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Abstract
We describe the practical development of a smart lighting control
system, CS-Light, that uses a preexisting surveillance camera infras-
tructure as the sole sensing substrate. At a high level, the camera
feeds are used to both (a) estimate the illuminance of individual, fine-
grained (roughly 12𝑚2) sub-regions, and (b) identify sub-regions
that have non-transient human occupancy. Subsequently, these
estimates are used to perform fine-grained (non-binary) power
optimization of a set of LED luminaires, collectively minimizing
energy consumption while assuring comfort to human occupants.
The key to our approach is the ability to tackle the challenging
problem of translating the luminance (pixel intensity) of image
frames into accurate estimates of the illuminance (LUX) of the vari-
ous sub-regions, under variations in ambient lighting and layouts.
To overcome this challenge, we develop a novel technique that (a)
classifies image pixels as corresponding to light vs. dark-colored
surfaces, and (b) uses unsupervised ML-based color-specific, pixel-
to-LUX classifiers and statistical aggregation to provide robust LUX
estimates. Experimental studies, conducted over a collaborative
work area in an operational ZEB, demonstrate CS-Light’s efficacy:
it supports accurate pixel-to-LUX estimation (median error= 8.5%),
and its real-time multi-LED adaptation results in appreciable en-
ergy savings (63.5% in low occupancy situations), while ensuring
negligible perceptual discomfort to human occupants.

CCS Concepts
• Computer systems organization → Embedded and cyber-
physical systems.

Keywords
Smart building, Smart lighting, LED Lighting, cyber physical system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BuildSys ’21, November 17–18, 2021, Coimbra, Portugal
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9114-6/21/11. . . $15.00
https://doi.org/10.1145/3486611.3486657

ACM Reference Format:
Anuradha Ravi, Kasun Galmath, Siyan Hu, and Archan Misra. 2021. CS-
Light : Camera Sensing Based Occupancy-Aware Robust Smart Building
Lighting Control. In The 8th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation (BuildSys ’21), November
17–18, 2021, Coimbra, Portugal. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3486611.3486657

1 Introduction
Despite the adoption of power-efficient LED luminaires, lighting
remains the second-most dominant component of energy consump-
tion (after HVAC) in smart buildings. To reduce lighting energy
consumption without adversely affecting occupant safety and com-
fort, many commercial buildings have adopted occupancy-based
adaptive lighting strategies. Broadly speaking, most such strategies
involve binary and coarse-grained (on/off) control, whereby motion
sensors are used to detect the presence vs. absence of humans and
the lights are dimmed when an entire area is estimated to be unoc-
cupied. Such binary strategies are often sub-optimal for open-plan
office layouts (such as the collaborative work area illustrated in
Figure 1), where only part of the space may be occupied and where
a specific luminaire’s impact diffuses over a wider area [8]).

In this work, we present CS-Light, an operationally-deployed
system that performs fine-grained, occupancy-driven, non-binary
lighting intensity adaptation, over such collaborative open indoor
spaces. One of CS-Light’s key and attractive features is that the
entire adaptation process is based on inputs provided by an existing
infrastructure of CCTV cameras, deployed previously to ensure
campus safety and security–i.e., it does not require any additional
custom sensor (e.g., lux sensors) deployment or external knowledge
(e.g., level of ambient lighting). In addition, CS-Light also supports
daylight harvesting [5, 22], automatically taking advantage of exter-
nal daylight that enters via glass windows/doors. Most importantly,
CS-Light is robust to a variety of real-world artifacts (e.g., changes
in layout, occlusion effects under medium-to-high occupancy den-
sity) that previously-proposed approaches do not effectively tackle.
At a high-level, CS-Light operates as follows. The image frames
captured by such cameras are used to perform both (a) occupancy
sensing: state-of-the-art AI-based vision algorithms are used to
identify the sub-regions currently experiencing non-transient hu-
man occupancy, and (b) illuminance estimation: novel algorithms
are used to translate the intensity of pixel clusters to the current
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Figure 1: Occupancy-Aware, Fine-Grained Smart Lighting

illuminance (LUX) level of corresponding sub-regions. These inputs
are then used to dynamically control LED luminaire intensity level,
so as to minimize the total power consumption while ensuring
adequate illuminance at all human-occupied sub-regions.
The Challenge of Accurate LUX Estimation: Accurate illumi-
nance estimation is the most challenging of the various CS-Light
components. In commercial buildings, such illuminance is often
measured by using ceiling-mounted light sensors (LUX meters).
However, our experimental studies, conducted in an indoor 100m2

open-collaboration space (detailed in Section 3) reveal that such
measurements are sensitive to variations in the reflectivity of com-
monplace objects placed by humans, on the tables and floor, during
regular usage. Figures 2 & 3 plot the LUX readings measured by
multiple ceiling-mounted LUX sensors, during daylight and night
conditions respectively, as the intensity of the LED lights are varied
(by varying the luminaire’s duty cycle (𝐷𝐶) values). The different
lines in the plots correspond to different ambient conditions, when
the tables are covered either by black-colored objects or are com-
pletely uncovered (thereby revealing the furniture’s natural white
color), as well as partially covered by objects (such as laptops, bags
and books) during regular usage. We can see that the LUX readings
differ by ∼ 25 lumen (≈ 33%) when the table is completely uncov-
ered vs. covered with black objects, and ∼ 12 lumen, on average,
under different levels of naturally-occurring human occupancy and
usage. As a consequence, the ceiling-mounted LUX sensor para-
digm not only imposes additional operational overhead (e.g., for
replacing batteries) and measures ceiling-level illuminance (occu-
pant comfort is known to be higher [13] when lighting adjustment
is based on table-level measurements), but is also vulnerable to
natural variations in ambient reflectivity. An alternative approach,
of embedding the LUX sensors on the work tables, also generates
erroneous readings, when being obscured by objects that occupants
place on the tables. In contrast, CS-Light attempts to estimate the
table-top illuminance levels based on the images captured by the
CCTV cameras.

While image pixel-to-LUX estimation is not conceptually new [18],
we shall experimentally demonstrate that such past approaches fail
to consider the high variability in pixel-to-LUX mappings observed
naturally, due to factors such as changes in ambient lighting levels,
changes in the color (light vs. dark), type and reflectivity of objects
present in the visual scene and possible saturation of the image’s
pixel values. Practical and robust illuminance estimation is thus
a challenging, non-trivial problem. Figures 4 & 5 illustrate such
variability observed at two distinct times of the day over 2 regions

Figure 2: LUX-vs.Pixel (Day) Figure 3: LUX-vs.Pixel (Night)

within our experimental testbed: for region (a), we observe that
the illuminance has changed dramatically, due to changes in the
LED & ambient lighting, while the pixel intensity remains roughly
the same; in contrast, for region (b), while the illuminance remains
unchanged, the image pixel intensity changes with the color of fore-
ground objects. We shall show CS-Light’s individual components
are carefully designed to overcome these challenges.
Key Contributions: Our key contributions are:
• Robust & Stable Pixel→LUX Mapping: We introduce a practical
and robust approach, for mapping pixel values of camera images
to illuminance (LUX) levels at the corresponding sub-regions.
The approach first partitions the large collaborative space into
multiple sub-regions, with each sub-region then subject to a two-
step process: first, classifying each micro-region within the sub-
region into a dark vs. light colored surface using a state-of-the-art
classifier [27], followed by the use of a color-specific ML-based
model (built during an offline, fingerprinting phase) to map the
corresponding pixel values to a presumptive luminance range.
The resulting ranges from each micro-region are then statistically
aggregated to estimate the overall illuminance (LUX) level of each
sub-region. We show that this approach is significantly more
accurate, achieving a median LUX estimation error of 8.5% across
a diverse real-world variety of environmental and usage artifacts.

• Practical & Accurate LED Lighting Control: We develop an op-
timization based approach for LED lighting control that im-
plements non-binary LED adaptation. This approach utilizes a
fingerprinting-based strategy [18] that effectively captures the
non-uniform “channel” between a cluster of LEDs and each sub-
region, and then uses this channel matrix to iteratively modify
the intensity (duty cycle) of individual LED clusters and ensure
that we satisfy each sub-region’s illuminance constraint. Using
diverse real-world deployment conditions, we show that the the
illuminance stays within ±10% of the ideal levels.

• Practical Validation of CS-Light: We deploy and evaluate CS-
Light’s performance in an open-layout, shared collaboration
space of ∼100𝑚2 within a university ZEB (Zero Energy Building).
We demonstrate that CS-Light is effective under diverse occu-
pancy regimes, (a) achieving energy savings of 63.5% (low occu-
pancy) and 37% (high occupancy), compared to a non-adaptive
baseline, and (b) saving ∼26% energy savings vs. a binary con-
trol mechanism. Equally importantly, explicit occupant feedback
demonstrates that such energy savings are achieved without
any degradation in occupant-perceived comfort. Additionally, re-
sults from a longer duration, operational deployment show that
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Figure 4: (Pixel,LUX) Values: CollabZone Daytime View Figure 5: (Pixel,LUX) Values: CollabZone Nighttime View

CS-Light continues to provide ∼40% energy savings in spite of
significant, uncontrolled variations in ambient layout and usage.

2 Related Work
The past work on automated, occupancy-aware lighting control
in smart spaces can be characterized along multiple dimensions,
including the choice of sensors, the type of environment targeted
and the techniques used for camera image-based LUX estimation.
Occupancy & Illuminance Sensing: Researchers have explored
different strategies (e.g., [19]) to optimally tune the intensity of
lights to reduce energy consumption, while maintaining an accept-
able level of comfort for the occupants. Recognizing the diffusive
properties of open spaces, researchers have recently moved be-
yond classical binary (ON/OFF) control strategies to perform finer-
grained illumination control. Lee et. al. [10] proposed the usage of
desk-mounted photometry sensors (measuring illuminance) and
RFID based user tags (providing location) to perform occupancy-
aware adaptation of ceiling luminaires, while taking into account
the natural ambient illumination (daylight harvesting). Meugheuvel
et.al. [21] utilize occupancy and light sensors mounted alongside
each LED luminary to measure illuminance and occupancy, and
communicate such status across LEDs to perform distributed light-
ing control. More recently, the ReViCEE framework [7] utilized
similar luminaire-attached sensors to measure desk-level illumi-
nance and occupancy, and proposed a centralized, joint control of
multiple LED luminaires while incorporating explicit user prefer-
ences. A variety of past work (e.g., [4, 25] have explored the deploy-
ment of other sensors (e.g., RFID user tags, microwave sensors) to
measure occupancy together with photosensor-based illuminance
estimation. To support stable indoor illuminance via daylight har-
vesting, SunCast [11] uses historical patterns of sunlight variation
to predict time-varying sunlight intensity, and subsequently ad-
just the transparency level of external windows. Pandharipande et.
al. [15] explored the use of ultrasound sensors and photosensors to
estimate illuminance and the trajectory of a person walking in an
office-space to uniformly distribute LED lighting across the occu-
pied and unoccupied regions. Such past work has largely ignored
the significant errors in LUX estimation, caused by real-world arti-
facts such as the presence of objects with varying color/reflectivity
or desktop occlusion.
Implicit & Image-based Illuminance Estimation: Several re-
searchers have utilized theoretical models, correlating illuminance
with LED lighting intensity. For example, Zevgolis et. al., [26] placed
image sensors on the ceiling to estimate the luminance maps via

idealized, isotropic Lambertain reflectance models [9]. Similarly,
lighting control algorithms in [2, 3] utilize LUX estimates derived
from the distortion of illuminance patterns (captured by photomet-
ric sensors) across different locations in an open office. Researchers
have previously used HDR images [14], as well as RGBD sensors
that provide depth information [20], to estimate the luminance
intensity and further estimate the illuminance of a given scene.
Our proposed approach of estimating the lux from the pixel in-
tensity of images is conceptually similar to techniques described
in [12, 18]. However, the relatively-simple mathematical models
proposed for pixel-to-LUX estimation are inadequate in capturing
a variety of real-world challenges, such as changes in surface re-
flectance caused by commonplace objects and day-vs.-nighttime
variations in ambient lighting.
Neural Models: Recent work (e.g., [6, 23]) has also explored the
possibility of using DNN models to develop strategies for effective
lighting control and building management. Wang et. al.[24] used
a 2-layer neural network to model the non-linear relationship be-
tween the DC level and table-top measured LUX values within an
open-plan office space. While these DNN models effectively replace
idealized models (such as Lambertian) on the spatial diffusion of
lighting, they do not tackle the problem of image→LUX estimation.

3 Real-World Experimental Testbeds
To build and test our lighting control strategies, we conduct exper-
imental studies on two separate physical locations, described in
chronological order of use.

3.1 Micro-Study Lab Testbed
We first utilized a 25𝑚2 area research lab-based testbed (Figure 6),
purely to perform controlled micro-studies and understand the
LUX→pixel behavior. This research lab was subject to varying
levels of ambient daytime lighting, arriving by a window located
on one outer wall, and included 4 work cubicles with birch table-
tops and additional workplace furniture. We installed 6 clusters
of 8-LED puck lights that could collectively generate a maximum
intensity of ∼400 lm, and that were controlled by a set of Raspberry
Pi devices. In addition, to carefully understand how colored object
affected the (lux,pixel) relationship, we placed a variety of colored
“patches" (paper strips) and commonplace objects (such as bags and
laptops) to emulate human artifacts, at multiple locations on the cu-
bicles and furniture. The research lab was also instrumented with 2
Dahua ceiling-mounted cameras (same versions as our deployment
testbed) with auto-tuning switched-off.
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Figure 6: Research Lab TestBed Figure 7: Net-ZEB CollabZone Figure 8: LUX vs Pixel (Black & Birch - MicroTestbed

3.2 Net-ZEB Collaborative Zone (CollabZone)

The CS-Light system was operationally deployed on one floor of
a 5-story Net-ZEB equipped with Building Management System
(BMS), which permits DALI (Digital Addressable Lighting Interface)-
based control of individual LED luminaires. This floor houses an
open-floor space of ∼750𝑚2 that university students and staff can
normally access 24x7 for collaborative study and work. The overall
collaborative area is partitioned into a set of smaller sub-zones (as
illustrated in Fig. 7): each subzone has a cluster of 6 LED luminaires
controlled jointly by a single DALI end-point. The CollabZone is
also visually monitored by ceiling-installed Dahua cameras. We
turned OFF the camera’s auto-tuning features (gain, exposure and
white balance), keeping them fixed at all times, to provide reliable
and reproducible image frames under varying illuminance and
weather conditions. We empirically verified that disabling the auto-
tuning did not materially affect the quality of the captured images
used for conventional security/safety monitoring.

For our final measurement studies and analysis, we principally
focus on Zones 1-4 (an area of ∼70𝑚2 with white tabletops, as il-
lustrated in Figures 4 & 5), as these areas typically exhibited the
highest occupancy during the observation period. While Zones
2-4 have a cluster of 6 horizontally-spaced LED luminaires, Zone 1
has 6 vertically-spaced LEDs and is adjacent to a window (as indi-
cated in the figure) that lets in ambient light and is equipped with
manually-controlled blinds (whose status is not explicitly known
to CS-Light). Under normal pre-CS-Light operation, the LED lights
were lowered to 5% intensity during the early morning hours and
operated with 𝐷𝐶 =75% otherwise. Additionally, the CollabZone is
also equipped with standard motion sensors (3-4 sensors in each
zone), to (a) gradually decrease the intensity of the LED luminaries
in the sustained absence of motion, and (b) instantaneously increase
the LED intensity to 75% if motion is detected.

4 Challenges in Pixel - Lux Mapping

The ability tomap the pixel content of camera images to illuminance
intensity is a core requirement for CS-Light. However, in contrast
to past work (e.g., [12] that employs fairly straightforward Lamber-
tian reflectance models, our real-world studies (demonstrated in
Figures 4 & 5) show that the pixel-to-LUX relationship is non-trivial
and varies both across time and space due to a variety of natural
artifacts.

Through careful controlled experiments (involving deliberate
placement of different-colored patches on tables) on our micro-
study testbed, we established that this relationship (a) was non-
linear (with a strong quadratic component), and (b) depended
strongly on the nature/color of the object being captured within
each pixel cluster. In particular, object surfaces can be broadly cate-
gorized as: (a) Low-Intensity: corresponding to dark-colored (such
as black or dark brown) surfaces, where the pixel intensity is sig-
nificantly lower even when the illuminance is very high, and (b)
High-Intensity: corresponding to lighter-colored (white or birch)
surfaces, where the pixel intensity is significantly higher even under
low illuminance. As illustrated in Figure 8, under varying DC levels
of LEDs, we observe that: (a) Black surfaces have significantly lower
pixel intensity values, reaching at most 130+ even under extremely
high illuminance (LUX∼=1200 - under daylight conditions); (b) in
contrast, Birch (natural veneer) surfaces can reach pixel intensities
close to saturation (250+)1 under similar illuminance conditions;
and (c) a single (quadratic) regressor does not work well for both
daylight and night lighting conditions.

Table 1: LUX vs. Pixel: High Variability

Color Time-of-Day Pixel LUX (Est) LUX (GT) TestBed

Birch Night 135.77 32.62 32.08 Micro
Birch Day 255 121.6 98 Micro
Black Night 11.9 30.0 31.6 Micro
Black Day 135.24 121.6 1930 Micro
White Night 255 270 384.2 Collab
White Day 255 584 384.2 Collab
Black Night 18.6 70.8 84 Collab
Black Night 18.6 70.8 102 Collab

These observations are further reinforced by the values plot-
ted in Table 1, corresponding to measurements on both the Micro
(Research) and the CollabZone sites. We see that, for the birch
and white colored patches, the pixel intensity is high, even under
relatively low illuminance during the day, with the pixel values sat-
urating at 255 under high illuminance. For the Black colored patch,
the changes in pixel intensity are relatively muted even when the
illuminance changes significantly. Dependency on Light Source
Location: To further confound matters, we additionally established
that this lux-vs.-pixel relationship is not just surface color and light-
ing quality (natural daylight vs. LED) dependent, it also varies based
1With each pixel represented by a 24-bit RGB value, the dynamic range for camera
pixel intensity varies from 0-255.
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on the physical location of the patch relative to its neighboring
LED luminaires. In other words, due to the natural directionality of
the light reflected from different LED sources, the pixel→LUX map-
ping is also location-specific. To illustrate this phenomenon, Table 2
tabulates the (pixel, LUX) readings observed in our testbeds, for
both Black and White/Natural patches at representative locations.
We see that, on the Micro-Lab testbed, a pixel intensity=109 maps
to both LUX=17.0 (when illuminated solely by LED with DC=100%
placed on top of cubicle B) and LUX= 9.3 (when illuminated solely
by an LED with DC=40% on top of cubicle F).

Table 2: Lux-vs.-Pixel: Different Lights

LED DC LUX) NaturalPixel BlackPixel TestBed
LED-B (100%) 17.08 109.8 35.2 Micro
LED-F (40%) 9.3 109.8 32.6 Micro

Key Takeaway: Our experimental studies demonstrate the need
to (a) first, during an offline phase, create distinct location and
color/surface (Black vs. Natural/Light) specific pixel-to-LUX mod-
els, and then (b) during runtime, perform location-specific classifi-
cation of the color/surface.

5 CS-Light System & Key Components
We now describe the overall design of the CS-Light system and its
key components, explicitly differentiating between: (a) the offline
training phase used to build the various illuminance estimation
models, and (b) the online phase where CS-Light estimates LUX
levels from camera images and issues commands to modify the LED
brightness (DC) values.

5.1 Offline Phase - Fingerprinting and
Modelling

Fingerprinting Process and Patch Definition: To first create
the color-specific pixel-to-LUXmappings, we adopt the fingerprinting-
based approach: we place multiple {black, white} paper strips at
table-level in a zone, and measure the intensity of camera-captured
pixels as the LED light intensity (DC) is varied between 5-100%.
(Ground-truth LUX readings for the annotated patches are ob-
tained using collocated Texas Instrument BLE-equipped SensorTags
equipped with a light sensor.) We further manually annotate the
images captured during the fingerprinting process with each an-
notation referring to a cluster of pixels , called a “patch”, with size
≈25*25 pixels. The number of patches (per zone) varies between 8–
25, depending on the size of a zone and the distance of the zone from
the camera. Such patches correspond to an 10*10cm2 area if the
patch is near to the camera, an an 70*70cm2 are when farther away.
A larger number of patches provides greater robustness against
occlusion (caused as the occupants fill up the region with artifacts
such as laptops and books). From an empirical 3.5 hour study, 78%
of patches gave correct LUX estimations during real-time, while
22% were erroneous. Accordingly, to improve accuracy, we utilize
the median of the lux estimates (Algorithm 1) across all the patches.
Given our observation that a majority of occupant-specific objects
(laptops, phones and bags) are either dark or light in color, we focus
purely on building a two-class model: one for high-intensity (white,
birch and similar) surfaces and another for low-intensity (black,

dark brown and similar) surfaces. Figure 9 outlines the (offline)
fingerprinting process. While fingerprinting is performed using
only the LED luminaires at night-time (to avoid ambient lighting
fluctuations), we shall see that this approach works well under
daylight conditions as well.
Color/Patch Classifier: As the first step in the runtime execution
of CS-Light, we will need to classify the type of surface (light-
colored vs. dark) corresponding to each pixel micro-cluster. Based
on similar prior work for light-vs.-dark classification [16], we utilize
an off-the-shelf color-recognizer [27], that computes the histogram
of “R,G,B“ values for a given micro-cluster/patch and uses a KNN (K-
Nearest Neighbour) classifier to classify the corresponding patch. In
empirical testing, we discovered that due to the absence of sufficient
daylight-based training data, such a model could incorrectly classify
white patches as black under low-light daytime conditions. Hence,
we incorporate additional statistical spatial smoothing techniques
(described in Algorithm 1) for robust LUX estimation.
Pixel-to-LUX Mapping: To create a pixel→LUX map, we first
extract the ’mean’ pixel values for the pre-defined patches in the
fingerprinted images and the corresponding measured LUX values.
To build this map, we utilize only the night-time data (i.e., only
under LED illumination) as the daylight LUX values are often well
beyond the specified illuminance level (300 − 500 lumens, as per
local regulations) for human-occupied spaces. As mentioned earlier,
and illustrated in Figure 10, the (pixel, lux) ranges also depended
on the source of the illumination–i.e., whether the light incident on
a particular patch was primarily from an overhead LED luminaire
or from LEDs located in nearby sub-regions. Accordingly, instead
of embracing the regressor approach that we investigated initially,
we adopted an unsupervised clustering approach, using the well-
known DBSCAN algorithm to perform clustering of the observed
(lux, pixel) tuple, for each (patch, location) combination. Once the
clusters are determined, we represent each cluster by a 4-element
vector that includes: (a) (min,max) of pixel values, and (b) the (min,
max) of LUX values observed across cluster elements. We shall
shortly see how the runtime illuminance predictor utilizes such
multiple, possibly overlapping clusters.
WeightMatrix (Transfer Function): As detailed in Section 6, the
adaptive control of LED lights requires knowledge of the relation-
ship between an LED-cluster’s intensity and the LUX level of the
zone and it’s nearby zones. This relationship is defined via a weight
matrix W, such that𝑊𝑖 𝑗 represents the contribution from LED-
cluster 𝑖 to the sub-region 𝑗 . Mathematically, if 𝐷𝐶𝑖 is the current
duty cycle of luminaire 𝑖 , it contributes a value𝐷𝐶𝑖 ∗𝑊𝑖 𝑗 to the LUX
value at sub-region 𝑗 . We empirically verified the linear LUX-vs.-
DC relationship implicitly assumed in this model–e.g., Figure 11,
which plots the LUX-vs.-DC values across zones (sub-regions) in
CollabZone confirms this hypothesis. The matrix elements are de-
termined offline by independently varying the intensity of each
zone’s LED and observing the slope of the change in the LUX value.
5.2 Online Phase - LUX Estimation
The online phase involves the following steps:
• Capturing the images from the existing surveillance cameras (no
additional cameras/equipment deployed for CS-Light)

• Localize occupants to zones (sub-regions)
• Estimating the luminance from images (using micro-regions).
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Figure 9: CS-Light Fingerprinting Process (Offline) Figure 10: Clusters defined over
(Pixel,LUX) Values for Black Patch Figure 11: LUX vs. DC Variation

(LED-1)

Figure 12: CS-Light Real-Time Estimation Figure 13: CS-Light System Implementation

• Map luminance to illuminance (LUX) values
• Aggregate occupancy and LUX values
• Estimate the ambient light
• With the estimated LUX values, ambient light and localized oc-
cupants, determine the new optimal LED lighting levels.

We now describe the four key steps, deferring the last step (deter-
mining the optimal LED lighting levels) to Section 6. Algorithm 1
describes the logical steps involved in classifying a patch and esti-
mating the LUX.
Image Capture:We capture real time images from the surveillance
cameras installed in the building. Note that the environment no
longer contains any black/white paper strips (those were used
only for offline model building). Our CS-Light solution also merely
extracts ‘anonymous’ human object bounding box coordinates from
the camera image stream (and does not store any images), satisfying
the privacy requirements of campus facilities management.
Localizing Humans: The captured images from the surveillance
cameras are fed through an object detector (Yolo-V3 [17]) to ex-
tract bounding box coordinates of detected human objects. These
bounding boxes coordinates are further passed through a local-
ization module, which effectively uses a classifier (trained using
site-specific data) to map the object’s bounding box pixel coordi-
nates to the corresponding sub-zone. We use such localization data
to calculate the binary-valued occupancy vector 𝑂𝑉 , with the 𝑖𝑡ℎ el-
ement equal to ‘0’ if the sub-zone 𝑖 is unoccupied, and ‘1’ otherwise.
Occupants can move around the table and often place objects (e.g.,
monitors) that can partially occlude the table surfaces (sub-regions).

LUX Estimation: For a robust LUX estimation, we first extract the
mean pixel intensities (Y-Values) of the pre-defined patches (pixel
clusters) and use binary KNN-based patch classifier to distinguish
between {high,low} intensity surface classes. We then use the class-
specific clusters (bins) to determine the feasible range of associated
LUX values per patch. To overcome the errors in patch classification
(specifically during low-light conditions), we “separately estimate"
the LUX values for dark-colored and light-colored surfaces of each
zone; note that each such sub-zone may have a mix of dark and light
sub-regions (surfaces). We then compute the median of the LUX
values for each of the two patch classes, and finally compute the
average of these two median values. However, if the median values
obtained for black and white patches vary significantly (empirically
set to ≥ 100𝑙𝑢𝑚𝑒𝑛), we assign the cumulative LUX to be equal to
the median LUX of white colored patches. This is based on the
observation that LUX values estimated for white patches are more
accurate than black patches at low illuminance (which suffer from
low sensitivity).
Aggregation: To eliminate sporadic estimation errors, we average
each zone’s LUX estimate over each consecutive 2-min window.
Also, because the object detector might miss human objects in a
single frame (especially in low light and partially occluded regions)
or capture transient movement (false positives), we first aggregate
the occupancy vector over 2 minutes, classifying a zone as occupied
if it was declared to have human objects 4 or more times (i.e., ≥ 50%
of the frames sampled at 1

15 fps) within the 2 minute interval.
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Algorithm 1 Patch Classification and LUX Estimation Process
for Each Zone in List of Zones do

For Each Patch:
Calculate Mean of Y values for each patch (𝑃𝑖 )
Classify patch color using KNN Classifier
if Patch Color = Black then

Select the closest LUX bin corresponding to 𝑃𝑖 for black
Add estimated LUX to𝐶_𝑙𝑢𝑥_𝑏𝑙𝑎𝑐𝑘

else if Patch Color = White then
Select the closest LUX bin corresponding to 𝑃𝑖 for white
Add estimated LUX to𝐶_𝑙𝑢𝑥_𝑤ℎ𝑖𝑡𝑒

end if
end for
if MEDIAN (C_lux_black) - MEDIAN (C_lux_black) > Threshold then

Estimated LUX =𝐶_𝑙𝑢𝑥_𝑤ℎ𝑖𝑡𝑒
else

Estimated LUX = MEAN(C_lux_black, C_lux_white)
end if

6 Optimization Control Logic
The real-time aggregated LUX values and occupancy vector, to-
gether with the pre-computed weight matrix and current DC val-
ues of the LED luminaires (obtained from the BMS), are passed as
input to the optimizer. As the first step, the optimizer calculates
the required illuminance levels for each zone depending on the
occupancy vector and the ambient light present in each zone. The
ambient light 𝐴𝐿 is calculated by subtracting the anticipated LUX
value, 𝐷𝐶𝐿, of zone 𝑖 (obtained via the product of the weight matrix
and current LED levels) from the image-derived LUX estimate 𝐼𝐿–
i.e., for any zone 𝑖 , 𝐴𝐿(𝑖) = 𝐼𝐿(𝑖) −∑

𝑗 𝐷𝐶 𝑗 ∗𝑊𝑗𝑖 . If the image LUX
estimation is less than the DC LUX value (due to estimation errors),
we consider the ambient LUX as 0; in practice,𝐴𝐿 is computed only
during daylight hours.

Subsequently, the optimizer determines the required LED con-
tributed LUX value for each sub-zone 𝑖 , designated by 𝑅𝐿(𝑖), needed
to ensure adequate illuminance. If the zone is unoccupied, the target
illuminance is set to the mandated minimum safety value 𝑆𝑎𝑓 𝑒𝑡𝑦𝐿;
else, it is set to the comfort level 𝐶𝑜𝑚𝑓 𝑜𝑟𝑡𝐿. 𝑅𝐿 is thus obtained as:

𝑅𝐿(𝑖) =𝑚𝑎𝑥 (0, (𝑂𝑉 [𝑖]∗𝐶𝑜𝑚𝑓 𝑜𝑟𝑡𝐿+(1−𝑂𝑉 [𝑖])∗𝑆𝑎𝑓 𝑒𝑡𝑦𝐿)−𝐴𝐿(𝑖))
(1)

Given these objectives, the optimization problem can then be ex-
pressed (Equation 2) as one of minimizing the total power of all the
𝑁 LED luminaires, across all J zones, while satisfying the required
LUX values in each individual zone–i.e.,

min
𝑁∑
𝑖=1

𝐷𝐶 (𝑖) such that
𝑁∑
𝑖=1

𝑊𝑖 𝑗 ∗𝐷𝐶 (𝑖) ≥ 𝑅𝐿 ( 𝑗) ∀𝑗 ∈ 𝑍𝑜𝑛𝑒 ; (2)

We solve the above optimization equation (which implicitly achieves
non-binary lighting control) using the least squares method to find
the best possible solution (DC values) for all the zones.

7 Practical CS-Light Implementation
We now describe the implementation of CS-Light (illustrated in
Figure 13) that is currently deployed in the Net-ZEB Collaboration
Zone (Section 3.2). The CS-Light software components are exe-
cuted on an Nvidia Tesla T4-equipped GPU server, with the GPU
cores used to run the object detector and pixel extraction tasks.

The coordination between the individual CS-Light components is
implemented via the Kafka middleware [1], which supports high
throughput, low-latency processing of event streams. The hardware
infrastructure includes the already-deployed Dahua2 IP camera in-
frastructure and the Beckoff PLC system3 used to control the LED
intensity values via standard DALI interfaces.

The overall system consists of the following modules:
• Kepware OPC Server: The Kepware OPC-UA server acts as a
middleware between CS-Light and Beckoff PLC. We subscribe
to the OPC tags (published by the Kepware OPC server when-
ever the tag value changes) via Python-3’s OPC-UA package.
These OPC tag values are stored in a Postgres SQL DB and also
published via the Kafka middleware to be utilized by the other
CS-Light components.

• CS-Light Software:TheCS-Light software consists of 5modules–
Image Extractor, Camera Localizer, Smartlight Optimizer, Pixel2LuxMapper
(P2L) and the Smartlight Controller. The Image Extractor compo-
nent uses an RTSP (Real-time Streaming Protocol) based private
API to retrieve the image feeds from 6 different cameras, with
a nominal rate of 1/15 FPS. Each such image is then streamed
to both (a) the P2L module to perform LUX estimation, and (b)
the Camera Localizer to identify the location coordinates of the
human objects. The Localizer uses a state-of-the-art 800*800
YOLOV3 object detector [17] to first identify each bounding box,
with a logistic regressor then mapping each such box to one of
the 4 Collaboration Area sub-zones (Z1-Z4, as seen in Fig 7).
The bounding boxes coordinates are fed (with appropriate times-
tamps) to the P2L estimator. The P2L module uses these inputs to
estimate each subzone’s LUX value, averaged over 2 mins. These
estimates are then fed into the SmartLight Optimizer, which uses
the Python 𝑛𝑢𝑚𝑝𝑦 linear solver to determine the ‘optimal’ values
(the duty cycle) for each of the LED luminaires. These optimal
values are then provided to the SmartLight Controller, which uses
an OPC-Client to adjust the operation of each LED luminaire.
To avoid rapid, jarring changes to the lighting levels, the Con-
troller performs a linear adjustment of each luminaire’s intensity,
modifying the DC values gradually once every 30 secs.

8 Experimental Results
We now present results based on extensive evaluation of CS-Light
in the ∼100𝑚2 CollabZone space. Our evaluation focuses on the
following key performance metrics:
• LUX Estimation Accuracy: this helps establish the estimation error
of our image-based pixel→LUX estimation approach.

• Patch Classification & Occupancy Estimation Accuracy: these es-
tablish our efficacy in estimating CS-Light intermediate variables.

• Energy Savings: obviously themost important “application-specific
metric", this quantifies the amount of energy saved by CS-Light’s
fine-grained, collective LED adaptation approach.

8.1 LUX Estimation Accuracy
We study the errors in estimating the LUX for a single-frame on a
per-zone basis, observed over a period of 2 hours and also evaluate
how the sub-zone level aggregation (over a 2 minute interval) helps
improve such LUX estimation. The errors are analyzed only during
2https://www.dahuasecurity.com/asia
3https://www.beckhoff.com/en-us/products/automation/
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Figure 14: Fingerprint Vs Real-Time View of CollabZone

the low-occupancy period (one occupant per zone), due to errors
in ground truth computation when the lux meters are occluded by
the occupants and their artefacts. Fig 15 illustrates the estimated
LUX compared to the measured Ground-truth LUX values. Over a
representative study period (120 mins), we observed that the LUX
estimator failed to produce any valid estimate ≤8.5% of the time.
Overall, CS-Light achieved a median LUX Estimation error of 12.3%
on a per-frame basis, with the error dropping to 8.5% (max=18%,
min=5.5%) after temporal and spatial aggregation (in contrast to
the ∼ 30% variance observed in Section 1).
Comparative Performance: One of CS-Light’s strengths is its
ability to deal with changes in the environment, such as rearrange-
ment of tables or occlusion of a patch due to artefacts such as
laptop and books. To underline the importance of patch-based color
classification and LUX estimation, especially when the layout and
ambient lighting vary over time and space (as shown in Fig 14),
we compare CS-Light against a baseline that mimics [18]–i.e., ex-
cludes CS-Light’s patch classification and statistical aggregation
techniques. We observe that, in such dynamically changing en-
vironments, CS-Light achieves 47.9% lower LUX estimation error
compared to [18].

8.2 Patch Classification Accuracy
Our patch classifier achieved an accuracy of 84.6%, across a variety
of ambient lighting and occupancy conditions. This classification er-
ror is certainly not negligible and further validates our observation
that correct and robust classification of patch types is a challeng-
ing problem. However, our results (Figure 15) show that CS-Light
is still able to achieve low LUX estimation error via suitable spa-
tiotemporal aggregation, thus demonstrating the practical utility
of our approach. On closer inspection, we noted that our classifier
achieved a precision of 80.2% and 96.4% for ’Black/dark-colored’
patches and Natural/light-colored’ patches, respectively.

8.3 Occupancy Estimation
CS-Light uses a logistic regressor to localize a human bounding
box to a sub-zone. Inspection of the camera-recorded ground truth
revealed an average instantaneous occupancy estimation error of
12.3%, primary due to 2 seats being occluded in Zone-2. However,
this error is eliminated entirely via aggregation and majority-voting
over 2-minute intervals.

8.4 Energy Savings and User Comfort
We calculate the total energy saving of CS-Light, as well as the user-
report opinion on comfort levels, under three distinct occupancy
conditions: (a) Low (4 occupants), (b) Medium (8 occupants) and (b)
High (15 occupants), measured over observation periods of 30 mins
each. In addition, via a survey4 of subjects working in CollabZone,
we ascertain their perceptual response to CS-Light-based lighting
control. To quantify CS-Light’s energy savings in the CollabZone
deployment, we calculate the energy consumption using Equation 3:

𝑃𝑎𝑣𝑔 =
1
𝑇
(
∫ 𝑑𝑐−𝑇

0
(𝑉

2
𝑜𝑛

𝑅
𝑑𝑡) +

∫ 𝑇

𝑑𝑐−𝑇
(
𝑉 2
𝑜 𝑓 𝑓

𝑅
𝑑𝑡)) (3)

Shorter Duration Studies:We first conduct 2-hour long user stud-
ies, in zones 1-4, and make the following key observations:
• During daylight hours, when the zone is occupied, CS-Light per-
forms implicit daylight harvesting to achieve 60.2% reduction
in lighting energy, compared to the current operational baseline
(where all the lights are set to 𝑑𝑐 = 75% by the campus building
managers). Even compared to a more conservative baseline of
𝑑𝑐 = 50% (which is experimentally seen to satisfy the minimum
LUX requirements), CS-Light reduces energy consumption by
27.2%. Moreover, CS-Light’s energy consumption is 56.4% lower
than a state-of-the-art occupancy-aware “binary control" strat-
egy (where a sub-zone’s LEDs are set to 𝐷𝐶 = 75% if the zone is
occupied and 30% otherwise). More specifically, for unoccupied
zones, CS-Light achieves an energy saving of 78.7% compared to
the binary-occupancy controller during daylight.

• At night, CS-Light’s savings were considerably lower, due to
the absence of any daylight harvesting possibilities. When the
area was occupied, CS-Light achieved energy savings of ≈29.7%
compared to a baseline binary control strategy (𝐷𝐶 = 75%) and
binary-occupancy, with the savings being lower (12.7%) if the
baseline used a lower illumination threshold (𝐷𝐶 = 50%). When
the area was unoccupied, the energy saving increases to 26.3%,
compared to a binary control strategy and is obviously superior
(66.9% reduction) to a non-adaptive lighting regime (𝐷𝐶 = 75%).

• Overall, as expected, CS-Light’s energy savings are higher at
lower occupancy. Figures 16 & 17 plot the energy consumption for
two different zones, one that can harvest daylight (Zone-1) and
the other that does not receive adequate daylight (Zone-4), and
show how CS-Light effectively harvests daylight to outperform
binary and fixed lighting control.

• While CS-Light currently changes DC values gradually (to avoid
distracting occupants), we noted that instantaneous lighting adap-
tation could provide an additional ≈5.3% savings in energy.

Occupant Comfort: To study human responses to CS-Light-based
control, we recruited 15 human occupants5, who sat in different
areas of CollabZone while performing their natural life/work-style
based activities. (They were, however, additionally asked to perform
a few explicit activities– reading, writing and laptop usage– to
help elicit their perception of lighting conditions during specific
activities.) We list below the user responses for CS-Light.
• During daylight with high occupancy, 100% of the occupants
felt comfortable working under CS-Light-controlled illumination.

4Questionnaire available at: https://bit.ly/3itaIxi
5All studies were performed with appropriate IRB approvals from our University

https://bit.ly/3itaIxi
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Figure 15: Ground-Truth Vs
LUX Estimation

Figure 16: DC Variation (Low
Occupancy)

Figure 17: DC Variation
(Medium Occupancy)

Figure 18: DC Variation
(Varying Occupancy - 6
Days)

In low and medium occupancy, 100% of the occupants felt the
area was perfectly lit. Across all occupancy states, 10% of the
occupants noticed the fluctuation when lights were being ad-
justed, but everyone indicated that they were comfortable with
the adaptation process.

• In the absence of daylight (i.e., with only LED-provided illumi-
nation), 86.6% of the occupants felt the area was perfectly lit
under high occupancy condition, while 13.4% felt the area could
have been slightly brighter (by 10%). In medium occupancy, 70%
of the occupants felt the area was perfectly lit and 30% felt the
area could have been a bit more bright. In low occupancy, 90%
felt the area was perfectly lit, while 10% felt the area could have
been brighter. Overall, 17.2% of the occupants noticed the LED
adjustment process: while 2 occupants felt a bit distracted by the
continual changes, they indicated that they were accepting of
the illumination dynamics if it helped reduced energy overheads.

Robustness of CS-Light over Longer Periods: Going beyond
our controlled studies, we deployed CS-Light operationally over
a period of 6 days (during the period 8.30am-11.30pm) of regular
occupancy across Zones 1-10 in CollabZone. As visualized in Fig-
ure 14, while the layout does change significantly from the initial
fingerprinting stage, CS-Light was able to adapt to the changes.
Quantitatively, CS-Light achieved an average energy savings of 39%
(max=53.5% and min=22.6%, depending on the occupancy) com-
pared to baseline-75 (Figure 18), 18.2% compared to baseline-50 and
22% compared to binary occupancy, respectively, over our primary
testbed area comprising zones 1-4.

8.5 Variable LED Intensity Control
We emphasize that CS-Light’s novelty lies in collectively adjusting
the intensity ofmultiple LEDs, so as to take advantage of the indirect
illuminance benefits from LEDs not directly overhead an occupied
area. Fig 19 illustrates one such adaptation, both before and after
occupancy, for different zones and lighting conditions. We see that
CS-Light is able to use non-binary lighting control to adapt to both
occupancy and lighting variations: during daylight, Zone-1 is lit
with DC=5% only in the absence of occupancy.

9 Discussion
CS-Light Sensitivity and Scalability: CS-Light relies on the of-
fline creation of (sub-region, color) specific pixel-to-LUX mappings,

Figure 19: DC Levels of LED luminaries under different oc-
cupancy conditions

and involves (a) the manual effort in fingerprinting each region,
and (b) the computational overhead in model training. The finger-
printing effort grows proportionately to the density of LEDs and
the number of patches per zone. In our deployed system, the finger-
printing cost of laying out the paper strips on tables and changing
the DC levels is ≈ 60 mins/zone/colored strip (zone ≈= 12𝑚2). We
empirically verified that reducing the number of patches by 25%
(in effect, defining coarser sub-regions) leads to a 15-20% increase
in LUX estimation error under different ambient conditions. De-
ploying CS-Light over the entire ZEB (total area= 750𝑚2) is thus
anticipated to require a one-time cumulative fingerprinting dura-
tion of 22 hours, which remains robust to significant subsequent
variations in ambient lighting and layout. In addition, the com-
putational time for training the models (using a Windows 10, 32
GB machine) was 30 mins/zone, implying a total time of 171 mins
for the entire CollabZone. In addition, scaling CS-Light to our en-
tire campus (10 buildings, approx. 20,000𝑚2 of shared-occupancy
spaces) will involve the continuous processing of ∼120 camera
feeds–i.e., avg. total network bandwidth of 500 Mbps (assuming a
camera deployment density similar to CollabZone). Our implemen-
tation experience suggests campus-wide execution of CS-Light can
be achieved using 5 (246GB, 4GPU) servers.

System Limitations: While CS-Light is robust to changes in
ambient conditions, it makes certain implicit assumptions: (a) the
LED lights may exhibit dynamic intensity changes, but not varia-
tions in color. Accommodating such color would require additional
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human effort in constructing of LED color-specific models; (b) the
cameras themselves are static, such that specific pixel coordinates of
each camera’s image always map to a specific spatial sub-region. To
accommodate non-static cameras (e.g., ones that continually sweep
a larger area), CS-Light would need explicit knowledge of the cam-
era’s pose at any time instant; (c) the level of visual occlusion is
relatively modest: if the camera’s view is significantly obstructed,
the occupancy estimates based on visual human object detection
will be severely degraded; (d) the distance of the camera from the
monitored region is not too large: empirical analysis of CollabZone
data reveals that as the distance of the patches/sub-region from the
camera increases beyond 10m, the LUX estimation error increases
by 12%. Accordingly, CS-Light’s camera-based LUX estimation may
not be suitable for certain public spaces (e.g., convention centers
with very high-ceilings and ceiling-mounted cameras); (e) while
the CS-Light deployment currently disables camera auto-tuning (to
support a static pixel-to-LUX mapping), certain environments may
require auto-tuning enabled–e.g., for performance spaces where the
camera feeds are streamed for live viewing. For such scenarios, we
believe that a continuous pre-calibration step, involving a fixed set
of colored strips mounted on walls and serving as visual markers,
can preserve CS-Light’s LUX estimation accuracy, by automatically
modifying (performing “gain control") on the pixel intensity inputs.
This is an area of ongoing work.

10 Conclusion
We’ve introducedCS-Light, a novel system for fine-grained, occupancy-
aware lighting control that utilizes only an existing surveillance
camera infrastructure and tackles several hitherto-unaddressed
practical challenges for pixel-to-LUX estimation. Via extensive ex-
perimental and real-world studies on an open-plan collaboration
space, we establish that CS-Light’s approach, of using unsupervised
clustering to build multiple such color-specific pixel-to-LUX models,
is able to dramatically reduce this estimation error to ∼8.5%. In
addition, CS-Light can reduce lighting energy consumption (with-
out sacrificing occupant comfort) by as much as ∼53%, especially
during daylight hours under normal occupancy. When zones are
unoccupied (a phenomenon accentuated during Covid), CS-Light
achieves ∼79% energy savings.
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