseline mod-
els using both convolutional networks and transformer backbones.
Our experiments show that ReLeM is generic to be applied into mul-
tiple segmentation frameworks, and it helps to achieve significant

accuracy improvement when incorporated into the SOTA CNN-
based model CCNet. This validates that our knowledge transfer
approach works more efficient on stronger models—a characteristic
preferred by the multimedia community.

Our contributions are thus three-fold. i) We build a large-scale
food image segmentation dataset called FoodSeg103 (and its ex-
tension FoodSeg154). It can facilitate a promising and challenging
benchmark for the task of semantic segmentation in food images.
ii) We propose a knowledge transfer approach ReLeM that utilizes
the multi-modality information of recipe datasets. It can be incor-
porated into different semantic segmentation methods to boost the
model performance. iii) We conduct extensive experiments that re-
veal the challenges of segmenting food on our FoodSeg103 dataset,
and validate the efficiency of our ReLeM based on multiple baseline
methods.

2 RELATEDWORKS
Food Image Datasets. In recent years, the scale of food-related
datasets has grown rapidly. For example, Bossard et al [2] built
one large-scale food dataset ETH Food101, which contains 101
classes with 1,000 images per class. Matsuda et al. [33] constructed
a Japanese food dataset UEC Food100 with 15K images in 100 dish
categories. In comparison, ISIA Food500 [38] contains nearly 400k
food images in 500 categories, which is the largest food image
recognition. In addition, there are also recipe-related datasets. Sal-
vador et al. [45] built the Recipe1M, with nearly 900k images and
1 million recipes, which is widely used in multi-modal learning
between images and recipes. Based on Recipe1M, an even larger
dataset Recipe1M+ [31] was constructed with more than 13 mil-
lions of food images. However, these datasets are mainly built to
support food recognition and recipe generation research rather
than food image segmentation, so they do not segment food images
into multiple masks and labels of ingredient . Food-201 [35] and
UEC dataset [14, 39] are the existing datasets for food image seg-
mentation, which contains ∼10,000 images with 201/102 categories.
Nevertheless, their annotation are limited to dish-wise masks so
they cannot be used for ingredient segmentation.

In this paper, we built FoodSeg103 dataset with 7,118 images and
more than 40k masks covering 103 food ingredients. In addition, we
have collected another image set for Asian food with 2,372 images
(for cross-domain evaluation of the models). Combining the main
set and the Asian set, we get the FoodSeg154 with nearly 10k images
and 60k ingredient masks. To our best knowledge, FoodSeg154 is
the first and the largest ingredient-level dataset for fine-grained
food image segmentation. Dataset is a key step in developing deep
learning based methods. We hope our dataset can inspire more
efforts for the task of food image segmentation.
Semantic Segmentation in Images. Deep learning based seman-
tic segmentation is a super hot topic in recent years. Fully convolu-
tional neural network (FCN) [30] is the first semantic segmentation
framework based on deep convolutional neural networks. It pre-
dicts pixel-wise masks by replacing the fully connected layers with
convolution layers and achieves a clear margin of improvement on
the model performance. Chen et al. [5] proposed DeepLab which ap-
plies dilated convolutional layers in vanilla FCN. The trained model
is more effective as the dilation mechanism enlarges the receptive
fields while maintaining a high resolution in feature maps. Chen
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Figure 2: Foodseg103 examples: source images (left) and annotations (right).

et al [6] proposed the DeepLab v2, which adds an ASPP module
to integrate features of different dilation rates. To further include
contextual cues, PSPNet [59] proposed a PPM module that aggre-
gates the contextual information using different-size pooling layers.
Zhang et al. [57] proposed the layerwise self-distillation method
to leverage the different-scale contextual semantics that are rep-
resented inside the same network. Wang et al. [53] proposed the
non-local networks to encode the relationship between each pair of
pixels in the feature map. Zhang et al. [58] proposed an improved
version across feature maps. Based on the non-local networks, CC-
Net [20] adopted a criss-cross attention layer to significantly econo-
mize the computation costs of calculating attentions. Most recently,
vision transformer (attention-based) [13, 50] was adapted to tackle
semantic segmentation problems in [60] recently and achieves state-
of-the-art results. In this paper, we conduct extensive experiments
on our dataset using three representative semantic segmentation
methods: CCNet [20], FPN [25] and SeTR [60]. We also plug the
proposed ReLeM into these methods to show its general efficiency.

3 FOOD IMAGE SEGMENTATION DATASET
FoodSeg103 is a subset of FoodSeg154, and the latter includes
an additional subset of Asian food images and annotations. Some
example images and their annotations can be found in Figure 2.
In FoodSeg103, we have defined 103 ingredient categories and as-
signed these category labels as well as the segmentation masks
to 7,118 images. The images are from an existing recipe dataset
called Recipe1M [45]. For the additional subset in FoodSeg154, we
specially collect 2,372 images of Asian food which is of larger di-
versity than the Western food in FoodSeg103. We use this subset to
evaluate the domain adaptation performance of our food image seg-
mentation models.We release FoodSeg103 to facilitate public
research, but currently we cannot make the Asian food set
public due to the confidentiality of the images.

3.1 Collecting Food Images
We use FoodSeg103 as an example to elaborate the dataset construc-
tion process. We elaborate the image source, category compilation
and image selection as follows. Source:We used Recipe1M [31, 45]

as our source dataset. This dataset contains 900k images with cook-
ing instructions and ingredient labels, which are used for food
image retrieval and recipe generation tasks. Categories: First, we
counted the frequency of all ingredient categories in Recipe1M.
While there are around 1.5k ingredient categories [44], most of
them are not easy to be masked out from images. Hence, we kept
only the top 124 ingredient categories (with further refinement,
this number became 103) and assigned ingredients with the “others”
category when they do not fall under the above 124 categories.
Finally, we grouped these categories into 14 superclass categories,
e.g., “Main” (i.e., main staple) is a superclass category covering
more fine-grained categories such as “noodle” and “rice”. Images:
In each fine-grained ingredient category, we sampled Recipe1M
images based on the following two criteria: 1) the image should
contain at least two ingredients (with the same or different cate-
gories) but not more than 16 ingredients; and 2) the ingredients
should be visible in the images and easy-to-annotate. Finally, we
obtained 7,118 images to annotate masks.

3.2 Annotating Ingredient Labels and Masks
Given the above images, the next step is to annotate segmentation
masks, i.e., the polygons covering the pixel-wise locations of dif-
ferent ingredients. This effort includes the mask annotation and
mask refinement steps. Each of our images is labeled by one an-
notator, so there is no inter-annotator agreement. To ensure high
quality annotation, a full-time researcher double-checked the la-
bels and corrected errors if any. Annotation:We engaged a data
annotation company to perform mask annotation, a laborious and
painstaking job. For each image, a human annotator first identifies
the categories of ingredients in the image, tags each ingredient with
the appropriate category label and draws the pixel-wise mask. We
asked the annotators to ignore tiny image regions (even if it may
contain some ingredients) with area covering less than 5% of the
whole image. Refinement: After receiving all masks from the an-
notation company, we further conducted an overall refinement. We
followed three refinement criteria: 1) correcting mislabeled data; 2)
deleting unpopular category labels that are assigned to less than 5
images, and 3) merging visually similar ingredient categories, such
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Figure 3: Category statistics for our FoodSeg103 dataset in (a) and (b), and the Asian food image set (i.e., the additional set in
FoodSeg154) in (c) and (d).

as orange and citrus. After refinement, we reduced the initial set
of 125 ingredient categories to 103. Figure 5 shows some examples
refined by us. The annotation and refinement works took around
one year.

We show some data examples in Figure 2. In Figure 2 (a), we give
some easy cases where the boundaries of ingredients are clear and
the image compositions are not complex. In Figure 2 (b), we show
some difficult cases with overlapped ingredient regions and complex
compositions in the images. Figure 3 shows the distributions of fine-
grained ingredient categories and superclass categories. Figures 3(a)
and 3(c) show partial statistics for small subsets of categories due to
page limit. The complete statistics will be published when releasing
the dataset.

(a) Source Images

bread roll
tomato

beef

lettuce

onion

lettuce 

noodles

tomato

onion

garlic 

sausage 

(b) Ingredient-level Anno-
tation

noodles

hamburger

(c) Dish-level Annotation

Figure 4: Comparison of different annotation styles for
masking food images: (a) source images, and (b) ingredient-
level annotation (ours), and (c) dish-level annotation [39].
Ingredient-level annotation contains more details.

3.3 Comparing with Food Image Datasets
Food ImageDatasets.We summarize the comparison results in Ta-
ble 1.We only include datasets that aremainly used for food recogni-
tion tasks. They contain images and dish-level labels, and therefore

(a) Source Images

steak

citrus

(b) Before Refinement

fish

orange

(c) After Refinement

Figure 5: Examples of dataset refinement. (a) sources images
(b) before refinement (wrong or confusing labels exist), and
(c) after refinement.

they do not have any ingredient-level annotations. Recipe1M and
Recipe1M+ include ingredient labels for each images but not the
segmentation masks. Notably, there are some existing datasets for
food image segmentation: Food-201 [35], UECFoodPix [14] and
UECFoodPixComplete (UECFoodPixComp.) [39]. Below, we com-
pare these datasets with our datasets FoodSeg103 and FoodSeg154
in detail.
Food Image Segmentation Datasets. Food-201 and UEC dataset
(UECFoodPix and UECFoodPixComp.) are the public datasets for
food image segmentation, with 10k images and 201/102 dish cat-
egories. Detailed comparison numbers are given in Table 2. We
highlight three advantages of our FoodSeg103 and FoodSeg154: 1)
the number of pixel-wise masks of FoodSeg (40k and 60k) is signifi-
cantly larger than Food-201 and UEC dataset (only 29k and 15k); 2)
FoodSeg contains more masks per img (5.9 and 6.3) than Food-201
and UEC dataset (only 2.4 and 1.5). In FoodSeg, only 0.15% of its
images have a single mask and nearly 50% images contain more
than 3 masks, while in Food-201 and UEC dataset, 57% and 100%
images have only a single mask and less than 5% images contain



more than 3 masks; 3) the annotation mask in Food-201 and UEC
dataset covers entire dish but not ingredients (dish components),
while our FoodSeg154 and FoodSeg103 have ingredient-wise masks,
which better capture the characteristic of the food. Illustrative com-
parisons are given in Figure 4. In Table 2, we present the statistic
numbers. FoodSeg103 serves as a more challenging benchmark for
semantic segmentation. Moreover, fine-grained ingredient annota-
tions in our datasets are more useful for analyzing food nutrition
and estimating calories in health-related applications.

Dataset Year Type #Dish #Ingr. Images
PFID [7] 2009 CLS 101 0 4,545
Food50 [21] 2010 CLS 50 0 5,000
Food85 [19] 2010 CLS 85 0 5,500
UEC Food100 [33] 2012 CLS 100 0 14,361
UEC Food256 [23] 2014 CLS 256 0 25,088
Diabetes [1] 2014 CLS 11 0 4,868
ETH Food-101 [2] 2014 CLS 101 0 101,000
UPMC Food-101 [54] 2015 CLS 101 0 90,840
Geo-Dish [56] 2015 CLS 701 0 117,504
UNICT-FD889 [15] 2015 CLS 889 0 3,583
Vireo Food-172 [4] 2016 CLS 172 0 110,241
Food-975 [61] 2016 CLS 975 0 37,785
Food500 [34] 2016 CLS 508 0 148,408
Food11 [47] 2016 CLS 118 0 16,643
Sushi-50 [40] 2019 CLS 50 0 3,963
FoodX-251 [22] 2019 CLS 251 0 158,846
ISIA Food-200 [37] 2019 CLS 200 0 197,323
FoodAI-756 [42] 2019 CLS 756 0 400,000
Recipe1M [45] 2017 Recipe 0 1488 1M
Recipe1M+ [31] 2019 Recipe 0 1488 14M
Food-201 [35] 2015 SEG 201 0 12,093
SUEC Food [16] 2019 SEG 256 0 28,897
UECFoodPix [14] 2019 SEG 102 0 10,000
UECFoodPixComp. [39] 2020 SEG 102 0 10,000
FoodSeg103 2021 SEG 730 103 7,118
FoodSeg154 2021 SEG 730 154 9,490

Table 1: A global view of existing food image datasets. (CLS:
no recipe andmasks, Recipe: with recipe, SEG: with segmen-
tation masks )

Datasets # Mask # Mask Image Ratio (%) Over # Mask
Per Img ≤ 1 Mask ≤ 2 Mask ≤ 3 Mask

Food-201 [35] 29,000 2.4 57.02 82.92 94.93
UECFoodPix [14] 14,011 1.4 100.00 100.00 100.00
UECFoodComp. [39] 16,060 1.6 100.00 100.00 100.00
FoodSeg103 42,097 5.9 0.15 21.90 52.40
FoodSeg154 59,773 6.3 0.15 19.73 47.72

Table 2: Data summary and comparison with existing food
image segmentation datasets.

4 FOOD IMAGE SEGMENTATION
FRAMEWORK

As shown in Figure 6, our food image segmentation framework
contains two modules. One is the recipe learning module (ReLeM)
to incorporate recipes in the form of language embedding into
the visual representation of a food image. We call this approach
multi-modality knowledge transfer. In this approach, we explicitly
force the visual representations of the same ingredient appearing

in different dishes to be “connected” in the feature space through
the common language embedding (extracted from the ingredient
label and its cooking instructions), so as to handle the high variance
of the ingredient appearing in different dishes. The other module
of our framework is the encoder-decoder based image segmentation.
Its encoder is initialized using the one trained by ReLeM, and its
decoder is randomly initialized and trained with the segmentation
masks. We next introduce the two modules in detail.

Ingredients:
•1/2 cup A.1. Classic Marinade
•1 boneless beef sirloin steak
•…

Instructions:
•Pour marinade over steak in
resealable plastic bag.
•Seal bag; turn to evenly coat
steak with dressing. 
•…

fc

cosine loss

weights sharing

Vision 
Encoder

semantic loss

Text 
Encoder

Vision 
Encoder

Vision 
Decoder

fc

Figure 6: Our food image segmentation framework consists
of two modules: Recipe Learning Module (ReLeM) and Im-
age Segmentation Module (Segmenter). For ReLeM, we en-
code the recipe information into the visual representation
of the food image. We deploy the cosine similarity to com-
pute the distance between two distinct-modality models, to-
gether with a semantic loss [45]. After training, we use the
trained encoder to initialize the encoder of the Segmenter.
The decoder of the Segmenter is trained with the segmenta-
tion masks from a random initialization.

(a) Source Image (b) Mask Prediction

True Positive (TP)

False Positive (FP)

False Negative (FN)

(c) Label Marks

Figure 7: Calculating IoU and Acc, taking the “cake”mask as
an example. IoU = ( TP

TP+FP+FN ) and Acc = ( TP
TP+FN ).

Food image segmentation can be viewed as a special type of se-
mantic segmentation [28, 60]. It is more difficult than normal image
segmentation due to: 1) the ingredient cooked with different meth-
ods can vary a lot by appearances, and 2) ingredient distribution is
inevitably long-tailed making the data very sparse for ingredients
in the long tail. Given a food image, the Segmenter identifies the
ingredient categories and also mask out the corresponding pixels
for each category (class). The common metrics for measuring Seg-
menter’s performance include mIoU (mean IoU over each class),



mACC (mean accuracy over all classes) and aAcc (over all pixels),
See Figure 7 for more details of IoU and accuracy (Acc) calculation.

4.1 Recipe Learning Module (ReLeM)
Overview.We propose ReLeM to reduce the large intra-variance
of ingredients caused by different cooking methods mentioned in
the recipes. Specifically, our training method integrates the recipe
information into the visual representation of the corresponding
image. Assume an ingredient in two different images are cooked
in different methods. The visual representations of the ingredients
from vision encoder are denoted as 𝑣1 and 𝑣2, where 𝑣1 and 𝑣2 have
significant difference in the visual space. ReLeM aims to reduce
this difference according to its word embedding of the cooking
instructions of the two recipes 𝑟1 and 𝑟2 respectively in the language
space.

|𝜙 (𝑣1 |𝑟1) − 𝜙 (𝑣2 |𝑟2) | < |𝜙 (𝑣1) − 𝜙 (𝑣2) | (1)
where 𝜙 is the vision decoder in the Segmenter (elaborated in Sec-
tion 4.2).

Our ReLeM is optimized by using two loss terms: cosine similar-
ity loss between features, and semantic loss (distance) between the
text representation 𝑡 and the visual representation 𝑣 of the same
image:

𝐿cosine ((𝑣, 𝑡), 𝑦) =
{

1 − 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑣, 𝑡) 𝑦 = 1
𝑚𝑎𝑥 (0, 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑣, 𝑡) − 𝛼) 𝑦 = −1 (2)

𝐿semantic ((𝑣, 𝑡), 𝑢𝑣, 𝑢𝑡 ) = CE(𝑣,𝑢𝑣) + CE(𝑡,𝑢𝑡 ) (3)
where 𝑦 denotes whether 𝑡 and 𝑣 are from the same recipe. 𝑢𝑣 and
𝑢𝑡 denote the semantic class of 𝑢 and 𝑣 respectively, and 𝛼 is the
margin parameter, which is set to 0.1. As Recipe1M does not contain
specific semantic labels (i.e., dish names), we define 2,000 semantic
labels for it by selecting the most frequent dish names appeared in
its recipe titles.
Preprocessing. Each recipe contains ingredients and cooking in-
structions. Some preprocessing steps are required to encode ingre-
dients and instructions from raw text into the fixed length vectors
before they are fed into the text encoder. Specifically, we first ex-
tract useful ingredient and instruction texts from the raw recipe
data by removing redundant words. For each ingredient, we learn a
word2vec [36] representation using a bi-directional LSTM. As the
sequence of instructions can be long, it is difficult for LSTM to en-
code them, due to the gradient vanishing issue. Following a previous
work [45], we encode the instructions with a skip-instructions [26]
to generate the feature vectors with a fixed length.
Text Encoder. The text encoder is a general module to extract text
knowledge from ingredient labels and cooking instructions. We use
two types of text encoders: LSTM-based encoder and transformer-
based encoder. For LSTM-based, we use a bi-directional LSTM to
encode ingredient features and a LSTM to encode instruction fea-
tures. For transformer-based model, we use two light-weight trans-
formers, each of which contains 2 transformer layers with 4-head
self-attention modules.
Vision Encoder. The vision encoder used in ReLeM aims to extract
the visual knowledge from the input image, and the weights will
initialize the vision encoder in the segmenter. In this paper, two
vision encoders are used: ResNet-50 [18] based on convolutional
neural network and ViT-16/B [13] based on vision transformers.

4.2 Image Segmentation Module (Segmenter)
Our framework follows a standard paradigm of semantic segmenta-
tion, where the input image is first encoded in a vision encoder, and
then goes through a vision decoder to predict masks. Existing seg-
mentation models can be roughly divided into three groups, based
on the different designs of encoder and decoder: Dilation based,
Feature Pyramid Networks (FPN) based and Transformer based.
Dilation based. Dilation convolution layers aim to enlarge the
receptive fields without sacrificing the resolution, as shown in
Figure 8 (a). In its decoder, only the last-layer feature maps are used
for prediction [6, 20], as shown in Figure 9 (a).
FPN based. FPN integrates feature maps in different layers by
the lateral connection. The shallow-layer image representation is
enhanced by integrating the feature maps generated in deep layers,
as shown in Figure 8 (b). In its decoder, a set of feature pyramids
are merged together followed with a mask predictor, as shown in
Figure 9 (b).
Transformer based. Transformer is based on attention, which
suits semantic segmentation tasks well—-the contextual informa-
tion is important in segmenting objects. Moreover, the receptive
fields can be enlarged via attention mechanism [50, 60]. The trans-
former based model reshapes the image into a sequence of regions
and then encodes them by a sequence of attention modules, as
shown in Figure 8 (c). Its decoder predicts segmentation masks on
the last-layer feature maps, as shown in Figure 9(c).

In this paper, we conduct experiments using three representative
frameworks of these three types, respectively, i.e., CCNet (Dila-
tion) [20], FPN [25] and SeTR (Transformer) [60]. Note that the
encoder of Segmenter is pre-trained by our ReLeM. With LSTM and
transformer-based text encoding, we arrive at 6 different ReLeM
models, i.e., ReLeM-{ CCNet, FPN, SeTR}×({ LSTM, Transformer}).
We use the standard pixel-wise cross-entropy loss to optimize seg-
mentation models.

5 EXPERIMENTS
We conduct extensive experiments on our dataset FoodSeg103 and
implement our proposed ReLeM by incorporating three baseline
methods of semantic segmentation. Below, we first elaborate the
experimental settings and the results of an ablation study. Then, we
show the performance gaps of the top model in the typical semantic
segmentation task and our food image segmentation task. We also
evaluate the model adaptability using the Asian food data splits in
our FoodSeg154. Lastly, we provide some qualitative results of our
best segmentation models.

5.1 Implementation Details
Dataset Settings In our experiments, we use FoodSeg103 for in-
domain training and testing, and use the additional Asian food set
for out-domain testing. We randomly divide FoodSeg103 dataset
into two splits: training set and testing set, according to the 7:3 ratio.
Our training set contains 4,983 images with 29,530 ingredient masks,
while testing set contains 2,135 imageswith 12,567 ingredientmasks.
For ReLeM training, we use the training set of Recipe1M+ to learn
the recipe representations (with test images in FoodSeg103 hidden
from training).
Segmenter Settings We conduct experiments based on two types
of vision encoders: ResNet-50 [18] based on convolutional neural
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networks, and ViT-16/B [13] based on vision transformer. ResNet-
50 is initialized from the pre-training model on ImageNet-1k [11],
which is widely used inmultiple vision tasks [6, 27, 41]. ViT-16/B [13]
is a transformer-based model, which is initialized from the pre-
training model on ImageNet-21k. ViT-16/B contains 12 transformer
encoders with 12-head self-attention modules. We use the bilin-
ear interpolation method to reinitialize the pre-trained positional
embedding. In this paper, we use three types of segmenters: CC-
Net [20], FPN [25] and SeTR [60]. CCNet and FPN are based on
ResNet-50, while SeTR is based on ViT-16/B. Notably, SeTR extracts
feature maps from 12th transformer encoders, followed by two
sets of convolution layers for prediction. Other components of the
segmentors follow the default settings with random initialization.
ReLeM Settings We use two types of vision encoders in ReLeM:
ResNet-50 and ViT-16/B, which follow the same setting as Seg-
menter. In text preprocessing step, we use the skip-instruction
models from the pre-trained weights in [32].
Learning Parameters of Segmenter Each image will be resized
into a fixed size of 2049 × 1024 pixels with a ratio range from 0.5
to 2.0. A 768 × 768 patch is cropped from the resized images, and
random horizontal flipping and color jitter are applied. We trained
the models with 80k iterations based on 8 images per batch, and
optimized the models by SGD solvers, with a momentum as 0.9
and weight decay as 0.0005. For CCNet and FPN, we set the initial
learning rate to 1e-3, while for SeTR we set initial learning rate to
1e-3. According to the general settings [20, 52], the learning rate
is decayed by a power of 0.9 according to the polynomial decay
schedule. For simplicity, we do not apply hard negative mining
during training, and our framework is based on the widely used
platform mmsegmentation [9]. All experiments were conducted on
4 Tesla-V100 GPU cards.
Learning Parameters of ReLeM Each input image are resized
into a size of 256 × 256 pixels and a 224 × 224 patch is cropped
from the resized images as the input of the vision encoder. The

model is trained for 720 epochs and each batch contains 160 images.
We use Adam solver [24] to optimize the models, with a learning
rate of 1e-4, Here we follow a two-stage optimization strategy. We
first freeze the weights of the vision encoder and optimize the text
encoder. After the text encoder converges, we start to train the
vision encoder and freeze the parameters of the text encoder.
5.2 Results and Observations
The experiment results of CCNet, FPN and SeTR on FoodSeg103
are shown in Table 3. The Segmenters of all CCNet, FPN and SeTR
achieve significant improvements when incorporating with either
LSTM-based or transformer-based ReLeM (1.3%, 1.3% and 2.6% im-
provement). This confirms that ReLeM is effective in enhancing
both convolution based and transformer based semantic segmen-
tation models. Besides, we can see that the performance of using
LSTM-based ReLeM is consistently superior than using transformer-
based ReLeM across all the model configurations. This is because
we used a lightweight Transformer–smaller than LSTM (165M vs
444M).

Methods mIoU mAcc Model Size
CCNet [20] (ResNet-50) 35.5 45.3 381M
ReLeM-CCNet (LSTM) 36.8 47.4 381M
ReLeM-CCNet (Transformer) 36.0 46.5 381M
FPN [25] (ResNet-50) 27.8 38.2 218M
ReLeM-FPN (LSTM) 29.1 39.8 218M
ReLeM-FPN (Transformer) 28.9 39.7 218M
SeTR [60], (ViT-16/B) 41.3 52.7 723M
ReLeM-SeTR (LSTM) 43.9 57.0 723M
ReLeM-SeTR (Transformer) 43.2 55.7 723M

Table 3: Semantic segmentation results of our ReLeM
plugged into three baseline methods (on the FoodSeg103
dataset). We implement two variants of ReLeM using LSTM
and Transformer, respectively, to encode recipes.
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5.3 Qualitative Examples
In Figure 10, we show some qualitative results of using CCNet
and ReLeM-CCNet on the testing set of FoodSed103. The first two
rows clearly show that ReLeM-CCNet produces more accurate and
detailed predictions than the vanilla CCNet, demonstrating the
effectiveness of ReLeM. In the last row, we show a failure case. It is
actually a hard example with no clear boundaries among different
ingredients.

5.4 Cross-Domain Evaluation
We conduct an out-domain model evaluation using the Asian food
data set in FoodSeg154. With the model trained on FoodSeg103,
we adapt it to the subset of FoodSeg154, the Asian food data set.
Specifically, the Asia food set is evenly divided into the training
and testing splits. We fine-tune the trained model on the training
set and then run the model on the testing data. In Table 4, we
show the performances of three models trained with the following
settings: 1) without ReLeM, 2) with ReLeM and 3) with ReLeM
and fine-tuned on the training split of the Asian food set. For the
first two settings, we only evaluate the 62 classes in Asian food set
overlapped with FoodSeg103, and for the last setting, we evaluate
112 classes (all). From the results in Table 4, we observe that using
ReLeM consistently outperforms baselines in both cases—with and
without model fine-tuning on the training split of Asian food data.

6 CONCLUSIONS
We construct a large-scale image dataset FoodSeg103 (and its exten-
sion FoodSeg154) for food image segmentation research. We use
around 10k images and annotate 60k segmentation masks in total,
covering highly diverse appearances among 154 ingredients. In
addition, we propose a multi-modality based pre-training method

Methods mIoU mAcc aAcc
CCNet 28.6 47.8 78.9
ReLeM-CCNet 29.2 47.5 79.3
CCNet-Finetune 41.3 53.8 87.7
ReLeM-CCNet-Finetune 47.1 59.5 85.5
FPN 21.9 41.7 75.5
ReLeM-FPN 22.9 42.3 77.0
FPN-Finetune 27.1 38.0 82.6
ReLeM-FPN-Finetune 30.8 40.7 78.9

Table 4: Cross-domain adaptation results. We use LSTM
based ReLeM.

ReLeM, and validate its effectiveness by incorporating three base-
line semantic segmentation methods and conducting extensive
experiments on the FoodSeg103, i.e., using the typical setting, as
well as on the FoodSeg154, i.e., using the challenging cross-domain
setting.
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